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Gamma oscillations are widely observed in the mamma-
lian brain and are important markers for cognition and
attention [1,2]. In CAl of the hippocampus of freely
moving rats, power in one of two distinct oscillatory
bands in the gamma regime (fast gamma and slow
gamma) is predominantly present at a given moment of
time [3]. Here, we demonstrate that models of networks
with competing interneuron populations with different
post-synaptic effects can create distinct oscillatory
regimes that mimic the observed oscillations of CAl.
Our network formulation reflects the following facts: 1)
The duration of post-synaptic effect of an interneuron
strongly influences the frequency in biophysical models
of gamma oscillations [4]. 2) The primary CA1 inputs
from CA3 and the entorhinal cortex (EC) preferentially
innervate interneurons of different subtype with differ-
ent post-synaptic durations [5,6].

We show that a firing rate model with competing inter-
neuron populations with different post-synaptic time-
constants is sufficient to generate slow and fast gamma
oscillations. We conclude that mutual inhibition between
the modeled interneuron populations permits switching
in a bistable regime between distinct fast and slow
gamma states. We also find similar behavior in spike-
based network models. Our models explicitly predict the
following about CA1l: 1) Different interneurons inner-
vated by different upstream regions phase-lock to differ-
ent gamma states. 2) One population of interneurons is
silenced, and another is active during fast and slow
gamma events. 3) Mutual inhibition between interneuron
populations is necessary for spontaneous switching of
gamma state. Using experimental electrophysiological
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data from awake behaving rodents, we find interneurons
that satisfy conditions 1 and 2, and we show putative
‘fast’ and ‘slow’ gamma interneurons categorized by their
tendency to fire and phase-lock with oscillatory events as
measured by a nearby local field potential.

Our 3-population firing rate model is schematized in
Figure 1A. The dynamic variables are synaptic currents
of an excitatory, fast inhibitory (Ir) and slow inhibitory
(Is) population; the firing rates are instantaneous func-
tions of total input current. Fast excitation that interacts
with inhibitory subpopulations supports oscillations.
This interaction engages either one or both inhibitory
subpopulations depending on Ig - Ir connectivity and
input balance (Example in Figure 1B). This network
oscillates at biophysically realistic frequencies given bio-
physically realistic network parameters. The fast inhibi-
tory population, I and slow inhibitory population, Ig
have post-synaptic time-constants of 5ms and 15ms,
respectively. These roughly capture the diversity of post-
synaptic inhibitory current time-courses of interneurons
of different subtypes measured in CA1l [6]. Our firing
rate model demonstrates that with sufficient mutual
inhibition between inhibitory populations, the oscillating
network bifurcates into two stable regimes that oscillate
at roughly the same frequencies as the observed fast and
slow gamma oscillations [3,7].

Previous experimental work suggests these two
gamma oscillations reflect different information proces-
sing modes in the learning and memory system [7]. Our
models provide a mechanistic understanding of these
modes and posit a new oscillatory role for distinct inter-
neurons in CAl. Moreover, our models describe general
oscillatory behavior in networks with distinct inter-
neuron populations.
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Figure 1 A. Connectivity scheme for firing-rate two-gamma model. CA3 and EC denote inputs, E denotes excitatory population, and I¢ and
Is denote the interneuron populations with brief and long post-synaptic effects, respectively. B. Graph shows the oscillation frequency of the
noise-free network across a range of input balance to Is and I¢. Blue region indicates bistable regime with co-existing fast and slow oscillatory
states. Such a bistable regime only exists with high s - I connectivity. C. Time courses of each population’s synaptic variable show spontaneous
switching between fast and slow gamma states due to additive noise in inputs to Is and Ie.
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