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Abstract

each including data for 849 individuals.

Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence
complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES
Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected
from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these
families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period
of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In
the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not
distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with
blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if
they were nonsynonymous and predicted to have deleterious effects on protein function or if they were
noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the
same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and
medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence
variants in more than 200 genes present on the odd-numbered autosomes individually explained less than
0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait
variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to
not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with

Background

The Genetic Analysis Workshop 18 (GAW18) data set
consisted of whole genome sequence data in a pedigree-
based sample, longitudinal phenotype data for hyperten-
sion and related traits, and 200 replicates of simulated
longitudinal phenotype data that used the real genotypes,
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pedigree structures, and trait distributions. Genetic data
for GAW18 included aligned and called whole genome
sequences for odd-numbered autosomes, sequence calls
cleaned of mendelian errors for the sequenced individuals
and imputed genotypes for their family members, and the
dense single-nucleotide polymorphism (SNP) data used
for the imputing of sequence in family members. In
addition, genotype dosages were provided for each called
SNP in terms of number of minor alleles carried (0, 1,
or 2) with a weighted average used for imputed genotypes
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that could not be determined unambiguously. Real
phenotype data included sex, age, year of examination,
systolic and diastolic blood pressure, use of antihyper-
tensive medications, and tobacco smoking at up to four
time points.

Methods

T2D-GENES study

The Type 2 Diabetes Genetic Exploration by Next-
Generation Sequencing in Ethnic Samples (T2D-GENES)
Consortium is a collaborative international effort to
identify genes influencing susceptibility to type 2 diabetes.
The GAW18 data set was drawn from T2D-GENES
Project 2, a complex pedigree-based study designed to
identify low-frequency or rare variants that influence
susceptibility to type 2 diabetes using information from
whole genome sequencing (WGS) of 1043 individuals
from 20 Mexican American pedigrees enriched for type 2
diabetes from San Antonio, Texas. These family data were
obtained from two studies: the San Antonio Family Heart
Study (SAFHS) and the San Antonio Family Diabetes/
Gallbladder Study (SAFDGS), which are together referred
to as the San Antonio Family Studies (SAFS). The
T2D-GENES Consortium sequenced approximately 600
individuals chosen for their value in imputing sequence
information in about 450 additional family members. This
is possible because all individuals in the sample were
previously assessed for a high-density SNP framework.
WGS is being performed commercially at Complete
Genomics Inc (CGI), and the GAW 18 data set was based
on the sequence data for the first 483 T2D-GENES
samples.

The T2D-GENES Project 2 family data were drawn
from two San Antonio-based family studies: SAFHS and
SAFDGS. The SAFHS began in 1991 with 40- to
60-year-old low-income Mexican Americans, selected at
random without regard to presence or absence of
disease, who were almost exclusively from Mexican
American census tracts in San Antonio, Texas [1]. All
first-, second-, and third-degree relatives of the proband
and of the proband’s spouse, age 16 years or older, were
eligible to participate in the study. Participants were
recalled for up to four examinations over an approxi-
mately 20-year period. The SAFDGS also began in 1991
as the San Antonio Family Diabetes Study [2] and
recruited low-income Mexican Americans with type 2
diabetes identified in an earlier epidemiologic survey,
the San Antonio Heart Study. All first-, second-, and
third-degree relatives, age 18 or older, were invited to
participate in the study. Participants were recalled twice
for a total of up to three examinations per person. The
second recall began the gallbladder component of the
study, recruited new family members, and added 8
newly recruited families [3,4].
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From the SAFS families, 20 large pedigrees, consisting
of 1043 individuals, were selected for T2D-GENES
Project 2 by focusing on large lineages to maximize the
number of potential copies of founder alleles and to get
an optimal ratio of sequencing efficiency and number of
individuals with type 2 diabetes. These pedigrees average
52 individuals, with a maximum pedigree size of
87 individuals. To select individuals for WGS, the
program ExomePicks (http://genome.sph.umich.edu/
wiki/ ExomePicks was used to choose approximately
600 individuals. ExomePicks is designed to select an
optimal subset of individuals to sequence to infer WGS
calls in remaining family members using a framework of
previously typed SNPs to identify regions of identity-by-
descent sharing between sequenced and unsequenced
individuals. The sequences for the remaining family
members were obtained using family-based impu-
tation around a previously assessed high-density SNP
framework.

The data set for GAW18 included 20 pedigrees with
21-76 individuals with blood pressure measurements at
one or more exams. These families included two examined
pairs of monozygotic twins in two different families. The
maximum set of genetically unrelated individuals with
phenotype data that could be extracted from these
pedigrees consisted of 157 individuals.

Whole genome sequence data

GAW18 used an early version of the T2D-GENES “freeze
1” data set, prepared in early 2012. WGS data used for
GAW18 came from 483 individuals sequenced by CGI at
an average 60x coverage. Of these, 19 samples failed to
meet SNP quality control criteria, such as number of
SNPs called, fractions and ratio of homozygous and het-
erozygous sites, and fraction of novel SNPs, leaving
sequence data for 464 individuals. Pedigree information
was verified by estimated kinship coefficients, principal
components analysis (PCA), and number of mendelian
errors between parent and offspring samples. A novel mul-
tisampleSNP filtering pipeline was used to collect quality
measures across all samples, including allele balance,
strand bias, fraction of bases with low quality, and fraction
of mendelian errors. Support vector machine (SVM)
classifiers were used to filter out low-quality SNPs.

In the 483 individuals, 26.8M SNPs were identified,
and after eliminating the 19 outlier individuals, 24M
SNPs passed SVM and insertion-deletion (INDEL)
proximity filters. More than 69% of the quality-con-
trolled SNPs were not in dbSNP 129, and the overall
transition to transversion ratio was 2.18, whereas SNPs
in dbSNP have a transition to transversion ratio of 2.19.
More than 51% of SNPs had minor allele frequency
(MAF) less than 1%. The aligned, called sequence data
for the 464 individuals who passed quality control
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checks were provided in variant call format (vcf) files for
GAW18. Information fields provided in the vcf files
included number of samples with fully called data, allele
frequency, dbSNP membership, dbSNP rs identifier, strand
bias Pearson’s correlation, strand bias z-score, cycle bias
Pearson’s correlation, cycle bias z-score, cycle-strand
Pearson’s correlation, base-quality inflation z-score, ratio of
base-quality inflation, alternate allele quality z-score, alter-
nate allele inflation score, and fraction of bases with map
quality of 0, less than 10, less than 20, and less than 30.

A novel population-based imputation approach, prephas-
ing imputation, was used to impute WGS data for 961
individuals in the 20 large pedigrees based on an existing
framework of dense SNPs designed for genome-wide asso-
ciation studies (GWAS) [5]. This approach works in two
steps. First, haplotypes are estimated for each individual for
the GWAS data (prephasing). Second, the estimated haplo-
types are used directly for imputation of sequence variants.

MaCH was used for prephasing the GWAS data [6].
This haplotyping approach proceeds through a series of
iterative steps. In each step a new pair of haplotypes is
sampled for each individual as an imperfect mosaic
of the estimated haplotypes ("templates”) for other
individuals in the data set. After a number of iterations,
“best-guess” haplotypes are constructed for each indivi-
dual by combining information across the sampled haplo-
type configurations. For the present data set, 20 iterations
and 400 templates were used. After GWAS genotypes are
phased, each haplotype can be imputed separately if it is
assumed that the GWAS haplotypes are conditionally
independent, given a reference panel. The reference panel
provides template haplotypes for the imputation model,
and marginal probabilities for the untyped alleles in each
GWAS haplotype are estimated by means of standard
hidden Markov model (HMM) calculations (the “forward-
backward” algorithm).

As an initial approximating procedure, the preliminary
imputation ignored family structure. To eliminate errors
and improve the overall quality of imputation, we then
proceeded to identify all obligate mendelian errors using
the computer program SimWalk2 [7]. This analysis used
all available pedigree information. Using a mendelian
probability model, likely errors were identified and
iteratively blanked until each marker configuration could
pass a likelihood calculation test (ie, produce a nonzero
likelihood), indicating the absence of mendelian inconsis-
tencies. Following this error detection phase, we then
reimputed the blanked genotypes, now using information
on the genotypes of surrounding family members. The
program MERLIN [8] was employed for this, using the
general approach of Burdick et al [9]. Because of the high
computational burden associated with this procedure
in large pedigrees, for each individual with missing
genotypes, we formed a trimmed locally optimal pedigree
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containing as much haplotype transmission data as could
be reasonably placed in memory to optimize the speed of
computation while maximizing genetic information. For
this procedure we used a maximum of 16 bits of pedigree
extension per individual. For each missing genotype the
probabilities of each possible genotype were calculated in
the context of the local haplotypes. The resulting probabil-
ities were then used to generate an appropriately weighted
gene dosage variable. These gene dosage measures were
provided for each sequence variant. However, when
imputed genotype calls were ambiguous, blanks were
retained in the imputed genotype file.

Genotype calls cleaned of mendelian errors were
provided for 959 individuals (464 directly sequenced and
the rest imputed) for 8,348,674 locations in the genome.
These sequence data were for odd-numbered autosomes
only and did not include structural variants. GWAS data
for 472,049 SNPs on odd-numbered autosomes were
provided for these 959 family members. These data were
obtained using different versions of the Illumina Infinium
Beadchips: HumanHap550v3, supplemented with
HumanExon510Sv1l; Human660W-Quadvl; HumanlMvl;
and HumanlM-Duov3. The raw GWAS genotype data
obtained were processed using standard quality control
procedures, and SNP genotypes cleaned of mendelian
errors were provided for odd-numbered autosomes
for use by GAW18 participants who wished to work
on methods for imputing sequence data through the
pedigrees. Finally, for participants who wished to analyze
data using the full pedigree structure but who were not
interested in methodological issues related to cleaning or
imputing sequence data, a file of called variant dosages
was provided with the entry for each variant being the
estimated number of minor alleles carried, obtained
either from the direct sequence or by imputation.

Phenotype data

Participants in both SAFHS and SAFDGS were followed
in a mixed longitudinal fashion. Blood pressure measure-
ments were taken during one or more study exams from
932 SAFS participants in the 20 T2D-GENES sequencing
families (Table 1). Of these individuals, 246 had one
blood pressure measure, 183 had two, 309 had three, and
194 had four. For each examination, blood pressure was
measured three times after a five-minute rest with
a Random Zero sphygmomanometer. The numbers
provided were the averages of the second and third
readings. The phenotype data provided consisted of sex,
age at examination, year of examination, systolic blood
pressure (SBP), diastolic blood pressure (DBP), current
use of antihypertensive medications, hypertension diagno-
sis, and current tobacco smoking at the time of each
exam for up to four time points. Hypertension was
defined as SBP > 140, DBP > 90, or antihypertensive
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Table 1 SAFS phenotype data

Exam 1 Exam 2 Exam 3 Exam 4
N 855 605 622 233
Year of exam 1981°-1996 1997-2000 1998-2006 2009-2011
Mean age at exam (range) 396 (16-94) 429 (17-97) 46.3 (18-95) 50.9 (30-81)
Mean SBP (range) 122 (80-216) 125 (90-211) 125 (76-220) 128 (93-233)
Mean DBP (range) 71 (40-123) 72 (43-115) 71 (32-108) 78 (46-126)
Antihypertensive medication use (%) 9.79 1897 2875 4329
Hypertension (%) 18.13 28.38 3477 5193
Current smokers (%) 2290 18.25 20.00 11.16

a. Number with blood pressure measurements.

b. Although both SAFHS and SAFDGS began in 1991, data from an earlier study were included at exam 1 for one participant.

medication use at that examination. Note that because
diagnosis for each time point was defined using the data
only at that particular examination, affected individuals
may appear to revert and become unaffected at a later
exam if their SBP or DBP decreased and they were
unmedicated.

Simulated phenotypes

Simulated phenotypes were modeled after the real data
with SBP and DBP distributions and frequencies of
hypertension, medication use, and tobacco smoking taken
from the SAFS T2D-GENES data. An additional simu-
lated quantitative trait not present in the real data set,
Q1, was also added. The simulation model used the real
pedigrees and the cleaned imputed sequence data for
each individual and was constructed to maintain the
heritabilities of SBP and DBP and the observed correla-
tions between them. Note, however, that upper and lower
bounds were not placed on simulated SBP or DBP, nor
was simulated SBP required to be greater than simulated
DBP. This resulted in a handful of individuals with
biologically implausible simulated trait values.

The sample for the simulated data set was the indivi-
duals who had both phenotype data and imputed sequence
data in the real data set: 849 individuals. Two hundred
replicates of simulated phenotype data were generated. All
individuals had simulated phenotype data at three time
points with no missing data, with the exception of Q1,
which was provided only for the first exam. Each indivi-
dual’s sex was taken from the real data set, and ages from
the real data set were used when possible. For individuals
not examined at all time points in the real data set, miss-
ing ages at exam were filled in by adding or subtracting
3.9 years between exams 1 and 2 and/or 6.9 years between
exams 1 and 3. Because age and sex were based on the
real T2D-GENES data, they did not vary across replicates
of the simulated data. SBP, DBP, hypertension diagnosis,
medication use, and tobacco smoking were generated
anew for each simulation replicate.

Simulation model

The GAW18 simulation model was extensively informed
by patterns in the real SAFS blood pressure data.
Measures of gene expression in lymphocytes were
available from the first SAFHS exam [10] and were used
to select “functional” genes for the GAW18 phenotype
simulation. Genetic correlations between measures of
mRNA expression and SBP and DBP were estimated.
Genes on odd-numbered chromosomes whose expression
levels were both phenotypically and genetically correlated
with either SBP or DBP at a p value of 0.05 were selected,
and their expression levels were tested for association
(at p < 0.05) against the sequence data to identify
cis-regulatory variants within 5kb upstream and down-
stream of the gene. For each gene we then performed a
stepwise regression to identify the conditional effects of
individual SNPs, again requiring a p < 0.05 for a SNP to
pass this conditional association test. The estimated
conditional effect size for each SNP was the basis for its
phenotypic effect on the simulated phenotypes. In addition,
PolyPhen was used to identify potentially deleterious
coding variants in these same genes.

Direction and magnitude of effect for each SNP were
determined using the observed correlation between
mRNA and SBP/DBP for regulatory variants. For coding
variants we assumed that deleterious variants would
decrease function. If mRNA was positively correlated with
SBP or DBP, then deleterious coding variants decreased
mean phenotype levels; and, conversely, if mRNA was
negatively correlated with SBP/DBP, then deleterious
coding variants increased blood pressures. The magnitude
of the effect size for coding variants was primarily a multi-
plicative function of the PolyPhen-2 score (PP2S, ranging
from 0 to 1) and the observed genetic correlation (p,)
between transcript and SBP/DBP measure. Specifically,
for a given phenotype, effect size was determined by
[(percentile of ranked PP2S) x (PP2S?%) x (pg) x k x 1],
where k is an overall constant and / is a gene-specific
constant. There were 1243 variants in 245 genes that
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influenced variation in simulated DBP and 1040 variants
in 205 genes that influenced variation in simulated SBP.
Table 2 lists the top 15 genes with the largest effects on
each of simulated DBP and SBP, and Table 3 lists the top
55 individual variants, all of which are nonsynonymous
coding variants that account for at least a tenth of a
percent of variance in simulated DBP, SBP, or both.
Additional File 1 lists all 1458 functional variants. Indivi-
dual variants accounted for less than 0.001% to as much as
2.78% of the phenotypic variance in DBP and SBP. If the
effects of all variants in a gene were combined, each gene
accounted for less than 0.001% to as much as 7.79% of
phenotypic variance.

Simulated SBP and DBP varied by sex and increased
with age. Effect sizes for these covariates were estimated
from the real data set. Simulated DBP was modeled to
be an average of 3.715 lower in females and increased by

Table 2 Top 15 genes influencing simulated SBP and DBP
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0.158 per year of age, but only in females. Simulated DBP
did not increase by age in males. Simulated SBP was
5.565 lower in females and increased by 0.266 per year of
age in males and 0.708 per year of age in females. Age
effects were standardized to a mean age of 37.74. Also,
paralleling the observed data, simulated cigarette smoking
was not related to simulated SBP or DBP.

The total heritability for each simulated phenotype was
fixed at the heritability observed in the SAFS data: 0.279
for SBP and 0.317 for DBP. The heritability not accounted
for by the variants listed in Additional File 1 was generated
using a set of 1000 random variants in genes without main
effects from the odd-numbered chromosomes with at least
one 3’ or 5" SNP with MAF > 0.4. These common variants
varied across replicates, and each had equal effect sizes.
Half were randomly assigned to lower blood pressure and
half to raise it. Each of these background variants changed

Gene Chromosome Position of first functional Total variance Variance explained by largest Number of functional
SNP (bp) explained (%) functional variant (%) variants
DBP
MAP4 3 47912898 6.48 2.29 15
TNN 1 174996637 4.08 1.98 18
NRF1 7 129252980 265 1.08 14
LEPR 1 65912722 2.50 2.19 8
FLT3 13 28567172 122 1.01 10
ZFP37 9 115803080 092 049 9
CGN 1 151491026 083 0.60 16
MTRR 5 7870973 0.36 0.10 "
SLC35E2 1 1658093 0.36 0.14 7
ZNF443 19 12513424 0.34 0.26 13
RAIT 17 17498492 032 0.30 7
PTTGIIP 21 46266768 0.28 0.16 7
CABP2 11 67288594 0.21 0.21 1
ZNF544 19 58740339 0.21 0.18 9
REPINT 7 150041836 0.20 0.10 6
SBP
MAP4 3 47912898 7.79 2.79 15
NRF1 7 129252980 4.67 191 14
TNN 1 174996637 3.87 1.89 16
LEPR 1 65912722 2.23 2.06 8
FLT3 13 28567172 0.97 0.82 8
GTF2IRD1 7 73822336 0.36 0.10 10
FLNB 3 58089761 0.29 0.27 8
ZNF443 19 12513424 0.22 0.17 "
GSN 9 123969834 0.21 0.09 13
CABP2 11 67288594 0.17 0.17 1
LRP8 1 53712727 0.17 0.17 2
PSMD5 9 123575167 0.16 0.13 6
GAB2 11 77935643 0.14 0.08 4
ABTBI1 3 127394820 0.13 0.10 2
KRTAPT11-1 21 3225351 0.13 0.13 1
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Table 3 Top 55 variants influencing simulated SBP and DBP, in decreasing order of effect size

Gene Chromosome Position MAF Beta® DBP DBP variance Beta® SBP SBP variance
explained (%) explained (%)
MAP4 3 48040283 0.0318 —6.22 229 -991 278
LEPR 1 66075952 0.1567 2.76 219 387 2.06
MAP4 3 47957996 0.0301 -4.64 1.22 -7.39 149
MAP4 3 47956424 03777 -1.50 117 -2.38 143
MAP4 3 48040284 0.0131 —6.95 091 -11.07 1.1
FLT3 13 28624294 04167 1.38 1.01 1.79 0.81
MAP4 3 47913455 0.0049 -5.46 036 -8.70 044
RAIT 17 17696755 04870 0.75 0.30 0.50 0.06
MAP4 3 47957741 0.0016 -5.09 0.24 -8.10 0.30
FLNB 3 58109162 04947 0.39 0.08 1.00 0.27
ZNF443 19 12541795 0.3624 -0.65 0.26 -0.77 0.17
CABP2 11 67288594 03911 0.62 0.21 0.80 0.17
ZNF544 19 58772579 0.2150 -0.71 0.18 -0.54 0.05
LRP8 1 53712727 02117 0.00 0.00 -0.99 0.17
EPS8L1 19 55598724 04456 0.50 0.14 0.55 0.08
FLT3 13 28601297 0.0016 324 0.1 4.21 0.09
MTRR 5 7897191 0.3660 -044 0.10 0.00 0.00
ZNF17 19 57931303 0.2993 -047 0.10 -037 0.03
HIF3A 19 46812451 0.0369 0.99 0.09 095 0.04
ZNF180 19 44983567 0.3417 -040 0.08 -046 0.05
GAB2 11 77937768 0.0082 0.00 0.00 3.09 0.08
SIX5 19 46269076 0.3784 0.38 0.08 0.00 0.00
TCIRG1 11 67809268 0.0369 1.07 0.08 1.38 0.06
MTRR 5 7889304 0.1248 -0.50 0.07 0.00 0.00
MTRR 5 7870973 0.2305 -0.38 0.06 0.00 0.00
MTRR 5 7891506 0.1230 -046 0.06 0.00 0.00
NEXN 1 78392446 0.1298 -048 0.06 0.00 0.00
P2RY2 1 72946204 0.0985 -045 0.04 -0.59 0.03
COL5A3 19 10085054 0.1448 032 0.03 0.54 0.04
SAT2 17 7529902 0.0434 034 0.01 . 0.04
COL5A3 19 10085062 0.1349 0.35 0.03 0.59 0.04
CAPN12 19 39228244 0.1054 0.30 0.02 0.56 0.03
ZNF443 19 12541250 0.0305 -0.58 003 -0.69 0.02
RHOD 11 66834232 0.0083 -0.95 0.03 0.00 0.00
RCN3 19 50045878 0.0417 0.52 0.02 0.96 0.03
ZNF177 19 9490760 0.0217 -0.74 0.03 -0.69 0.01
ZNF443 19 12541547 04150 -0.20 0.02 -0.23 0.02
SPTBN4 19 41056229 0.0327 -0.59 0.01 -1.11 0.02
DNASE1L3 3 58183636 0.0456 0.36 0.01 0.67 0.02
EPHA2 1 16456763 0.0180 094 0.02 1.24 0.02
CYP1A2 15 75047412 0.0017 093 0.02 0.00 0.00
P2RX5 17 3599205 0.0170 0.59 0.02 0.00 0.00
EMP3 19 48833608 0.0306 0.00 0.00 —0.65 0.02
CCL24 7 75442723 0.0148 -0.66 0.01 -1.12 0.02
CAPN12 19 39230852 0.0349 041 0.01 0.77 0.02
crQBp 17 5338281 0.0098 0.78 0.01 1.38 0.02
KRT23 17 39092756 0.1707 0.00 0.00 -031 0.01
RHOD 11 66837996 0.0065 -0.84 0.01 0.00 0.00
FPRI1 19 52249211 0.1419 -022 0.01 -0.28 0.01

C90ORF72 9 27561628 0.0554 0.35 0.01 0.00 0.00
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Table 3 Top 55 variants influencing simulated SBP and DBP, in decreasing order of effect size (Continued)

TCIRG1 Il 67814983 0.0033 0.83 0.01 1.07 0.01

SNAPC3 9 15459821 0.0264 -046 0.01 —0.60 0.01

RAIN 17 17700053 0.0033 0.67 0.01 045 <0.01

BTD 3 15686693 0.0213 —0.63 0.01 -0.56 <0.01

SUMF1 3 4508742 0.1856 0.17 0.01 0.22 0.01

a. Beta = change in mean phenotype value per minor allele carried.

simulated SBP by 0.11187 and simulated DBP by 0.08786
per minor allele carried. The sign of this effect was
randomly changed from variant to variant. This polygenic
component was further transformed so that it had a zero
mean. The mean and variance of simulated SBP and DBP
were modeled after the observed SAFS exam 1 data, and
the phenotypic variance not accounted for by genetic
components was generated by means of a random
“environmental” component that was correlated between
simulated DBP and SBP and across examinations but
uncorrelated between family members.

For each replicate, after SBP and DBP were generated,
individuals with SBP > 140 or DBP > 90 were assigned to
be hypertensive. A proportion of hypertensive individuals
were then chosen to be “treated,” and their simulated SBP
and DBP were decreased by 6.2 and 7.9, respectively, with
the effect of medication being estimated from the SAFS
exam 1 data. The probability of a hypertensive individual
being medicated was modeled after the real data set and
started at 0.55 at exam 1 and rose to 0.67 at exam 2 and
0.82 at exam 3. Individuals carrying coding variants in
CYP3A43 that were predicted to be deleterious by
PolyPhen-2 (Table 4) were assigned to be medication
nonresponders, and their blood pressures were not
modified regardless of treatment status.

At subsequent simulated examinations, SBP and DBP
values were regenerated with the new age at exam using
the same genetic values as exam 1 but with a random
environmental component that was correlated with the
environmental component at exam 1. This led to genetic
correlations of p, = 1 within trait across time (eg, SBP at
simulated exam 1 with SBP at simulated exam 2 or 3) and
equal to that observed at exam 1 for SBP-DBP genetic
correlations. Environmental components were also
correlated between DBP and SBP. The correlation
in environmental components between each pair of
simulated blood pressures is given in Table 5. Individuals
assigned by simulation to receive hypertensive treatment

at exam 1 retained their affection status at subsequent
exam regardless of their simulated blood pressures.
Additional individuals were diagnosed with hypertension if
their exam 2 or exam 3 blood pressures were over the
thresholds. Individuals simulated to receive antihyperten-
sive treatment at exam 1 remained on treatment, and an
additional proportion of affected individuals began
treatment, mimicking the pattern of increasing proportion
of affected individuals being treated in later exams seen in
the real SAFS data. Cigarette smoking, on the other hand,
decreased over the exams with 22.9% of individuals
randomly selected to be smokers at exam 1 and 1.45%
quitting at each exam to mimic the trend of decreasing
smoking seen in the real data set.

Q1 was simulated as a normally distributed quantitative
trait that was correlated among family members (additive
genetic heritability = 0.68) but not influenced by any of
the genotyped SNPs. Mean levels of Q1 were higher in
females and decreased with age. Q1 was not influenced by
cigarette smoking and was not correlated with simulated
SBP, DBP, or hypertension. Measured at only a single
simulated exam, Q1 was generated primarily to facilitate
assessment of type I error. Given that it was simulated
independently of the genotype data, any observed associa-
tions were necessarily false positives.

Conclusions

The GAW18 data set represents the first whole genome
sequence distributed for a Genetic Analysis Workshop.
These data were newly generated at the time of the work-
shop, and GAW18 participants had access to them only
shortly after the T2D-GENES investigators themselves.
Partly because of this, some aspects of the data set were a
bit unpolished. For example, Hinrichs et al [11] identified
some weaknesses in the imputation methods used and, in
fact, T2D-GENES has since redone the imputation.
Because of this and because the sample size was
subsequently increased, the T2D-GENES Project 2 data

Table 4 Deleterious CYP3A43 coding variants used in simulated genotype-medication response interaction

Chromosome Position (bp) Reference allele Alternate allele PolyPhen score Minor allele frequency
7 99454482 G A 0.983 0.0068
7 99457518 A G 0.99 0.0016
7 99457605 C G 0.925 0.0501
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Table 5 Correlations between simulated random environmental components
DBP exam 2 DBP exam 3 SBP exam 1 SBP exam 2 SBP exam 3

DBP exam 1 041 0.32 0.34 0.14 0.20

DBP exam 2 033 0.23 046 0.38

DBP exam 3 0.06 0.06 048

SBP exam 1 0.57 047

SBP exam 2 0.69

now available in the National Institutes of Health dbGaP
repository differ from the data distributed for GAW18.
Despite these minor weaknesses, the GAW18 data set is
still valuable and provides opportunities to address timely
analytical challenges through comprehensive WGS in a
large sample, complex real phenotypes with complications
such as medication effects, and longitudinal data. The
simulated phenotypes also presented analytical challenges,
in particular, the simulation of small effect sizes with
an attempt to build these realistically using observed
heritabilities and biologically meaningful weightings of
functional variants derived from PolyPhen-2 and from
analyses of real gene expression data.

When the data were prepared, we anticipated that
GAW18 participants could use them to address a variety
of timely problems and issues in statistical genetics meth-
ods development. We expected that the WGS and
GWAS data would be used to improve approaches for
imputing sequence calls in unsequenced family members
and to explore the use of existing SNP data for use in
error checking of WGS data sets. Methods for gene loca-
lization and nomination of potential functional variants
have been a consistent focus of the Genetic Analysis
Workshops, and we anticipated that this would
be a major use of the data. In addition to standard
association-based methods of localization, the large pedi-
grees in the data set made it possible to examine linkage
and combined linkage-association approaches. The fact
that these families are Mexican American also introduced
admixture mapping and population genetics as potential
areas of investigation. The inclusion of phenotypic data
from multiple examinations facilitated development of
methods for genetic analysis of longitudinal data. We also
expected that GAW18 participants would seek to use
various organizing and filtering principles and additional
sources of biological knowledge to focus their analyses
and limit the inherent multiple testing in a WGS search.
These included grouping sequence variants at the level of
genes or pathways or using bioinformatics databases to
select variants annotated as coding or regulatory or to
place informative prior probabilities on the potential
functionality of variants. Indeed, GAW18 participants put
these data to all these uses and more.

Additional material

Additional file 1: All simulated functional loci, ordered by
chromosome and position.
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