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Abstract

Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems;
and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front
and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the
intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The
dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction
from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration
of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo
reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity.
In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells,
which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells
are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes
leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review
recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the
migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung
and vascular diseases.

Background
Smooth muscle cell migration plays an essential role in
tube formation of hollow organs such as the airways and
blood vessels during development. Smooth muscle cell
motility has also been implicated in the pathogenesis of
airway remodeling, a key feature of asthma. In addition
to hyperplasia and hypertrophy, airway smooth muscle
cell migration contributes to the development of airway
remodeling. Smooth muscle thickening in the airways
may stem from migration of proliferating cells in the
muscle bundles or recruitment of circulating precursor
cells to the smooth muscle layer [1–3].
In general, cell migration includes the cycles of the

following four steps. First, in response to guidance cues

and adhesive proteins in the extracellular matrix (ECM),
cells form a protrusion called lamellipodia at the front.
Second, new focal adhesions are formed in the front of
motile cells to strengthen their attachment to the ECM.
Third, actomyosin activity increases to induce retraction
of the rear. Fourth, focal adhesions at the cell rear are
disassembled to allow whole cell body to move forward
[1, 3, 4]. There is a wealth of evidence to suggest that
the actin cytoskeleton, the intermediate filament
network, and microtubules are involved in the regulation
of cell motility (Fig. 1). This review will summarize our
current understanding of physiological properties of the
three cytoskeletal systems in cell migration in general
and in smooth muscle cell migration in particular. The
potential role of cell migration regulators in lung and
vascular diseases is also reviewed.* Correspondence: tangd@mail.amc.edu
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Roles of dynamic actin cytoskeleton and
actin-associated proteins in cell migration
The actin cytoskeleton undergoes dynamic assembly and
disassembly during cell crawling, which regulates protru-
sion formation, focal adhesion assembly/disassembly,
and contractile filament organization. The disruption of
the actin cytoskeleton inhibits cell migration and adhe-
sion [1, 3, 4]. The dynamic actin architecture is regulated
by a variety of actin-associated protein and signaling
pathways.

Lamellipodial formation is driven by local actin dynamics,
and regulated by actin-associated proteins
The lamellipodia are thin, sheet-like membrane protru-
sions of motile cells. During migration, cells extend the
membrane forward to explore their environment. If the
front surrounding is suitable, cells will move forward.
Otherwise, cells will retract to avoid inadequate environ-
ment. However, the extent of protrusion at the front is
greater than retraction. Thus, the cyclic extension and

retraction of the lamellipodium facilitate cell movement
forward [1, 3–5]. The dynamic formation of lamellipodia
is regulated by local actin filament assembly and
disassembly.
There are two patterns of actin filament assembly in

the lamellipodia, branching and elongation, which
promote the formation of the actin “mesh” in the cell
protrusion. Furthermore, actin depolymerization and
debranching transpires during migration, facilitating the
dynamic remodeling of the actin network, and the cyclic
extension and retraction of lamellipodia (Fig. 2).
Actin filament branching is largely mediated by the

Arp2/3 complex, which can attach to a mother filament,
and induce daughter filament growth at 70° angle of
mother filaments [4, 6]. The activity of the Arp2/3 com-
plex is controlled by nucleation promoting factors such as
neuronal Wiskott-Aldrich Syndrome Protein (N-WASP)
and WASP-family verprolin-homologous protein
(WAVE), which are in turn modulated by upstream regu-
lators. Upon growth factor receptor ligation and cell adhe-
sion, the small GTPases Cdc42 and Rac1 are able to bind
to the GTP-binding domain of N-WASP/WAVE, activat-
ing N-WASP/WAVE and promoting the Arp2/3
complex-mediated actin filament branching [4, 6–8]. Re-
cent studies suggest that the pleckstrin homology and
RhoGEF domain containing G3 (PLEKHG3) protein is a

Fig. 1 A. Schematic illustration of major cytoskeletal components in
motile cells. Lamellipodia and focal adhesions are located in the
front of motile cells. The cross-hatched region represents the actin
framework in lamellipodia. F-actin is present throughout the cell
body, which interacts with myosin to generate traction force. Aging
focal adhesions in the rear are disassembled to allow for cell retraction.
Intermediate filaments surround the nucleus (N), some of which
associate with focal adhesions in lamellipodia. Intermediate filaments
modulate focal adhesion dynamics and cell contraction. Microtubules
are polarized along the direction of migration and accumulate toward
the front of the cell. Microtubule organizing centers (MOTCs) are
localized in the front of the nucleus. Through their roles in mechanics,
trafficking and signaling, polarized microtubules facilitate all important
events leading to cell migration

Fig. 2 Focal adhesion formation, actin dynamics and actomyosin
activity in motile cells. Engagement of integrins with the extracellular
matrix recruits structural proteins (talin, vinculin, ILK, PINCH, parvins,
α-actinin, etc.) and signaling proteins (Cdc42, c-Abl, cortactin, FAK,
paxillin, Abi1, etc.) to the near integrin region, which promotes focal
adhesion formation (see detailed molecular interactions at focal
adhesions in reference [2]). Signaling proteins activate N-WASP and the
Arp2/3 complex, which induce actin filament branching (1). Activation
of profilin-1, VASP and mDia promotes actin filament elongation (2).
Activation of gelsolin and cofilin results in actin filament severing and
depolymerization (3). GMF-γ promotes actin filament debranching (4).
Myosin light chain phosphorylation triggers actomyosin activity and
leads to cell contraction (5). Soluble cues activate receptors (e.g.
growth factor receptors, cytokine receptors) and signaling proteins,
which promote actin filament polymerization and focal adhesion
assembly (See details in text). GFs, growth factors
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GEF for both Rac1 and Cdc42. PLEKHG3 is recruited and
selectively binds to new F-actin at the leading edge of mi-
grating fibroblasts. Moreover, PLEKHG3 is regulated by
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K).
However, it is currently unknown which PI3K iso-
forms are responsible for PLEKHG3 activation [9].
c-Abl is a non-receptor protein tyrosine kinase that

plays an important role in regulating smooth muscle
contraction, cell proliferation, and cytokinesis [2, 10–17].
Our recent results suggest that c-Abl is also critical for the
regulation of smooth muscle cell migration [2, 3]. c-Abl is
necessary for human airway smooth muscle cell migra-
tion. During airway smooth muscle cell migration, c-Abl
is recruited to the leading edge and activated by integrin
β1 [3]. c-Abl regulates the phosphorylation of the actin-
regulatory protein cortactin, which may control the activa-
tion of N-WASP, and promote actin filament remodeling
in lamellipodia [2, 3, 18]. Furthermore, the adapter protein
Abi1 is capable of stimulating N-WASP in smooth muscle
upon external activation [2, 13]. Abi1 is necessary for cell
contraction and the movement of a variety of cell types in-
cluding smooth muscle cells [13, 19] (our unpublished
data). Abi1 activation in smooth muscle is also regulated
by c-Abl tyrosine kinase [2, 13]. Moreover, external cues
activate c-Abl tyrosine kinase in smooth muscle, which
regulates phosphorylation of Crk-associated substrate
(CAS), the coupling of CAS with CrkII and N-WASP acti-
vation [3, 6, 11, 20, 21] (Fig. 3). The role of c-Abl in modu-
lating cortactin, Abi1 and CAS has been supported by

studies on other cell types including fibroblasts and
epithelial cells [18, 22, 23].
Elongation of actin filaments in smooth muscle is

mediated by a number of proteins. Profilin-1 (Pfn-1) is
recruited to the leading edge of motile smooth muscle
cells, which promotes the transport of actin monomers to
the barbed end of actin filaments in the cell protrusion
[3]. The recruitment of Pfn-1 to the cell leading edge is
regulated by the c-Abl-cortactin pathway [2, 3]. Moreover,
vasodilator-stimulated phosphoprotein (VASP) undergoes
phosphorylation at Ser-239 during cell adhesion and
invasion, which promotes filament polymerization and
smooth muscle cell motility [24, 25]. Additionally, the Rho
effector formins (mDia) can nucleate and polymerize actin
filaments at barbed end and enhance cell migration [1].
In addition, actin dynamics is able to promote the

recruitment of β-catenin to N-cadherin in smooth muscle,
which strengthens the cadherin-mediated intercellular
linkage [2, 26]. Cadherin-mediated cell-cell adhesion facil-
itates collective cell migration and development [27].
Since cells have limited actin monomers, rapid polymeri-

zation of existing actin filaments cannot be persistent with-
out being balanced by rapid depolymerization. The capping
protein CapZ binds to the barbed end, preventing actin
filament extension. The actin severing protein gelsolin in-
teracts with aging filaments and severs them to short actin
filaments. The actin-depolymerization protein ADF/coflin
has higher affinity for ADP-actin fragments, which eventu-
ally leads to actin filament depolymerization [8] (Fig. 2).
Disassembly of the actin “mesh” is also facilitated by

debranching. Glia maturation factor-γ (GMF-γ) is a 17 kDa
member of the ADF/cofilin family that is capable of indu-
cing actin depolymerization and debranching [28]. GMF-γ
is able to bind to the Arp2/3 complex at the junction of
mother filaments and daughter filaments, which induces
debranching of the actin meshwork [28, 29]. Subsequently,
debranched filaments are severed by gelsolin and de-
polymerized by ADF/cofilin, which eventually generate
more G-actin pools for subsequent rounds of actin filament
polymerization and branching [4, 28, 29]. Knockdown of
GMF-γ attenuates the migration of neutrophils and
T-lymphocytes [30, 31]. Our recent studies show that
GMF-γ is necessary for human airway smooth muscle cell
movement [32]. Contractile stimulation induces c-Abl-
dependent GMF-γ phosphorylation at Tyr-104, which
regulates airway smooth muscle cell contraction [2, 33].
Future studies are needed to assess whether GMF-γ
phosphorylation at Tyr-104 by c-Abl has a role in regulat-
ing the migration and contraction of other cell types.

Focal adhesions are actively assembled in the cell front
and disassembled in the tail of motile cells
Focal adhesions are a type of adhesive contacts between
the cell and the ECM. At focal adhesions, the extracellular

Fig. 3 Regulation of airway smooth muscle cell migration by c-Abl
tyrosine kinase. c-Abl is recruited to the leading edge by integrin β1,
which activates the downstream pathways and regulates actin
cytoskeletal remodeling in lamellipodia. Abi1, Abl interactor 1; Arp2/
3, Actin-related protein 2/3; CAS, CrkII-associated substrate; GMF-γ,
glia maturation factor-γ; N-WASP, neuronal Wiskott-Aldrich Syndrome
Protein; Pfn-1, profilin-1
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domains of transmembrane integrins including α and β
subunits connect with the ECM. The intracellular tails of
integrins engages with linker proteins such as vinculin and
talin, which in turn bind to the actin cytoskeleton (Fig. 2).
Integrin-mediated focal adhesions link to the actin
cytoskeleton, and allow cells to crawl on the ECM during
migration. Nascent adhesions form at the leading edge
and grow into focal complexes in lamellipodia. Some focal
complexes undergo a rapid turnover at the rear of the la-
mellipodia whereas others become mature focal adhesions
that will ultimately disassemble at the cell rear (Fig. 1).
During cell adhesion and migration, engagement of

integrins with the specific motif of the ECM (e.g. RGD
sequence) triggers focal adhesion assembly by inducing
integrin aggregation and recruiting the structural pro-
teins such as talin, vinculin, α-actinin, integrin-linked
kinase (ILK), and parvins as well as signaling proteins
including focal adhesion kinase (FAK), paxillin, Cdc42,
and Rac1 [2]. The recruitment of structural proteins in-
creases the sizes of focal complexes and strengthens the
linkage of actin filaments to integrins in the lamellipodia.
Signaling proteins in focal adhesions are able to initiate
cascades to promote actin polymerization and other
pathways. Adhesion-induced FAK activation mediates
paxillin phosphorylation, which in turn activates N-
WASP and actin filament polymerization in airway
smooth muscle [2, 34–37] (Fig. 2). In addition, FAK is
able to interact with Arp3 and enhances the Arp2/3-me-
diated actin polymerization and branching [38]. As
described above, integrin-mediated c-Abl activation also
promotes actin cytoskeletal remodeling near or within
focal adhesions [2, 12]. Actin polymerization may
conversely promote the recruitment of focal adhesion
associated proteins to the plasma membrane [2, 39].
Focal adhesion formation in smooth muscle is also regu-

lated by chemical stimulation. The activation of G-protein
coupled receptor (GPCR) by agonists initiates the
translocation of vinculin, α-actinin, ILK, and parvins to
the integrin-associated sites on the plasma membrane [2].
In addition, activation of GPCR induces FAK tyrosine
phosphorylation, paxillin phosphorylation and actin
polymerization in smooth muscle [2, 40]. Moreover, the
activation of GPCR and growth factor receptor stimulates
c-Abl tyrosine kinase [2, 3, 15], which may regulate the
functional state of CAS/CrkII and cortactin, and actin fila-
ment assembly in smooth muscle [2, 10, 13, 20, 34].
The mechanisms that control focal adhesion disassembly

are under-investigated in smooth muscle cells. However,
several studies from nonmuscle cells suggest that Prickle1
[41], Rap1-GTP-interacting adaptor molecule (RIAM) [42]
and RhoJ [43] may promote focal contact disassembly.
Prickle is a protein that is involved in convergent extension
and cell migration. In gastric cancer MKN1 cells, Prickle1
accumulates at paxillin-associated focal contacts at the cell

retraction site, and enhances microtubule-dependent focal
adhesion disassembly [41]. RIAM may promote RhoA-
dependent activation of the MEK-ERK1/2 pathway, which
facilitates disassembly of focal adhesions in human melan-
oma cells [42]. RhoJ is a member of the Rho GTPase family
that regulates cell motility, invasion, and focal adhesion
numbers. In endothelial cells, active RhoJ interacts with
the GIT-PIX complex, a regulator of focal adhesion disas-
sembly, to enhance focal contact dissolution [43]. More-
over, microtubule dynamics are able to regulate focal
adhesion disassembly (See Microtubules and Cell Migra-
tion in this review). Future studies are required to assess
whether similar mechanisms exist in smooth muscle cells.

Stress fiber formation and actomyosin activity are
enhanced during cell migration
After nascent focal adhesions establish connection
between the ECM and actin filaments, external signals
induce stress fiber assembly and activate actomyosin
ATPase, which generate traction force to propel the cell
forward. Stress fibers are contractile bundles containing
actin filaments and myosin II filaments. The engagement
of integrins with the ECM activates the small GTPase
RhoA, which is able to promote actin nucleation and
stress fiber assembly by activating mDia. In addition, Rac1
activates p21-activated kinase (PAK), which phosphory-
lates and activates Lim kinase (LIMK). Activated LIMK
mediates cofilin phosphorylation and inhibits actin fila-
ment depolymerization, thus limiting the amount of actin
turnover and increasing stress fiber formation [39, 44].
RhoA can activate Rho kinase, which also promotes

actomyosin ATPase activity by inhibiting myosin light
chain phosphatase and/or by directly catalyzing myosin
light chain phosphorylation [39, 44, 45]. RhoA activation
may be mediated by RhoGEF Vav2 upon growth factor
stimulation [46]. In addition, cell adhesion and the
activation with growth factors are able to activate the
tyrosine protein kinases Lck and Syk, which phosphory-
lates the RhoGEF Vav and activates RhoA [39, 47].
Myosin light chain phosphorylation may be also cata-

lyzed by myosin light chain kinase during migration.
Myosin light chain kinase is activated by Ca2+/calmodulin
in myofibroblasts [48] and smooth muscle [1]. Further-
more, myosin light chain kinase is necessary for migration
of various cell types including muscle cells [45, 48].

Role of intermediate filaments in cell migration
Intermediate filaments (IFs) are widely distributed in the
cytoplasm, providing mechanical and structural integrity
for the cell [49, 50]. The genes encoding IF proteins are
one of the largest family within the human genome,
comprising over 65 genes encoding cytoskeletal and
nucleoskeletal proteins that are each cell-type specific
[49, 50]. The IF family is classified into 6 major types
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based upon sequence homology of the rod-like domain
[50]. Type III IF proteins vimentin and desmin are major
components of the IF networks in smooth muscle. The
protein ratio of vimentin to desmin is 6:1 in airway
smooth muscle [49–53].
There is evidence to suggest that cell movement is

associated with vimentin protein expression. Cells with
vimentin deficiency show slower migratory property
[54, 55]. Knockdown of vimentin attenuates smooth
muscle contraction [50, 52, 53], which may provide
limited traction force to allow for migration [3, 8]. In
contrast, higher vimentin expression promotes cell migra-
tion (e.g. during epithelial mesenchymal transition) [56].
Moreover, desmin has been implicated in smooth muscle
contraction and cell migration [57, 58].

Intermediate filaments regulate focal adhesion dynamics
Intermediate filaments have been shown to physically
link to focal contacts in the protrusion of motile cells
[56]. This raises the possibility that IFs may regulate
focal adhesion dynamics directly, and thus cell migra-
tion. Higher vimentin expression in cells leads to the
destabilization of desmosomes and increases focal adhe-
sion dynamics to promote migration [56, 59]. Vimentin
filaments underneath the plasma membrane interacts
with the cytoplasmic tails of integrin β3 regulating the
engagement of integrins with extracellular ligands and

integrin clustering [60]. Vimentin filaments may also
bind to integrin α2β1 directly or indirectly by FAK and
plectin 1F [61, 62]. In addition, vimentin can recruit the
Rac-GEF VAV2 to focal adhesions to promote FAK
activation [56]. Moreover, uncoupling IFs from focal
adhesions compromises the activation of FAK, Src and
the downstream MAPK cascades to ERK1/2 and p38
[56, 63] (Fig. 4a). Thus, IFs may also regulate cell migra-
tion by controlling p38-mediated protrusion formation
and stress fiber formation [1, 50].
The interaction of vimentin with the adhesive cell

structure is modulated by vimentin phosphorylation.
PAK1-mediated vimentin phosphorylation at Ser-56
leads to the spatial reorientation of vimentin filaments
in smooth muscle cells, which may alter focal adhesion
assembly [2, 54, 56, 64, 65]. PKCε-mediated phosphoryl-
ation of vimentin increases integrin translocation to the
plasma membrane [56, 66], while Cdc2-mediated phos-
phorylation of vimentin induces integrin β1 activation [56].

Intermediate filaments regulate cell contraction
As described earlier, cell contraction is critical for indu-
cing retraction of the rear. In addition to focal contacts,
vimentin intermediate filaments of smooth muscle
attach to desmosomes on the plasma membrane and to
dense bodies in the myoplasm. The dense bodies are also
the locations to which contractile actin filaments attach.

Fig. 4 Vimentin intermediate filaments, focal adhesions and cell migration. a Vimentin filaments may directly bind to integrins β1 or β3, or indirectly to
integrins via FAK or plectin 1F. Cdc42 or PAK induces vimentin phosphorylation, which activates integrins. Vimentin recruits VAV2 to focal adhesions to
promote FAK activation. Interactions of vimentin filaments with focal adhesions can activate the MAPK pathway. b PAK1 and Plk1 are able to induce
vimentin phosphorylation at Ser-56 in smooth muscle whereas protein phosphatase 1 (PP1) dephosphorylates vimentin. Vimentin phosphorylation
induces vimentin disassembly and spatial reorientation, which regulates cell contraction and focal adhesion dynamics. Vimentin disassembly also
releases CAS to affect actin dynamics. VFs, vimentin filaments; p-VFs, phospho-vimentin filaments; Sol-VFs, soluble vimentin filaments; CAS,
Crk-associated substrate
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Thus, the physical linkage of vimentin filaments to dense
bodies provides the structural base by which vimentin
intermediate filaments may modulate smooth muscle
cell contraction.
Vimentin intermediate filaments are required for smooth

muscle contraction. Our previous studies have shown that
vimentin knockdown by antisense oligonucleotides inhibits
smooth muscle force development [50, 53]. Moreover,
vimentin-deficient fibroblasts display impaired contractile
capacity [55]. External stimulation induces vimentin phos-
phorylation at Ser-56, which leads to reorganization of the
vimentin network, facilitating mechanical force transduc-
tion in smooth muscle. Vimentin phosphorylation at Ser-
56 is catalyzed by p21-activated kinase 1 (PAK1) and polo-
like kinase 1 (Plk1) in smooth muscle [50, 52, 67, 68].
Vimentin dephosphorylation at this residue is regulated
protein phosphatase 1 in smooth muscle [49] (Fig. 4b).
Vimentin phosphorylation at Ser-56 is also necessary to
regulate the functions and/or locomotion of endothelial
cells [69] and cancer cells [70].

Intermediate filaments regulate nucleus rigidity
When cells move in a three-dimensional environment,
the size of the nucleus influences the rate of migration.
This is because the nucleus is the largest organelle inside
the cell. Thus, alterations of nucleus rigidity affect the
cell ability to squeeze in between matrix fibers. Lamins
are the type IV intermediate filament proteins that are
the major components of the nuclear membrane [50]
and largely affect the mechanical property of the nu-
cleus. Lamin A/C are overexpressed in prostate cancer
tissues and knockdown of lamin A/C inhibits prostate
cancer cell migration [71]. However, lamin A/C expres-
sion is reduced in gastric carcinoma, implying that lower
lamin A/C expression may promote gastric cancer cell
movement [72]. Therefore, the impact of nuclear lamins
on nucleus rigidity and invasion is dependent upon
cancer cell types and local environment. Since lamins
are present in muscle cells [73], it is likely that nuclear
lamins affect nucleus rigidity and modulate smooth
muscle cell migration in tissues, a three-dimensional
environment.

Intermediate filaments interact with the actin cytoskeleton
and microtubules
The vimentin network is able to regulate the actin cyto-
skeleton in several ways. First, vimentin phosphorylation
at Ser-56 by PAK1 and Plk1 leads to its disassembly in
smooth muscle, which results in the release of CAS from
cytoskeletal vimentin. CAS translocates to the cell cortex
and promotes the Arp2/3 complex-mediated actin
polymerization and branching, and lamellipodial forma-
tion [2, 34, 35, 50, 52, 65, 67, 74] (Fig. 4b). Second, caldes-
mon is a component of microfilaments in all cells and

thin filaments in smooth muscle cells. Caldesmon is able
to interact with intermediate filaments and polymerized
actin, and is required for maintaining the intermediate
filament network and actin filaments in smooth muscle
cells [75]. Caldesmon phosphorylation by the serine/
threonine protein kinase PFTAIRE1 promotes its binding
to F-actin and stress fiber formation in motile cells [76].
Third, CARMIL2 (capping protein, Arp2/3, myosin-I
linker 2) is a molecule that regulates the activity of
capping protein. During migration, dynamic vimentin
filaments target CARMIL2 to the cell cortex, where
CARMIL2 modulates capping protein activity and in-
creases local actin filament assembly and protrusion
formation [77].
As described earlier, increased expression of vimentin

intermediate filaments enhances directed cell migration.
Recent evidence suggests that the vimentin filament
network assembles along the template of polarized
microtubules. The longer-lived vimentin network then
provides the template for future microtubule growth
thus supporting and driving cell polarity and the direc-
tional persistence of migration [78]. This is further
supported through previous micro-patterning studies
showing that the vimentin filament network is crucial
for microtubule organization, maintenance of cell polar-
ity, and directional migration [79].

Microtubules and cell migration
Microtubules are long and hollow cylinders made up of
α- and β-tubulin dimers, which bind in a head-to-tail
manner into protofilaments that associate laterally to
form hollow tubes. Microtubule assembly is a polarized
process that starts from one or several microtubule
organizing centers (MTOCs). Typically, the centrosome
serves as a major MTOC and stabilizes microtubule
minus ends that are embedded in this complex struc-
ture. The plus ends of microtubules point towards the
cell periphery. Although microtubule elongation
transpires at both plus and minus ends, it is more rapid
at plus ends [80]. Microtubule restructuring have
been shown to regulate smooth muscle cell migration
[81–84]. Through their roles in mechanics, trafficking
and signaling, microtubules regulate lamellipodial forma-
tion and focal adhesion dynamics. Moreover, microtubules
undergo polarization during migration, which regulates
migration-associated events in a spatial and temporal
manner.

Microtubules facilitate protrusion formation
In motile cells, most microtubules do not enter lamelli-
podia; however, some microtubules, called pioneer micro-
tubules, do extend to the protrusion sites. Because
microtubules have ability to resist high compressive loads
[85], it is likely that microtubule elongation in the
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protrusion may assist in pushing the membrane forward
[80, 81]. Microtubule elongation is facilitated by several
microtubule plus-end tracking proteins (+TIPs) such as
end-binding protein (EB) EB1 and EB3, and several + TIP
stabilizing factors such as adenomatous polyposis coli
(APC) [80]. In addition, cytoplasmic linker associated
proteins (CLAPs) may regulate microtubule assembly in
the front of motile smooth muscle cells [81].
Microtubules may promote the delivery of membrane

vesicles that are essential for cell protrusion [86]. Microtu-
bules can deliver recycling endosomes carrying membrane-
associated signaling molecules (e.g. Rac, Cdc42, and the
guanine nucleotide exchange factor βPIX) critical for cell
migration [87, 88]. Moreover, microtubule assembly and
disassembly are able to activate a growing number of GEFs
to protrusion sites. GEFs activate the small GTPases that
promote actin mesh reorganization and lamellipodial
formation [80, 87, 88] (Fig. 5).

Microtubules regulate focal adhesion dynamics
Microtubules are able to facilitate nascent focal complex
assembly in the leading edge. Microtubule-dependent
activation of the Rac-GEF TIAM2/STEF promotes the
formation of new focal adhesions [89]. In addition,
microtubules promote the polarized delivery of integrins
to the leading-edge plasma membrane and participate in
the growth of early focal adhesions [80, 90]. In recent
years, microtubules are found to interact with fascin (an
actin-binding and bundling protein), which contributes

to fascin-dependent control of focal adhesion dynamics and
cell migration speed [91]. Maturation of focal complexes in
lamellipodia is facilitated by actomyosin-mediated contract-
ile force. Microtubule depolymerization induces an increase
in RhoA activity and cell contractility [92]. It is likely
that changes in microtubule dynamics proximal to
forming focal adhesions may locally increase cell con-
tractility and, consequently, focal adhesion assembly
[80]. RhoA-mediated contraction may also promote
the retraction of the cell rear [80] (Fig. 5).
Microtubules have been shown to trigger the disassem-

bly of mature focal adhesions in the cell rear. Treatment
of cells with nocodazole results in the accumulation of
integrins in mature focal adhesions, which is reversible
after removal of nocodazole [80, 92]. Dynamic microtu-
bules recurrently target mature focal adhesions, which dis-
assemble at the cell rear, by interacting with plus end
tracking proteins [93]. Dynamin localizes at focal contacts
and is required for focal adhesion disassembly in migrat-
ing cells, probably by promoting internalization of integrin
complexes [94]. Dynamin also interacts with microtu-
bules, which suggests that microtubules could deliver
dynamin to focal adhesions to trigger intergrin-associated
endosome internalization [80, 95]. Moreover, quantitative
proteomics suggest that mitogen-activated protein kinase
kinase kinase kinase 4 (MAP4K4) is a focal adhesion
regulator that associates with microtubules. Knockout of
MAP4K4 stabilizes focal contacts and impairs cell migra-
tion. Microtubules may deliver MAP4K4 toward focal

Fig. 5 Cell migration regulated by microtubule-associated processes. Microtubule dynamics is regulated by plus-end trafficking proteins (+TIPs),+TIP
stabilizing protein (e.g. adenomatous polyposis coli, APC), and cytoplasmic linker associated proteins (CLAPs). Microtubules regulate cell migration
through their roles in mechanics, trafficking and signaling. GEF, guanine nucleotide exchange factor; MAP4K4, mitogen-activated protein kinase kinase
kinase kinase 4.
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contacts through EB2 (ending binding 2), where MAP4K4
can, in turn, activate Arf6 via IQ motif and SEC7 domain-
containing protein 1 (IQSEC1), a guanine nucleotide
exchange factor specific for Arf6, and enhance focal adhe-
sion dissolution [96].

Microtubule network undergoes polarization during
migration
Microtubules are able to regulate protrusion, focal adhe-
sion assembly/disassembly and cell contraction locally.
For directed migration to occur, microtubules are orga-
nized in a polarized manner to ensure spatial and tem-
poral coordination of these events. In immobile cells, the
microtubule framework is radially organized and shows
no obvious polarization. In motile cells, the microtubule
network is aligned with the axis of cell migration, which
results from the orientation of the nucleus–centrosome
axis parallel to the direction of migration, and from the
organization of microtubules in an elongated and parallel
array. In most cells, microtubules accumulate toward the
front of the cell and MTOCs localize in the front of the
nucleus towards the direction of migration [80, 93].
Polarization of the microtubule network facilitates

trafficking of vesicles containing integrins and other
molecules at the front to promote protrusion and focal
contacts. Polarized microtubules may also assist mature
focal adhesion disassembly in the rear by transporting
molecules such as dynamin and MAP4K4 [80, 93, 96].
Chemical gradient of soluble or membrane-bound

chemoattractant or the localized activation of integrins in-
duces the recruitment and activation of the RhoGTPases
Cdc42 and Rac, and PI3K-γ at the cell leading edge, which
triggers microtubule polarization and directed cell migra-
tion. Cdc42 and PI3K-γ can activate glycogen synthase
kinase 3 α/β (GSK3α/β), regulating APC, CLASPS and
stabilizing microtubule-associated proteins (MAPs) at the
plus end, which increases microtubule growth, capping,
and stability. GSK3α/β also affects stabilizing MAPs,
ACF7 (a microtubule-microfilament linker) and kinesin
light chain along the microtubule network, which
enhances the interaction of microtubules with actin and
kinesin-mediated motility. The GSK3α/β-mediated micro-
tubule dynamics is the key feature of microtubule
polarization. In motile smooth muscle cells, receptor for
hyaluronan-mediated motility (RHAMM) plays an im-
portant role in rear polarization of MTOCs and directed
migration [80]. Spectrin-α (an actin-associated protein)
colocalizes with RHAMM at the nodes of the actin net.
Thus, spectrin-α interacts with RHAMM to regulate
microtubule polarization in smooth muscle cells [82].

Smooth muscle cell migration and diseases
It has been proposed that airway smooth muscle cell
migration plays a role in the development of smooth

muscle thickening in the asthmatic airways. Increases of
the smooth muscle layer thickness in the asthmatic
airways may be due to migration of smooth muscle cells
in the muscle bundles [1–3]. In addition, there is
evidence to suggest that vascular smooth muscle cell
migration contributes to the progression of neointima
formation after vascular injury [97]. Thus far, several
biomolecules have been shown to regulate smooth
muscle cell migration (at least in part) and the develop-
ment of pulmonary and vascular diseases (Table 1).
Some of them have been used as biotargets to develop
new therapies to treat lung and vascular diseases.

Smooth muscle migration regulators and airway remodeling
c-Abl tyrosine kinase
As described earlier, c-Abl tyrosine kinase positively
orchestrates airway smooth muscle migration by modu-
lating actin network reorganization [3]. To assess its role
in vivo, we have generated c-Abl smooth muscle condi-
tional knockout mice. Allergen exposure leads to increases
in the thickness of the airway smooth muscle layer in
mice, which is reduced in c-Abl conditional knockout
mice [12]. In addition, the expression of smooth muscle
α-actin in the airways is upregulated in mice exposed to
the allergen. But, c-Abl conditional knockout diminishes
the upregulation of smooth muscle α-actin in the airways
[12]. Furthermore, the role of c-Abl in airway smooth
muscle thickening is supported by using the c-Abl
inhibitor imatinib [98]. These results suggest that c-Abl
mediated smooth muscle migration participates in the de-
velopment of airway remodeling in the asthmatic animals.

p38MAPK
There is evidence that p38 inhibition reduced airway
smooth muscle cell migration. Moreover, treatment with
an inactive PAK1 attenuated p38 activation and airway
smooth muscle migration [1]. Interestingly, inhibition of
p38 suppressed airway remodeling in an animal model
of asthma [99].

RhoA and Rho kinase
The roles of RhoA and Rho kinase in smooth muscle
cell locomotion are well described [39, 44, 45]. Th2 cyto-
kines could increase the expression of RhoA in airway
smooth muscle [100]. Inhibition of the RhoA/Rho kinase
hinders the development of airway remodeling in experi-
mental asthma [101].

Others
β1 integrin is associated with asthma pathogenesis [102].
Treatment with RGD peptide blocks integrin activation
and reduces airway remodeling in asthmatic animals
[102]. A common cortactin gene variation has been
found to confer susceptibility of severe asthma [103].
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Since cortactin regulates smooth muscle cell protrusion
formation [3], it is likely that cortactin-associated migra-
tion may contribute to asthma pathogenesis. β-catenin
[104] and PI3K-γ [105] have been implicated in asthma
pathogenesis. Despite their involvement of cell migra-
tion, we do not know exactly how these proteins con-
tribute to airway remodeling.

Vascular smooth muscle migration and vascular diseases
Vascular remodeling
Smooth muscle cells play a critical role in the pathogen-
esis of vascular diseases and its clinical manifestations.
Chronic pulmonary arterial hypertension is characterized
by vascular remodeling. c-Abl tyrosine kinase is involved
in the pathogenesis of pulmonary arterial hypertension.
Treatment of the c-Abl inhibitor imatinib relieves the
symptoms of a patient with pulmonary arterial hyperten-
sion [106]. Results from Phase II and III clinical trials
suggest that imatinib has potent and prolonged effi-
cacy in patients with severe pulmonary arterial hyper-
tension [107].
Vascular remodeling is also a key feature of systemic

hypertension. Pfn-1 [108] and vimentin [109] have been
shown to mediate vascular remodeling in animal models.
Pfn-1 knockdown inhibits arterial remodeling in hyper-
tensive rats whereas overexpression of Pfn-1 promotes
vascular remodeling [108]. Flow-induced vascular re-
modeling may contribute to the development of hyper-
tension. Flow-induced vascular remodeling is reduced in
vimentin knockout mice [109].

Neointima formation
In addition to atherosclerosis, neointima formation is a
major pathological process after percutaneous coronary
intervention, bypass operation, or graft vasculopathy. It
has been widely accepted that intimal smooth muscle

cells in proliferative vascular diseases are derived largely
from resident medial smooth muscle cells [97]. As men-
tioned earlier, β1 integrin and FAK are able to regulate
cell migration by controlling dynamics of focal adhesions
and the actin cytoskeleton [2, 34–38]. Myosin light chain
phosphorylation modulates cell contraction to facilitate
smooth muscle cell migration [39, 44]. Inhibition of β1
integrin expression, FAK phosphorylation and myosin
activation is associated with reduced neointima forma-
tion in vivo [97, 110]. In addition, c-Abl has been impli-
cated in the pathogenesis of atherosclerosis; inhibition of
c-Abl by imatinib attenuates the progression of diabetes-
associated atherosclerosis [111]. Furthermore, formin
mDia1 has been shown to mediate neointima expansion
in an animal model [112].

Conclusions and perspectives
Elucidating the mechanisms of smooth muscle cell
migration is a hot topic in smooth muscle biology and
asthma research. The actin-associated proteins are able
to regulate actin branching, elongation, debranching,
depolymerization, focal adhesion dynamics, and contrac-
tion. c-Abl tyrosine kinase in smooth muscle plays a key
role in modulating these cellular processes. Intermediate
filaments coordinate focal adhesion assembly/disassembly,
contraction, and nucleus rigidity. The vimentin intermedi-
ate filament network undergoes phosphorylation and
spatial reorganization in smooth muscle, which regulates
its function in smooth muscle. PAK1, Plk1 and PP1 are
important molecules that regulate vimentin phosphoryl-
ation in smooth muscle. More studies are required to
investigate the role and mechanisms of the intermediate
filament network in smooth muscle cell migration.
Although the role of microtubules in non-muscle cell
motility has been described, their functions in smooth
muscle cells remain to be elucidated. It will be interesting

Table 1 Role of migration‐associated biomolecules in lung and vascular diseases

Name Role Diseases References

c‐Abl Tyrosine kinase, promote migration Asthma, PAH, atherosclerosis [12, 98, 106, 107, 111]

β‐catenin Junction protein, collective migration Asthma [104]

Cortactin Adapter protein, promote protrusion Asthma [103]

FAK Tyrosine kinase, adhesion, signaling Vascular injury [110]

Integrin β1 Mechanoreceptor, adhesion, signaling Asthma, vascular injury [102, 110]

mDia1 Actin‐associated protein, actin nucleation Vascular Injury [112]

Myosin Contractile protein Vascular injury [97, 110]

p38MAPK S/T kinase, promote locomotion Asthma [1, 99]

Pfn‐1 Actin‐associated protein, migration Hypertension [108]

PI3K‐γ Kinase, regulate actin and microtubules Asthma [105]

RhoA/ROCK S/T kinase, promote contraction Asthma [100, 101]

Vimentin IF protein, promote contraction/motility Vascular remodeling [109]

FAK foca adhesion kinase, IF intermediate filament, Pfn‐1 profilin‐1, PAH pulmonary arterial hypertension, S/T serine/threonine, ROCK Rho kinase
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to develop animal models to verify the role of PAK1 and
Plk1 in cell migration and airway/vascular remodeling in
vivo. Furthermore, it will be very attractive to identify po-
tential smooth muscle specific cell migration regulators
that could be used to treat smooth muscle diseases such
as asthma, hypertension, and vascular injury.
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