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Abstract

Background: Malignant pleural mesothelioma (MPM) is an aggressive, locally invasive, cancer elicited by asbestos
exposure and almost invariably a fatal diagnosis. To date, we are one of the leading laboratory that compared
microRNA expression profiles in MPM and normal mesothelium samples in order to identify dysregulated microRNAs
with functional roles in mesothelioma. We interrogated a significant collection of MPM tumors and normal pleural
samples in our biobank in search for novel therapeutic targets.

Methods: Utilizing mRNA-microRNA correlations based on differential gene expression using Gene Set Enrichment
Analysis (GSEA), we systematically combined publicly available gene expression datasets with our own MPM data in
order to identify candidate targets for MPM therapy.

Results: We identified enrichment of target binding sites for the miR-17 and miR-30 families in both MPM tumors and
cell lines. RT-gPCR revealed that members of both families were significantly downregulated in MPM tumors and cell
lines. Interestingly, lower expression of miR-17-5p (P = 0.022) and miR-20a-5p (P = 0.026) was clearly associated with
epithelioid histology. We interrogated the predicted targets of these differentially expressed microRNA families in MPM
cell lines, and identified KCa'1.1, a calcium-activated potassium channel subunit alpha 1 encoded by the KCNMAT gene,
as a target of miR-17-5p. KCal.1 was overexpressed in MPM cells compared to the (normal) mesothelial line MeT-5A,
and was also upregulated in patient tumor samples compared to normal mesothelium. Transfection of MPM cells with
a miR-17-5p mimic or KCNMA 1-specific siRNAs reduced mRNA expression of KCal.1 and inhibited MPM cell migration.
Similarly, treatment with paxilline, a small molecule inhibitor of KCa1.1, resulted in suppression of MPM cell migration.

Conclusion: These functional data implicating KCa1.1 in MPM cell migration support our integrative approach using
MPM gene expression datasets to identify novel and potentially druggable targets.
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Background

Malignant pleural mesothelioma (MPM) is an aggressive
tumor occurring in the lining of the lungs, induced by
exposure to asbestos. MPM has poor prognosis, and pal-
liative chemotherapy is often the only treatment modal-
ity that can be offered [1, 2]. Since the adoption of
cisplatin and pemetrexed as the standard of care [3] a
decade ago, there has been little therapeutic progress
and the identification of new therapeutic targets for
MPM is an urgent unmet need.

Genome-wide gene expression profiling studies using
microarray and next generation sequencing (NGS) have
facilitated identification of disease-specific expression
profiles and many are publicly available. While most
studies have focused on the identification of a single
therapeutic candidate, the greatest challenge remains the
interpretation of data within the context of cancer cell
biology. Bioinformatic tools such as Gene Set Enrich-
ment Analysis (GSEA) [4] have improved interpretation
of microarray and NGS data for downstream functional
validation. In MPM, gene expression profiling studies
have identified several novel targets including MMPI14
[5], ALCAM [6], NME2, CRII, PDGFC and GSN [7].
However, there was little commonality between these
studies, and to date no pharmaceutical approach to
targeting these candidates has been developed. At a sys-
tems level, pathway analysis has revealed enrichment of
genes in MPM belonging to cellular processes such as
cellular metabolism, cytoskeletal re-organization, apop-
tosis, spindle checkpoint and cell cycle progression and
regulation [5, 8, 9]. Many of these pathways, however,
have not been explored in detail.

Since MPM is characterized by alterations in multiple
genes, we hypothesized that a strategy to inhibit and/or
restore a single target gene is unlikely to be effective. In
comparison, new insights into the involvement of micro-
RNAs in the regulation of MPM growth [10] have pro-
vided an alternative way to inhibit MPM growth with
the potential to be successfully translated into a new
therapeutic approach for MPM [11]. MicroRNAs are
small non-coding RNAs involved in post-transcriptional
control of gene expression [12]. They form a complex
network where each microRNA regulates multiple
mRNAs and each mRNA is regulated by multiple micro-
RNAs. Changes in microRNA expression are associated
with proliferation and drug resistance of cancer cells,
and microRNAs can act as oncogenes or tumor suppres-
sors [13-16]. Making use of data from our previous
studies [17-19], we present here an integrative approach
by comparing microRNA and mRNA gene expression
datasets to identify enriched biological themes that can
be translated into potential druggable targets for MPM,
as well as functional data revealing that KCal.l is a
potential therapeutic target in MPM.
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Results and discussion

Identification of target binding site of differentially
expressed genes in MPM cell lines and tumors (enriched
microRNA binding sites)

MPM is a complex disease driven by polygenic dysregula-
tion and we hypothesized that an integrated microRNA-
mRNA approach would assist us in identifying dysregulated
layers of gene regulation affected by microRNAs. Their
gene targets, in turn, can potentially serve as therapeutic
targets. Previous studies have identified extensive changes
in microRNA expression in MPM, as recently reviewed
[10]. We have profiled gene expression in MPM cell lines
compared to MeT-5A (immortalized normal mesothelial
cell line) [19], and have demonstrated up and down regula-
tion in multiple microRNAs in MPM patient tumor sam-
ples and cell lines [17, 18, 20]. To our knowledge, we are
one of the few laboratories in the world who have studied
microRNA expression profiles in MPM tumor and normal
mesothelium samples in order to identify dysregulated
microRNAs playing an important functional role in the
biology of MPM. Therefore, we systematically interrogated
1319 differentially expressed mRNAs (P <0.05) in our data-
set [19] using the Molecular Signatures Database
(MSigDB) [4]. This led to the identification of enriched
microRNA binding motifs, ie., miR-30, miR-15 and
miR-17 (Fig. 1). We then applied this GSEA strategy [4]
to the three remaining MPM gene expression datasets
[GSE2549, GSE12345, GSE51024] (outlined in Fig. 1
and Additional file 1: Table S1) to identify commonly
enriched microRNA families.

Binding sites for miR-17 and miR-30 microRNA families
are enriched in all gene expression datasets

Two families, miR-17 and miR-30, were identified
amongst the top 20 enriched microRNA families
across the four datasets (Fig. 2a). The miR-17 family
includes miR-20a/b, miR-93 and miR-106a/b and
forms clusters with members of the miR-18, miR-19
and miR-25 families. The miR17 ~92 cluster, located
on chromosome 13 consists of miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1 and miR-92a-1, with
two paralogues; the miR-106b ~ 25 (miR-106b, miR-93
and miR-25) and miR-106a ~ 363 (miR-106a, miR-18b,
miR-20b, miR-19b-2, miR-92a-2 and miR-363) clus-
ters. The miR-17 ~92 cluster has been characterized
as oncogenic in various solid and hematological ma-
lignancies (reviewed in [21]), but intriguingly there is
frequent copy number loss or deletion of the genetic
locus at 13q31 [22] in various cancers and downregu-
lation of this cluster is also implicated in aging [23].
Downregulation of the miR-30 family (consisting of
miR-30a, miR-30b, miR-30c, miR-30d and miR-30e)
has also been associated with various malignancies in-
cluding colorectal [24], gastric [25], lung [26] and
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Fig. 1 Analysis pipeline. Differentially expressed gene lists in MPM from four public datasets (P < 0.05) were subjected to GSEA analysis using the C3 list
in the Molecular Signatures Database (MSigDB v4.0) to identify enriched 3'UTR microRNA binding motifs [4]. The top 20 enriched microRNA motifs
identified at P < 0.05 (False discovery rate adjusted) were considered significant and ranked between these four studies. Predicted target mRNAs from
these enriched microRNA families were analyzed further using Gene Ontology (DAVID [68]) and Pathway Enrichment (Partek Genome Suite) to elucidate
affected regulatory pathways. Confirmation of dysregulated candidate microRNA families in MPM cell lines (n=7) and patient tumors (n = 59) were
carried out using RT-gPCR. Furthermore, correlation of enriched microRNAs (downregulated) to gene expression of predicted targets (upregulated) were
extracted based on our previous published array dataset [19]. Thus this analysis pipeline identifies and ranks candidate targets according to significance
P value, correlation between miRNA-mMRNA array data as well as being able to be targeted functionally by small molecule inhibitors

thyroid cancers [27]. Interestingly, increasing the
levels of miR-17 was shown to inhibit breast cancer
cell growth [16], while miR-30a has been found to
suppress migration and invasion of breast cancer cells
[28], and proliferation of colon [24] and hepatocellu-
lar carcinoma cells [29]. In addition, both miR17 and
miR-30 families are predicted to target many cancer
related genes, and have critical roles in cell cycle,
apoptosis, migration and proliferation. Since both
microRNA families are significantly enriched in our
integrative analysis, this implicates their important
roles in cancer biology including mesothelioma.

The miR-17 family is consistently downregulated in MPM
and its predicted targets are associated with multiple
cancer-related pathways

We validated microRNA expression using RT-qPCR and
found consistent downregulation of multiple miR-17
family members and miR-30e in MPM in a set of 23
normal pleura and 60 formalin-fixed, paraffin-embedded
(FFPE) tumor samples from our biobank, as well as a
panel of 7 MPM and mesothelial cell lines (Fig. 2b and
¢). Lower expression of miR-17-5p (P =0.022) and miR-
20a-5p (P =0.026) was significantly associated with epi-
thelioid histology, as was the co-expressed miR-19b-3p
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Fig. 2 Identification of enriched microRNA families. a The top 20 enriched microRNA binding motifs in each MPM gene expression study were
compared and the overlap between studies identified. Families enriched in more than one dataset are included in the table (see Additional file 1:
Table S1 for top 20 enriched families in each dataset). RT-qPCR confirmed decreased expression of the miR-17 family in (b) MPM tumors (n = 59)
compared with normal pleural tissue (n=22) and (c) MPM cells lines compared with MeT-5A. The formalin-fixed paraffin embedded (FFPE) tumor
tissues used in this study were described previously [62]. Total RNA was extracted from cell lines, tumors and normal pleura and used as template
in RT-gPCR using microRNA-specific TagMan assays (Additional file 1: Table S3) as previously described [17, 18]. Relative expression levels were
calculated using the 2229 method [63] relative to MeT-5A or normal pleura. d Analysis of the top four enriched pathways related to the miR-17
family identified a number of target genes involved in multiple pathways. e Key miR-17 family target genes are coordinately regulated in signaling
pathways contributing to MPM cell migration. Blue denotes upregulation > 1.5 fold, Yellow denotes downregulation < 1.5 fold. White arrow denotes
direction in change of expression using data from Wright et al. [19]. f Expression analysis identified 40 predicted targets of miR-17 that were differentially
expressed between MPM cells and MeT-5A cells; 20 of these targets were upregulated, including KCNMAT and RT-gPCR confirmed upregulation of KCNMAT
in MPM cell lines (g). In a second series of tumor samples consisting of fresh-frozen samples from extrapleural pneumonectomy (EPP) patients, KCNMAT
was upregulated (h) and miR-17-5p downregulated (i) compared with normal pleural tissue controls (see Additional file 1: Table S4 for patient characteristics).
j KCal.1 expression in MPM tumor samples were analyzed by immunofluorescence microscope (Objective 40x, Axio imagerM2) showed high level of KCal.1
expression (right) of tumor area and low to no KCal.1 expression of the non-tumor area (left)

(P=0.016). Since miR-30e-5p expression did not show

any association with clinical characteristics in MPM, we
focused further attention on the miR-17 family.

Previous studies addressing the role of miR-17 in cancer
biology have shown this to be complex. While miR-17 ex-
pression is frequently reported to be upregulated as part of
the miR-17 ~ 92 cluster [21], miR-17-5p downregulation

and/or loss of heterozygosity/gene deletion at 13q31 has
been reported in various tumors [22]. Thus the role of these
microRNAs is likely to be context specific. Pathway enrich-
ment analysis revealed that the predicted targets of miR-17
family are enriched in several key cancer-related signaling
pathways previously implicated in MPM biology and treat-
ment, including MAPK signaling [30], ErbB signaling [31],
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Focal adhesion [32], TNF signaling [33] and TGF-beta sig-
naling pathways [34] (Additional file 1: Table S2). Further-
more, the top four enriched pathways share genes linked to
MPM cell migration, in particular MAPKI, P=0.03, -2.2
fold in MPM (MAPK, Axon Guidance, Pancreatic Cancer
pathways) and TGFBR2, P = 0.0002, > 5 fold in MPM (Pan-
creatic Cancer, MAPK, Endocytosis pathways) (Fig. 2d).
Specifically, key target genes of the miR-17 family are coor-
dinately regulated in signaling pathways contributing to
MPM cell migration (Fig. 2e), where downregulation of
miR-17 is associated with increased DUSP2 expression, an
inhibitor of MAPKI. Interestingly, DUSP2 has been shown
to be downregulated by the miR-17 family member miR-
20a [15]. Decreased miR-17 also leads to increased
KCNMAI expression (which in turn interacts with the
MAPK signaling pathway [35], and increased TGFBR2 [36]
and altered TGFB2 signaling. These gene expression
changes indicate that all these pathways together contribute
to an increase in MPM cell migration (Fig. 2d and e), and
collectively these results implicate a broad impact of the
miR-17 family in MPM biology.

Reduced miR-17-5p expression is correlated with
increased expression of KCNMA1

We investigated the correlation between miR-17-5p ex-
pression and mRNA expression of its predicted targets
from the same MPM cell lines [19] and identified that
20 out of 40 target genes demonstrated the expected in-
verse relationship between miRNA and mRNA levels, P
<0.05 (Fig. 2f). Prioritizing these gene targets based
firstly on those that showed significant differential gene
expression (>5-fold change) and secondly on the
availability of small molecule inhibitors/drugs, led to
identification of KCNMAI. This gene encodes the
calcium-activated potassium channel subunit alpha 1,
KCal.1 previously reported to be upregulated in prostate
[37], breast [38] and other cancers [39, 40]. RT-qPCR
confirmed upregulation of KCNMAI mRNA in MPM
cell lines compared to the normal immortalized meso-
thelial line MeT-5A (Fig. 2g), which was associated with
decreased expression of miR-17-5p (Fig. 2c). We further
analyzed KCNMA1 gene expression in fresh-frozen sam-
ples of normal pleura and MPM from our biobank. In
common with other tumor types, we observed increased
expression of KCNMAI (Fig. 2h) in MPM tumor samples
as well as downregulation of miR-17-5p (Fig. 2i). Immuno-
fluorescence studies further indicated that MPM tumor
samples with high tumor cell content expressed high levels
of KCal.1 (Fig. 2j right); in contrast, no expression was de-
tected in areas without tumor cells (Fig. 2j left).

Potassium ion channels such as KCal.l are the subject
of increasing interest in cancer research due to their
observed effects on cell processes including cell prolifer-
ation, cell adhesion, angiogenesis, cell migration and
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metastasis (reviewed in Pardo [41]). For example, ex-
pression of Kv10.1 channel (EAG1, product of the
KCNHI1 gene) is normally limited to the brain, but it is
overexpressed in many tumor types and knockdown in
overexpressing cells was found to reduce viability [42].
Furthermore, there is evidence that altered microRNA
expression is involved in the regulation of potassium
channels in cancer. In glioblastoma [43] for example, in-
creased EAG1 protein expression was associated with
decreased miR-296-3p levels and in osteosarcoma [44],
increased EAG1 is correlated with reduced miR-34a.
Kv11.1 (HERG) is upregulated in pancreatic cancer as a
consequence of miR-96 downregulation [45] and miR-
211 expression is inversely correlated with KCal.l in
melanoma [39]. In each case, ectopic expression of these
microRNAs reduced channel expression and inhibited
proliferation of the cancer cells.

KCNMAT1 gene is a direct target of miR-17-5p and genetic
and pharmacological inhibition of its protein, KCa1.1
modulates migration in MPM cells

To determine whether miR-17-5p has a direct effect on
modulating KCNMAI expression, we transfected MPM
cells with a miR-17-5p mimic. Increasing levels of miR-
17-5p resulted in a decrease in KCNMAI (Fig. 3a) and
TGFBR2 (Additional file 1: Figure S1) mRNA expression
in MPM cells, similar to that found with MPM cells
treated with KCNMA I-specific siRNA (Fig. 3a). Further-
more, transfection with either miR-17-5p mimic or
siRNAs designed to target the KCNMAI transcript, sig-
nificantly reduced expression of KCal.l protein, as seen
by the reduced immunofluorescent staining of the mem-
brane in transfected MSTO cells (Fig. 3b). To confirm
the interaction between miR-17-5p and the 3'UTR of
KCNMA1, we used AGO2 immunoprecipitation [46, 47]
to isolate the AGO2 protein and associated RNA follow-
ing transfection with miR-17-5p mimic. This resulted in
a clear increase in the KCNMAI-specific RT-PCR signal
after transfection with miR-17-5p mimic, indicating that
miR-17-5p directly interacts with KCNMAI in MPM
cells (Fig. 3c¢).

Pathway analysis shows that KCNMAI is also involved
in a range of cellular processes, including Axon Guid-
ance, Focal Adhesion and Wnt Signaling, so we next in-
vestigated the effects of inhibiting KCal.1 in MPM cells.
Silencing KCNMA1I expression with siRNAs or miR-17-
5p mimics had limited effects on the proliferation of a
panel of MPM cell lines (Additional file 1: Figure S2),
and did not lead to changes in the cell cycle (Additional
file 1: Figure S3) or induction of apoptosis (Additional
file 1: Figure S4) in transfected cells. This is in contrast to
the inhibition of breast cancer [38] and melanoma [39]
cell lines following KCNMA1I knockdown. Both miR-17-
5p and KCNMAI-specific siRNAs, however reduced
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(See figure on previous page.)

Fig. 3 Molecular and pharmacological inhibition of KCa1.1 inhibits MPM cell line migration. a Transfection with miR-17-5p mimic or KCNMA 1-specific sSiRNA
(10 nM) resulted in significantly (* =P < 0.01) decreased KCNMAT mRNA gene expression in MPM cell lines when compared with controls (Individual P
values are included in Additional file 1: Table S5). RT-qPCR carried out as described for Fig. 2. b Immunofluorescent staining of KCal.1 (Rabbit anti-KCNMAT,
1:500, Sigma) showed significant reduction in expression of KCa1.1 protein in MSTO cells transfected with miR-17-5p mimic or KCNMA T-specific siRNA (final
concentration of 10 nM; bar =400 um). ¢ Levels of KCNMAT were measured following AGO2-IP using PCR and were higher in cells transfected with the
miR-17 mimic. d Transfecting with miR-17 mimic did inhibit migration of mitotically inactivated H28 cells. Similar results obtained with other MPM cell lines
are presented in Additional file 1: Figure S5. e In proliferation assays, the growth of MPM cell lines was inhibited by high concentrations of the KCa1.1
blocker paxilline. In contrast, a sub-lethal dose of paxilline (12.5 uM) inhibited migration (D, last 2 rows) and colony forming ability of MPM cells, plated at
low density (f, histograms represent total dye in lysed colonies, as a percentage normalized to control, * P value all < 0.0001). P values for each comparisons
are individually presented in the Additional file 1: Table S5. g Levels of cytosolic Ca”* were estimated by overexpressing the soluble GCaMP5 Ca®* reporter
in MPM cells co-transfected with siRNA. Note, that the fluorescence intensity of the reporter is increased after the KCNMAT knockdown, * P < 0.05, ANOVA
with Holm-Sidak's multiple comparisons test. h Analysis of the Ca?* influx in MPM cells overexpressing the membrane-targeted LCK-GCaMP5 Ca’* reporter
and co-transfected with sSiRNA or miR-17-5p mimic. Calcium influx was induced at 5 s after the start of recording by application of 90 mM K*-containing

buffer. Graphs show mean + SEM fluorescence intensity of the reporter

migration in H28 (Fig. 3d) and other MPM cell lines
(Additional file 1 Figure S5), and the invasive capacity of
cells in a modified agarose spot assay (Additional file 1:
Figure S6). Similarly, modulation of KCal.l activity with
the inhibitor paxilline suppressed migration of MPM cell
lines. Paxilline inhibited cell proliferation at concentra-
tions greater than 25 pM (Fig. 3e) and treating MPM cells
at a sub-lethal dose (12.5 pM) resulted in significant inhib-
ition of migration (Fig. 3d) and cell colony formation
(Fig. 3f). Interestingly, MPM cell lines were less sensitive
than breast or prostate cancer lines, in which growth was
inhibited by 15 uM paxilline [38]. These data are consist-
ent with previous results implicating a role in cell migra-
tion for calcium-activated potassium channels in general
[41] and that KCal.l in particular, has been shown to be
important in the migration of glioma cells [48], invasive-
ness of melanoma cells [39], and transendothelial migra-
tion in metastatic breast cancer [48, 49].

Cell migration and invasion is dependent on calcium flux,
which contributes to changes in cellular volume [50, 51].
The blocker-sensitive outward potassium current generated
by large conductance potassium channels such as KCal.l
can functionally couple with other ion channels to control
calcium flux, thus facilitating migration and invasion by
regulating cell volume [52]. In MPM cells, KCNMA1
knockdown led to an increase in the basal intracellular cal-
cium concentration (Fig. 3g). As KCNMAL is the major
contributor to the resting membrane potential, this is likely
due to a partial membrane depolarization and higher ac-
tivity of Ca®* channels [53, 54]. Furthermore, KCNMAL1
silencing resulted in a more prolonged elevation in sub-
membrane Ca** levels in response to high K* containing
buffer (Fig. 3h). Together, these experiments demonstrate
a major impact of KCNMAT1 silencing on Ca** handling
by MPM cells. In light of these observations it is interest-
ing that changes in basal Ca** levels following KCNMA1
knockdown had negligible effects on cell growth, despite
altered Ca>* handling being linked to apoptosis resistance

in MPM cells [55]. Further research is required to under-
stand exactly how the loss of KCNMAL activity and re-
sultant changes in Ca®* flux reduces migration and
invasion without impacting apoptosis, and is beyond the
scope of the current study.

Potassium channels have been implicated in drug re-
sistance of cancer cells. One example is provided by the
miR-296-3p-mediated downregulation of EAG1 leading
to reversal of anticancer drug resistance in glioma cells
[43]. There is conflicting evidence, however, for the role
of potassium channels in the toxicity of cisplatin, a
platinum-based drug frequently used in chemotherapy
for MPM. Increased expression of the potassium chan-
nel Kv10.1 (EAG, KCNH1I) was linked to the drug resist-
ance of glioblastoma cells [43], whereas inhibition of the
elevated levels of Kvl1.1 (HERG, KCNH2) induced by
cisplatin selection had no effect on the toxicity of cis-
platin in epidermal or liver cancer cells. In contrast, it
was found to be essential for cisplatin-induced apoptosis
in gastric cancer [56]. We did not, however, observe
sensitization of MPM to either cisplatin or gemcitabine
in the presence of paxilline (Additional file 1: Figure S7),
suggesting that KCal.l is not involved in the cytotoxic
activity of these drugs in MPM, and is not solely respon-
sible for the potassium flux modulated by amphotericin
B and bumetanide previously observed in MPM [57].

Therapeutic targeting of potassium channels in cancer

Growing evidence suggests that the potassium channels
Kv10.1, Kv11.1, KCal.l and KCa3.1 have important roles
in cancer cell invasion and metastasis [38, 41], and as
MPM is a locally invasive cancer with high migratory
capacity, that targeting these channels is a potential
therapeutic option. Kvll.l1 (hERG, encoded by the
KCNH?2 gene) is overexpressed in many cancers [41] and
our MPM cell lines (1.78-fold upregulation, P =0.03).
First linked to cancer through the finding that resting
membrane potential in neuroblastoma cells was linked
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to proliferation, Kvll.l has since been found to be
expressed at high levels in multiple tumor types [41].
While this potentially makes Kv11.1 a good target, it is
also expressed in the heart where it is related to long
QT syndrome, making it difficult to envisage a cancer-
specific therapeutic window for Kv11.1 inhibition. The
Kv10.1 (EAGI, product of the KCNHI gene) channel is
normally only expressed in the brain, but is upregulated
in multiple cancer types [41], and its inhibition or
knockdown reduces cell migration and viability [42].
The important role of this channel in cancer was dem-
onstrated by its ability to confer invasive growth charac-
teristics to otherwise non-tumorigenic cell lines in
xenograft models [41]. However, its close evolutionary
relationship to Kv11.1 reduces the possibility that drugs
targeting Kv10.1 will be sufficiently specific.

Other potassium channels may represent preferable
targets to control cancer cell migration. For example, in-
hibition of KCa2.3 reduced bone metastases in a model
of breast cancer [58], and blocking KCal.1, which was
induced by ionizing radiation, inhibited the increase in
glioma cell migration [59]. Targeting KCal.l in MPM
could be achieved using a channel blocker such as paxil-
line. While an inhibitory dose may be difficult to reach
via systemic inhibition, the typical restriction of MPM
tumor growth to the pleural cavity provides an alterna-
tive loco-regional route for delivery of paxilline or other
potassium channel blockers. Alternatively, the post-
transcriptional regulation of KCNMAI by miR-17-5p
suggests that KCal.l could be an important target of a
miR-17-5p mimic-based therapy.

Conclusions

We have shown here that an integrated approach, com-
bining publicly available gene expression datasets, is an
effective and practical strategy to identify therapeutic
targets in MPM. These targets can be both proteins that
are inhibited via traditional pharmacological interven-
tions, as well as microRNAs themselves, as illustrated by
a near-complete response in a MPM patient failing on
standard chemotherapy, who received a miR-16 mimic
packaged in (targeted) nanocells [11], revealing that
microRNA-based treatment concepts are valid [18]. We
have demonstrated that KCal.l is a direct target of miR-
17-5p and inhibition of this combination modulates cell
migration in MPM.

Methods

Cell lines

Human mesothelioma cell lines H28, H226, H2052,
H2452, MSTO and the immortalized normal mesothelial
line MeT-5A were obtained from the American Type
Cell Culture repository (ATCC, Rockville, USA) and
MMO5 [60] and REN [61] were described previously and
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kindly provided by collaborators. All cells were grown in
RPMI with 10 % fetal bovine serum (FBS) at 37 °C with
5 % CO,. REN cells were grown in Ham’s F12 medium.
All medium and FBS were obtained from Life Technolo-
gies or Sigma.

Tissue samples

Formalin-fixed paraffin embedded (FFPE) tumor tissues
used in this study were part of a reported series of extra-
pleural pneumonectomy (EPP) patients collected between
1994 and 2009 from the Royal Prince Alfred Hospital
(RPAH) or Strathfield Private Hospital, Sydney [62]. Waiver
of consent for the use of these archival samples was granted
by the Human Research Ethics Committee (HREC) at Con-
cord Repatriation General Hospital (CRGH), Sydney,
Australia (CH62/6/2009/078). Demographics for this popu-
lation have been described elsewhere [18]. For the fresh-
frozen tumor samples and normal pleural tissue samples,
all patients gave informed written consent and the project
was approved by the HREC at CRGH (HREC/11/CRGH/
75) and RPAH (HREC/10/RPAH/599).

RNA isolation

Total RNA was extracted from cell lines and fresh-frozen
tissue samples using the TRIzol reagent (Life Technolo-
gies, Carlsbad, CA) and from FFPE tumors and normal
pleura using the RNeasy FFPE kit (Qiagen, Hilden,
Germany). RNA was quantified using a Nanophotometer
(Implen, Munich, Germany) and quality was assessed
using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA). Samples with RNA integrity numbers
(RINs) >8.0 were used for microarray analysis.

Microarray and TagMan Low Density Array (TLDA) data
acquisition

Microarray profiling experiments were performed using
NCode Human Non-coding RNA microarrays (Life
Technologies) according to MIAME guidelines, as previ-
ously described [19]. All expression data is available at
the National Centre for Biotechnology Information Gene
Expression Omnibus [GSE48174]. TagMan Low Density
Array (TLDA) profiling was performed as previously de-
scribed [18], following the profiling protocol without
pre-amplification. TLDAs were run on a Viia7 Real-
Time machine (Life Technologies). Data was analyzed
using the 2724C4 method [63], with normalization to the
average RNU6B Cq, and calculation of expression values
was made relative to MeT-5A. MicroRNAs with Cq
values >35 were excluded from analysis.

Quantitative RT-PCR in real time (RT-qPCR)

MicroRNA and mRNA expression levels from micro-
array analysis were validated using RT-qPCR in the five
cell lines assayed using NCode and TLDA arrays.
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MicroRNA expression levels were also validated in
fresh-frozen and FFPE tumor specimens from MPM pa-
tients and samples of normal mesothelium using Taq-
Man microRNA assays (see Additional file 1: Table S3
for assay IDs). Primers were designed for mRNA targets
using the Universal Probe Library (UPL) algorithm pro-
vided by Roche (Additional file 1: Table S3). To quantify
mRNA expression, total RNA (250 ng for cell lines) was
reverse transcribed to cDNA using the Superscript III
c¢DNA synthesis kit (Life Technologies) using oligo-dT
primers (100 ng/pL). After reverse transcription, cDONA
was diluted 1:5 with 2 pL of this product used as tem-
plate in real-time qPCR. All reactions were run in tripli-
cate on a Viia7 real-time machine (Life Technologies),
using KAPA SYBR Fast qPCR master mix (Kapa Biosys-
tems). All reactions had an initial enzyme inactivation
step at 95 °C for 10 min followed by 40 cycles of 95 °C
for 15 s and 55 °C for 30 s. 18S ribosomal RNA was used
as the reference for qPCR data normalization and no
template and no-RT samples included as negative con-
trols. For microRNA expression, 100 ng of total RNA
was reverse transcribed using pooled microRNA specific
primers and the MicroRNA Reverse Transcription Kit
(Life Technologies) as previously described [64]. Specific
TagMan assays were used to amplify 10 ng cDNA using
the KAPA Probe FAST qPCR master mix. Relative ex-
pression levels were calculated using the 2“4 method
as described [63] with MeT-5A designated a value of 1
(all fold-change values were calculated relative to this
cell line). Genes were deemed technically replicated if
the direction of expression was consistent with micro-
array data, and the magnitude of change was greater
than 2-fold.

RNA interference (RNAI), paxilline treatment and growth
assays

Knockdown of KCNMAI was performed using two
previously published siRNA sequences [37] and reintro-
duction of target microRNAs was performed using
microRNA mimics. All siRNAs and microRNA mimics
were obtained from Shanghai GenePharma. MPM cells
were reverse transfected as described previously [65].
Briefly, 2,500 cells were reverse transfected with varying
concentrations of microRNA mimic or siRNA using Li-
pofectamine RNAIMAX (Life Technologies) at 0.1 pL
per well. RNA was extracted 48 h after transfection to
confirm knockdown efficiency using RT-qPCR. Cell
growth assays were performed over a 5 d period to
monitor changes in cell proliferation as described previ-
ously [18]. Briefly, at the indicated time points, medium
was aspirated from replicate plates, which were then fro-
zen at —80 °C. At the conclusion of the experiments,
relative cell numbers were determined by staining with
200 pL/well of SYBR Green I (Life Technologies) 1:4000
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in a hypotonic lysis buffer (10 mM Tris HCl (pH 8),
5 mM EDTA, 0.1 % Triton X-100) overnight in the dark
at 4 °C and then quantified by fluorimetry, measured
using a FLUOstar Optima (BMG LabTech, Ortenberg,
Germany) set to 485 nm excitation and 535 nm emission.
Fluorescence intensity in siRNA or mimic-transfected
cells was normalized to control-transfected cells. Each ex-
periment was performed in triplicate. Growth inhibition
using the small molecule inhibitor paxilline (Sigma
Aldrich), in the presence or absence of cisplatin or gemci-
tabine was carried out using the same assay.

AGO2 Immunoprecipitation (AGO2-IP)

Cells were transfected with miR-17-5p or control mimic
and AGO2 protein was immunoprecipitated as previ-
ously described [46, 47]. Total RNA isolation was carried
out using TRIzol reagent, followed by RT-PCR with
primers specific for KCNMA1 mRNA. PCR products
were run on 2 % agar gel and visualized following eth-
idium bromide staining. Imaging was carried out using a
Gel Logic 2200 Imaging System (Kodak) under non-
saturating conditions. Densitometry of band intensity
was carried out using the same software.

Immunofluorescence staining of KCa1.1 protein
expression

Cells transfected with KCNMA I-specific siRNA, miR-17-
5p mimic or control were fixed in paraformaldehyde solu-
tion (4 % v/v in PBS, Sigma, St. Louis, MO, USA) for
15 min, washed three times with PBS and permeabilized
with 0.2 % Triton X-100 in PBS for 5 min. Fixed cells were
blocked with PBS containing 0.1 % Triton and 10 % fetal
bovine serum for 1 h at room temperature. For immuno-
staining, cells were incubated for 2 h at room temperature
with 20 pg/mL rabbit anti-KCal.l antibody (Sigma) in
blocking solution. After three washes with PBS, cells were
incubated for 1 h at room temperature with an AlexaFluor
488-labeled goat anti-rabbit antibody (Life Technologies).
Nuclear counterstaining was performed with 0.5 pg/mL
DAPI. Immunostained cells were imaged with an EVOS
fluorescence cell imaging system (Life Technologies).

Colony formation assay

Cells were plated in triplicate in 96-well plates at 2500
cells/well and transferred to 6-well plates 24 h post
transfection. After incubation for 10-14 d at 37 °C, cells
were fixed with 70 % ethanol and stained with 0.1 %
Crystal Violet. The plates were then de-stained with 2 %
SDS and absorbance was measured at 562 nM using a
FLUOstar Optima.

Migration assay
MPM cell migration was measured using a scratch (or
wound-healing) assay. Briefly, transfected cell were plated
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in 24-well plates and 24 h post-transfection 10 pg/mL Mi-
tomycin C (Sigma) was added to stop cell division; at the
same time a scratch was made using a plastic pipette tip.
At 24, 48, 72 h post scratch, microscopic imaging was per-
formed with a 20x objective (Leica). Each experiment was
performed in triplicate.

Calcium measurements

Cytosolic and submembrane Ca2+ levels were estimated
by overexpressing in MPM cells either soluble GCaMP5
Ca2+ reporter or membrane targeted LCK-GCaMP5 Ca*
" reporter (KCNMA1), respectively [66]. Cells were co-
transfected with DNAs coding for reporters and micro-
RNA mimic or siRNA using Lipofectamine 2000 (Life
Technologies). Coverslips with transfected cells were
placed into glass bottom Petri dishes (MatTek Corpor-
ation, Ashland, MA, USA) in 4 mM K" buffer (150 mM
NaCl, 4 mM KCl, 2 mM MgCl,, 10 mM Glucose,
10 mM HEPES, 2 mM CaCl,). Images of cells were cap-
tured using an Eclipse TiE fluorescence microscope
(Nikon), Plan Apo VC 60x water-immersion objective
(Nikon, numerical aperture 1.2), pE-2 CoolLED excita-
tion light source (CooLED, Yorktwon Height, NY, USA)
and NIS-elements software (Version 4.0; Nikon). To
analyze depolarization-induced Ca%* influx, 90 mM K*
buffer (64 mM NaCl, 90 mM KCl, 2 mM MgCl,, 10 mM
Glucose, 10 mM HEPES, 2 mM CaCl,) was added to cells
transfected with LCK-GCaMP5. Images of transfected
cells were captured every 0.5 s during the treatment.
Fluorescence intensity of the reporter signals was quanti-
fied in manually outlined cells using Image] (National
Institutes of Health) as described [67].

Statistical analyses

Differential microarray expression analysis was per-
formed using GeneSpring v12.0 using unpaired ¢-tests
and candidates selected on the basis of statistical signifi-
cance (P <0.05) as previously described [19]. Correlation
analyses were performed using Pearson-correlation tests
and the average expression across all microarray probes
for each candidate gene. Group comparisons, correla-
tions and associations were performed using SPSS statis-
tical software and two tailed Mann-Whitney U-tests. A
P-value less than 0.05 was considered statistically signifi-
cant. Pathway enrichment analyses were based on KEGG
pathways (Partek Genome Suite v6.4).

Additional file

Additional file 1: Table S1. Top 20 Enriched microRNA Families
Extracted from the Four Gene Expression Datasets. Table S2. Pathway
Enrichment Analysis of Gene Targets of the miR-17 family members. Table
S3. Primers and TagMan Assay IDs for RT-gPCR and siRNA and Mimic
Sequences. Table S4. Characteristics of Patients Analyzed in Fig. 2h and i.
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Table S5. Individual P values for Fig. 3a, f and g. Figure S1. TGFBR2 mRNA
down regulated followed miR-17-5p transfection. Figure S2. MPM cell
viability was not affected by transfection with miR-17-5p mimic or siRNA.
Figure S3. Effect of KCNMAT down-regulation on cell cycle in MPM cells.
Figure S4. KCNMAT down-regulation and miR-17-5p did not induce MPM
cell apoptosis. Figure S5. Migration of MPM cell lines treated with miR-17-
5p mimic or KCNMAT siRNAs. Figure S6. Invasion of MPM cell lines treated
with miR-17-5-5p mimic or KCNMAT siRNAs. Figure S7. Paxilline did not
sensitize MPM cells to cisplatin or gemcitabine. (DOCX 10063 kb)
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