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Abstract

Background: The Gene Ontology (GO) Consortium organizes genes into hierarchical categories based on
biological process, molecular function and subcellular localization. Tools such as GoMiner can leverage GO to
perform ontological analysis of microarray and proteomics studies, typically generating a list of significant
functional categories. Two or more of the categories are often redundant, in the sense that identical or nearly-
identical sets of genes map to the categories. The redundancy might typically inflate the report of significant
categories by a factor of three-fold, create an illusion of an overly long list of significant categories, and obscure
the relevant biological interpretation.

Results: We now introduce a new resource, RedundancyMiner, that de-replicates the redundant and nearly-
redundant GO categories that had been determined by first running GoMiner. The main algorithm of
RedundancyMiner, MultiClust, performs a novel form of cluster analysis in which a GO category might belong to
several category clusters. Each category cluster follows a “complete linkage” paradigm. The metric is a similarity
measure that captures the overlap in gene mapping between pairs of categories.

Conclusions: RedundancyMiner effectively eliminated redundancies from a set of GO categories. For illustration,
we have applied it to the clarification of the results arising from two current studies: (1) assessment of the gene
expression profiles obtained by laser capture microdissection (LCM) of serial cryosections of the retina at the site of
final optic fissure closure in the mouse embryos at specific embryonic stages, and (2) analysis of a conceptual data
set obtained by examining a list of genes deemed to be “kinetochore” genes.

Background
We previously developed GoMiner [1] and High-
Throughput GoMiner [2], applications that organize lists
of “interesting” genes (for example, under-and over-
expressed genes from a microarray experiment) for
biological interpretation in the context of the Gene Ontol-
ogy [3,4]. GoMiner and related tools typically generate a
list of significant functional categories. In addition to lists
and tables, High-Throughput GoMiner also provides a
valuable graphical output termed a “clustered image map”
(CIM). The “integrative” and “individual” CIMS can depict

the relationship between categories and either multiple
experiments or genes, respectively.
When designing an algorithm for a program like

GoMiner, a number of implementation decisions must
be made. One such decision is how to handle genes
mapping to a category that is a child of the category
under consideration. The particular algorithm adopted
by GoMiner “rolls up” genes mapping to a child cate-
gory; that is, genes mapping to a child category are
(recursively) assigned to the parent of that child cate-
gory. Although that approach provides robust protection
against variability in curation techniques, it can result in
redundancy between parent and child categories.
Even in the absence of “rolling up,” redundancy can be

an important issue. That is, two non-parent/child cate-
gories may include identical or nearly-identical sets of
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genes. Overall, the redundancy can easily inflate by a
factor of about three the number of categories that are
considered statistically significant, create an illusion of
an overly long list of significant categories, and obscure
the relevant biological interpretation.
One way of addressing redundancy is exemplified by

GO slims [5]: “GO slims are cut-down versions of the
GO ontologies containing a subset of the terms in the
whole GO. They give a broad overview of the ontology
content without the detail of the specific fine grained
terms. GO slims are particularly useful for giving a sum-
mary of the results of GO annotation of a genome,
microarray, or cDNA collection when broad classifica-
tion of gene product function is required.”
However, in the context of GoMiner analysis, the GO

slims approach has several drawbacks:

• It cannot deal with redundancy that might not
result from “rolling up”
• It is rather inflexible, as it is pre-computed and
cannot adapt to the characteristics of a particular
data set
• It “throws out the baby with the bathwater:” a sim-
plified view might be a useful first approximation,
but the molecular biologist also needs to be able to
“drill down” to see the full details

We propose here a solution that overcomes these
limitations of GO slims. Full details are given in the
Methods section. Briefly, our approach, Redundancy-
Miner, de-replicates the (fully- or partially-) redundant
GO categories: the user selects a desired redundancy
threshold, and a new reduced clustered imaged map
(CIM) is created. That CIM represents those cate-
gories that were not affected by the processing, as well
as composite categories that represent groups of
merged categories. An additional new type of CIM is
also created, which we term a “META CIM.” The
META CIM conveniently visualizes the pattern of
grouping within the merged categories. Thus, an over-
view is afforded by the reduced CIM, and the details
by the META CIM.
Furthermore, the redundancy computation can be

based on either (a) all genes that map to a category or
(b) just the genes that exhibited altered expression levels
in the current experiment. The latter approach (b) will
provide a META CIM that reflects redundancy and
interaction between categories that is specific to the
conditions of the study. This pattern may be signifi-
cantly different from the static reference behavior
obtained by approach (a), and it may suggest the under-
lying systems biology.
The META CIM does not simply discard redundancy,

as might be the case for GO slims; rather, it processes

the patterns of redundancy and extracts information
from them. Ignoring the existence of redundancy, as
GO slims does, is an oversimplification that may throw
away valuable information.
A number of other earlier papers address related

issues. Several of those papers address approaches to
studying gene enrichment, but not specifically the
redundancy problem. For example, Pehkonen [6]
developed a method that clusters genes to groups with
homogenous functionalities. The method uses Nonne-
gative Matrix Factorization (NMF) to create several
clustering results with varying numbers of clusters.
The clustering results are combined into a simple gra-
phical presentation showing the functional groups
over-represented in the analyzed gene list. Prufer [7]
developed “FUNC,” a package for detecting significant
associations between gene sets and ontological annota-
tions. Xu [8] developed “CeaGO,” enriching clustered
GO terms based on semantic similarity. Hermann [9]
developed “SimCT,” which draws a simplified repre-
sentation of biological terms present in the set of
objects
Several papers address approaches to address the

redundancy problem within the context of studying
gene enrichment, and are therefore potentially more
germane. For example, Alexa [10] proposed a method
“TopW” to eliminate local dependencies between GO
terms; Lu [11] developed “GenGO,” a generative
probabilistic model which identifies a small subset of
categories that, together, explain the selected gene
set; and Grossmann [12] developed the “Ontologizer”
that uses the parent child union (PCU) to reduce the
dependencies between the individual term’s measure-
ments, and recomputes the P-value for a specific cate-
gory by taking into account the immediately more
general terms (the parents). That procedure can often
lead to the removal of false positives, since some of
the more specific categories are eliminated if their
parent category is determined to be significant. The
more recent global “MGSA” method of Bauer [13]
outperformed the local methods of Alexa, Lu, and
Grossmann. Finally, Richards [14] recently developed
a novel global approach to assess the functional
coherence of gene sets by taking into account both
the enrichment of GO terms and their relationships
among terms.
In summary, the two most promising of the previously

published methods for addressing redundancy are those
of Bauer and Richards. However, unlike RedundancyMi-
ner, neither of those methods takes advantage of the
redundancy patterns to infer subtle nuanced themes
among groups of GO categories. RedundancyMiner’s
META CIM is shown here to be of great potential value
in such analyses.
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Implementation
Overview
A typical sequence of steps would be:

• prepare a list of “changed” or “interesting” genes
○ i.e., over-expressed genes in a microarray
experiment

• prepare a list of “total” genes
○ i.e., all genes appearing on the microarray

• run High-Throughput GoMiner (HTGM) on the
two gene lists

○ generate a mapping of “changed” genes to sta-
tistically significant GO categories

• run RedundancyMiner on the CIM representing
the gene to category mapping

○ generate a reduced-redundancy CIM
○ generate a META CIM that captures the nuan-
ces of the redundancy

The first 3 steps are preparatory to running Redun-
dancyMiner; they are not an integral part of Redundan-
cyMiner itself.

High-Throughput GoMiner (HTGM)
GoMiner [1] is a tool for biological interpretation of ‘omic’
data, including data from gene expression microarrays and
state of the art sequencing technologies. It leverages the
Gene Ontology (GO) to identify “biological processes,”
“molecular functions,” and “cellular components” repre-
sented in a list of genes. High-Throughput GoMiner
(HTGM) [2], which was used for many of the analyses
reported here, is an enhancement of GoMiner that effi-
ciently performs the computationally-challenging task of
automated batch processing of an arbitrary number of
such gene lists. In addition to generating results for each
individual input gene list, HTGM also generates integrative
results that relate the entire set of input files. In particular,
HTGM generates an integrative CIM that shows the FDR
of the significant GO categories versus the experiments.
A GO category is enriched if the number of changed

genes that HTGM assigned to it is statistically signifi-
cantly greater than the number expected by chance. A
category is considered significant if its Fisher’s Exact
p-value and its false discovery rate (FDR) are both less
than or equal to a user-selected threshold (typically
0.10). See [1,2] for detailed discussions of GoMiner and
HTGM, including calculations of statistical significance.
The parameters used in all of the HTGM analyses are

listed in Additional file 1.

Clustered Image Maps
Clustered image maps (CIMs), first introduced for omic
studies in the mid-1990’s by members of our group
[15,16], were produced here with the Genesis program

[17]. In general, a CIM is a visual representation of a
two-dimensional table of numerical values, in which
hierarchical clustering has been performed along one or
both axes. The numerical values are mapped to a
pseudo-color scale. We often use CIMs to represent the
mapping of genes to GO categories. One axis represents
genes and the other axis represents GO categories. The
numerical values in the table are 0’s (yellow) and 1’s
(red), designating the absence (0) or presence (1) of the
gene in the category. We selected the Euclidean distance
metric and average linkage for hierarchal clustering. To
facilitate visualization, we implemented a recently-added
optional feature of GoMiner to remove very large gen-
eric categories from all CIMs.

Overview of RedundancyMiner computation stream
There are three salient features of our practical solution
to the redundancy problem:

(1) definition of a similarity metric to capture the
degree of relatedness of GO categories
(2) generation of a set of non-redundant groups of
GO categories clustered by clique decomposition, as
implemented by the MultiClust algorithm
(3) visualization of CIMs of the non-redundant
groups

We will describe our approach to those three features,
and demonstrate their effectiveness in the context of
analysis of gene expression microarray data.

Definition of a similarity metric
The similarity metric is the Fisher’s exact p-value. For
each pair of significant categories, we compute the Fish-
er’s exact p-value corresponding to the null hypothesis
that the sets of genes mapping to the two categories are
statistically independent. The 2 × 2 contingency table
for the one-tail Fisher’s exact test is given in Table 1.
Our Java implementation of the Fisher’s exact test is
based on Javascript by Øyvind Langsrud [18].
As suggested by Wang [19], bias in the annotation of

GO can result in bias in subsequent analyses that use

Table 1 2 × 2 contingency table for the one-tail Fisher’s
exact test

In first
category

Not in first
category

Row
sums

In second category {ai} ∩ {bi} {ai}’ ∩ {bi} {bi}

Not in second
category

{ai} ∩ {bi}’ {ai}’ ∩ {bi}’ {bi}’

Column sums {ai} {ai}’ {ai} ∪ {ai}’

{ai} and {bi} are the sets of genes mapping to the first and second categories,
respectively. Prime indicates the complement of a set. {ai} ∪ {ai}’ represents
the set of genes mapping to the root GO category.
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GO. Wang observed a correlation between a protein’s
annotation length (i.e., the number of annotation terms
for the proteins) and the semantic similarity scores.
Such a bias is not expected to affect the RedundancyMi-
ner similarity metric, since

• The bias studied by Wang arises from the fact that a
heavily-studied protein will be mapped to a relatively
large number of GO categories, since relatively more is
known about the functions of that protein. Thus,
when that protein is represented as a vector of asso-
ciated GO categories, that vector will be overly long.
However, we are here proposing RedundancyMiner as
a method to compare vectors of GO categories, not
vectors of proteins. Biases in the number of studies for
a given protein will not differentially bias the length
(i.e., the number of 1’s) in a GO category vector.
• The metric that we use is based upon Fisher’s Exact
p-value. Thus, if two GO category vectors are both
highly populated with 1’s, a high degree of overlap will
not produce an artifactually significant (i.e., low
p-value) score, since the computation of the p-value is
explicitly based upon the probability of the observed
degree of overlap relative to the proportion of 1’s in
the two vectors being compared. The relevant 2 × 2
contingency table, which explicitly takes the propor-
tion of 1’s into account, is shown in Table 1.

Generation of a set of de-replicated groups by
RedundancyMiner’s MultiClust algorithm
We first compute a similarity matrix composed of Fish-
er’s exact p-values. Next we select a desired p-value
threshold. This selection is based on an estimate of
“nominal number of merged pairs” (i.e., we count how
many pairs of categories have a similarity score that is
less than this threshold; we do not know what the actual
degree of merging will be until after the merging is per-
formed). We then apply the selected p-value threshold
to the elements of the matrix to generate an undirected
graph G whose vertices are GO categories. Two vertices
are connected if the similarity between the two vertices
is larger than the given threshold. The goal of this pro-
cess is to find a clique decomposition of G and then
consider each clique as a de-replicated functional group
[20]. The clique decomposition is equivalent to the
identification of a set of maximal cliques that cover all
vertices in G. The procedure is summarized here in
pseudo-code:
Variables:

• reference - list of n significant categories
• similarity - n × n matrix of pairwise similarity
values

• cluster - list of current set of clusters
• change - an indication that there is a change in
cluster

change = true
while (change is true){

change = false
for each c in cluster
for each ref in reference but not in c

if the similarity between ref and every vertex
in c is larger than the given threshold

change = true
update c to include ref

endif
endfor

endfor
cluster = list of current set of unique clusters

endwhile
The condition “if the similarity between ref and every

vertex in c is larger than the given threshold” corre-
sponds to “complete linkage clustering,” so the result is
independent of the order of computing the elements of
cluster c.

Visualization of CIMs of the de-replicated groups
After deriving the new groups, each of which corre-
sponds to a clique obtained in the previous step, the
value displayed in the modified CIM depends on the
type of input CIM, as shown in Table 2.
To summarize, the input is a (possibly redundant)

CIM, and the output is a de-replicated CIM with the
original redundant categories merged into a group
whose name is the concatenation of names of the mem-
ber categories. It is possible (in fact it is common) for
any of the original categories to appear in multiple
merged groups.
Running RedundancyMiner
Overview RedundancyMiner consists of a set of perl
modules (described in Additional file 2) and a java GUI.
The java GUI is intended to provide optimal conveni-
ence for the molecular biologist, whereas the perl mod-
ules allow the developer to integrate RedundancyMiner’s
functionalities into a custom high-throughput data
processing stream. The GUI can be invoked either by
double-clicking the icon, or by entering “java -jar
RedundancyMiner.jar” in a terminal window. The latter

Table 2 Computation of values in the output CIM

input type output values

categories versus
genes

average of the values for the categories that
were merged

experiments versus
genes

minimum FDR among the categories that were
merged
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method is preferred, since it provides a trace of the
execution. The archived java and perl modules are avail-
able as Additional file 3 and the most recent version can
be downloaded from the Supplementary Materials web
page. The various types of HTGM output files that may
be used as input to RedundancyMiner are tabulated in
Additional file 4.
Modes • Default Mode: The goal is to generate a consis-

tent set of collapsed CIMs for an entire HTGM out-
put directory based on a common META CIM
pattern derived from the integrative CIM

○ The user selects the HTGM output directory
○ RedundancyMiner generates a META CIM
only for the HTGM integrative CIM, but not for
each HTGM individual CIM
○ The collapsing pattern for the integrative CIM
is used for collapsing each HTGM individual
CIM
○ The resulting reduced CIMs are stored in the
same directory as the corresponding HTGM
CIM

• Custom Mode: Compared to the default mode, the
user has more control over the threshold and the
choice of the file to define the categories/genes
structure

○ The user selects one specific CIM to process
○ The user selects a threshold for collapsing
○ The user selects a file type (.tvt., .gce., or the
CIM itself) to define the categories/genes
structure
○ The output (i.e., reduced CIM and META
CIM) is directed to a special temp directory

User’s Manual A user’s manual is provided in the form
of a PowerPoint presentation (Additional file 5) and a .
pdf file (Additional file 6). A simplified version of the
HTGM result directory that is exemplified in the user’s
manual is available as Additional file 7.
Experimental studies
Retinal development
Full details are provided in [21]. Briefly, to better under-
stand gene regulatory patterns in congenital defects of
ocular development, we laser capture-microdissected tis-
sue samples from embryonic mouse retina at the site of
optic fissure closure at 8 time points (days 10.5 through
12.5). The Affymetrix MOE 430 2.0 microarray was
used to analyze gene expression levels. To identify asso-
ciated gene regulation patterns in 3416 genes whose
expression levels varied between 4-fold and 26-fold, we
applied Laplacian Eigenmaps (nonlinear dimensionality
reduction) to the temporal microarray data. k-means
clustering of the temporal expression profiles generated
24 coherent gene groups. We used GoMiner to facilitate
identification of further gene regulatory associations in
human ocular development, and to determine the

biological themes that are represented by the genes in
each cluster. We chose the largest cluster (cluster num-
ber 22; see “Retinal development HTGM download” in
Additional file 8), containing 161 genes (of which 62
genes were recognized by GoMiner), for RedundancyMi-
ner analysis.
Kinetochore genes
The list of 74 kinetochore genes (Additional file 9) was
manually compiled by expert literature curation by one
of us (V.L.L.). The GoMiner results are available as
Additional file 10.

Results and discussion
To highlight the characteristics and value of the Redun-
dancyMiner approach, we next present analyses of two
different types of data sets:

• the gene expression profile obtained by laser-
capture microdissection (LCM) of serial cryosections
of the retina at the site of final optic fissure closure in
the mouse embryos at specific embryonic stages [21].
• a conceptual data set obtained by examining a list
of genes deemed to be “kinetochore” genes

Retinal development
Each row of the original CIM (Additional file 11) repre-
sents a statistically significant GO category, and each
column represents an input gene that was mapped to at
least one of these categories. That CIM is quite
complex, containing 73 categories, many of which are
redundant (i.e., categories that contain many genes in
common) with respect to one another. To remove that
complexity from the original CIM and transfer the
information to the META CIM, we ran Redundancy
Miner at a level of stringency corresponding to a nom-
inal number of merged pairs = 128. The reduced CIM
(Figure 1; Additional file 12) was significantly less com-
plex, containing only 38 categories (compression ratio =
1.92). Although the experience is inherently subjective,
it seems clear that the reduced CIM is more readily
amenable to visual interpretation. The smaller number
of categories and the reduction of redundancy make it
easier to discern the major biological themes that are
relevant to retinal development, e.g., biological adhesion,
cell projection organization, eye morphogenesis, and
axon regeneration.
The clustering performed by RedundancyMiner is more
complex than traditional clustering, since a category
may appear in more than a single cluster. For instance,
regulation of phosphorus metabolic process appears
twice in the reduced CIM (Figure 1; Additional file 12),
in RedundancyMiner clusters 11 and 14. The subtle rea-
son for this dichotomy is revealed by the META CIM
(Figure 2; Additional file 13). Cluster 11 reflects the
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sub-theme positive regulation of protein kinase activity,
whereas cluster 14 reflects a related, but slightly differ-
ent, sub-theme, positive regulation of protein amino
acid phosphorylation.
All instances of this type of relationship can easily be

found by examination of the META CIM. Consider the
row corresponding to a particular category of interest. If
there is more than a single red element in that row,
then that category is involved in multiple Redundancy-
Miner clusters. For example, axonogenesis is a member
of clusters 8 and 10. Cluster 8 reflects regulation of neu-
ron differentation, whereas cluster 10 reflects central
nervous system development. Just as genes may map to
multiple categories in GO, the next higher level of orga-
nization involves the mapping of categories to different
category clusters that represent subtly different
functionalities.

Note that in the GO slims approach, the simplification
is performed prior to the experiment, and so the pattern
of redundancy reduction and information persistence is
not dynamically optimized for the experiment at hand.
Furthermore, GO slims would entirely miss the richness
of detail that is available in the META CIM.

Kinetochore genes
As was the case for retinal development, the original
CIM (Additional file 14) is again quite complex, con-
taining 66 categories. To reduce the complexity in the
original CIM and transfer the information to the META
CIM, we compared the effect of running Redundancy-
Miner at two levels of stringency. The more stringent
level (nominal number of merged pairs = 169) yields a
reduced CIM (Additional file 15) containing 27 cate-
gories (compression ratio = 2.44), and a META CIM

Figure 1 Reduced CIM of retinal development genes versus categories. After we ran RedundancyMiner, we found that certain GO
categories in the original CIM (Additional file 11) were sufficiently redundant to be grouped together. GO categories whose names are followed
by “:N” (where “N” stands for an integer) are the “representative” members of the “Nth“ group. Categories other than the “representative” ones in
those groups are not shown in the reduced CIM. Instead, they are shown in the associated META CIM (Figures 2; Additional file 12).
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containing 13 clusters (Additional file 16). The more
permissive level (nominal number of merged pairs =
281) yielded a reduced CIM (Additional file 17) contain-
ing 20 categories (compression ratio = 3.30), and a
META CIM containing 18 clusters (Additional file 18).
The two different compression ratios demonstrate the

fine control that the user has in partitioning the com-
plexity and information between the CIM and the
META CIM. For instance, the more complex META
CIM (Additional file 18) contains an instance of cate-
gories (nuclear transport and nucleocytoplasmic trans-
port) that are involved in three different clusters
(clusters 4, 5, and 18). Those clusters represent RNA
localization, intracellular transport, and nuclear trans-
port, respectively. As the stringency level is reduced,
there is often an increase in the multiplicity of clusters
containing a common category. The user can choose to

explore the META CIMs generated at several different
stringency levels, to find the optimal visualization of the
relationship(s) of the most interest.

Conclusions
We have presented the RedundancyMiner analysis of
retinal development and kinetochore genes.
In both cases, RedundancyMiner facilitates the visual

interpretation of the primary CIM image. In the original
CIM images, there is a high degree of complexity arising
from detailed, but relatively redundant, information. The
visual complexity is significantly reduced by shifting the
information in the redundant categories to the META
CIM. In contrast to the original CIM, the display of the
redundancy pattern in the META CIM provides valu-
able insight into the fine structure of the biological cor-
relate of the gene expression pattern.

Figure 2 META CIM of merged retinal development categories. After we ran RedundancyMiner, we found that certain GO categories in the
original CIM (Additional file 11) were sufficiently redundant to be grouped together. Those redundant groups are visualized here. For example,
group 5 is comprised of the eye development, eye morphogenesis, and sensory organ development categories. The eye development category
is also included in group 16, but in the context of a slightly different group of companion categories. Thus, groups 5 and 16 capture the eye
development category in subtly different nuanced roles.
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Availability and Requirements
The most recent versions of the RedundancyMiner pro-
gram package and user’s manual can be downloaded from
http://discover.nci.nih.gov/rm/supplementaryMaterials.
html. Additional file 19 provides information for develo-
pers about the relationships of the RM and HTGM files.
RedundancyMiner was developed using Perl (version 5.8)
and Java (standard edition 6.0). In order to execute Redun-
dancyMiner, Perl (with version no earlier than 5.8) and
Java virtual machine (JVM 6.0) need to be installed and
accessible to the operating system.

Additional material

Additional file 1: Parameters used in HTGM analyses. table of
parameters used in HTGM analyses.

Additional file 2: Perl modules. table of perl modules and their
function.

Additional file 3: RedundancyMiner program package download.
the code for running RedundancyMiner on your own computer.

Additional file 4: Types of HTGM gene-category association files
used by RedundancyMiner. table of types and descriptions of HTGM
files used by RedundancyMiner.

Additional file 5: PowerPoint user’s manual. Powerpoint version of
the RedundancyMiner user’s manual.

Additional file 6: PDF format of PowerPoint user’s manual. pdf
version of the RedundancyMiner user’s manual.

Additional file 7: Simplified version of the HTGM result directory
that is exemplified in the user’s manual. HTGM result directory to be
used in conjunction with the examples given in the RedundancyMiner
user’s manual.

Additional file 8: Retinal development HTGM download. compressed
package of the results of running HTGM on the retinal development
genes list.

Additional file 9: Kinetochore genes. table listing kinetochore genes.

Additional file 10: Kinetochore genes HTGM download. compressed
package of the results of running HTGM on the kinetochore genes list.

Additional file 11: Original genes versus categories CIM for an
interesting retinal development time-series cluster. png image of
original genes versus categories CIM for an interesting retinal
development time-series cluster.

Additional file 12: Reduced CIM of retinal development genes
versus categories. png image of reduced CIM of retinal development
genes versus categories.

Additional file 13: META CIM of retinal development categories
versus META CIM group. png image of META CIM of retinal
development categories versus META CIM group.

Additional file 14: Original kinetochore genes versus categories
CIM. png image of original kinetochore genes versus categories CIM.

Additional file 15: Reduced CIM of kinetochore genes versus
categories. png image of reduced CIM of kinetochore genes versus
categories.

Additional file 16: META CIM of kinetochore categories versus META
CIM group. png image of META CIM of kinetochore categories versus
META CIM group.

Additional file 17: Reduced CIM of kinetochore genes versus
categories. png image of reduced CIM of kinetochore genes versus
categories.

Additional file 18: META CIM of kinetochore genes versus
categories. png image of META CIM of kinetochore genes versus
categories.

Additional file 19: Information for developers. table of the
relationship of RM and HTGM files.
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