Ghezzi et al. Lipids in Health and Disease 2011, 10:3
http://www.lipidworld.com/content/10/1/3

e ® LIPIDS IN HEALTH
° AND DISEASE

W,

RESEARCH Open Access

Impact of early fructose intake on metabolic
profile and aerobic capacity of rats

Ana C Ghezzi’, Lucieli T Cambri, Carla Ribeiro, José D Botezelli, Maria AR Mello

Abstract

exercise in metabolic syndrome.

Background: Metabolic syndrome is a disease that today affects millions of people around the world. Therefore, it
is of great interest to implement more effective procedures for preventing and treating this disease. In search of

a suitable experimental model to study the role of exercise in prevention and treatment of metabolic syndrome,
this study examined the metabolic profile and the aerobic capacity of rats kept early in life on a fructose-rich diet,
a substrate that has been associated with metabolic syndrome.

Methods: We used adult female Wistar rats fed during pregnancy and lactation with two diets: balanced or
fructose-rich 60%. During breastfeeding, the pups were distributed in small (4/mother) or adequate (8/mother)
litters. At 90 days of age, they were analyzed with respect to: glucose tolerance, peripheral insulin sensitivity,
aerobic capacity and serum glucose, insulin, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol
concentrations as well as measures of glycogen synthesis and glucose oxidation by the soleus muscle.

Results: It was found that the fructose rich diet led the animals to insulin resistance. The fructose fed rats kept in
small litters also showed dyslipidemia, with increased serum concentrations of total cholesterol and triglycerides.

Conclusion: Neither the aerobic capacity nor the glucose oxidation rates by the skeletal muscle were altered by
fructose-rich diet, indicating that the animal model evaluated is potentially interesting for the study of the role of

Background

Clinically, the metabolic syndrome, also known as X
syndrome or insulin resistance syndrome comprises a
spectrum of disorders in which impaired glucose toler-
ance represents one of the most important. These
changes include insulin resistance, with or without type
2 diabetes mellitus, hypertension, obesity, dyslipidemia,
endothelial dysfunction, among others [1].

It is estimated that the prevalence of metabolic syn-
drome is 24% of the adults and between 50-60% of the
population over 60 years in the United States. In 2002,
only in this country, according to estimations, there
were more than 47 million people with manifestations
of this syndrome [2].

The identification of the metabolic syndrome is con-
troversial because there is no single international criter-
ion with the definitive description. Reaven [3] suggested
a strong association between individuals with the same
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cardiovascular risk factors and designated “X syndrome”.
Their common denominator was represented by insulin
resistance. At the time he, proposed five consequences,
all at high risk for cardiovascular disease: glucose intol-
erance, hyperinsulinemia, increased serum triglycerides,
decreased serum HDL cholesterol and hypertension.
Obesity and physical inactivity increase insulin resis-
tance and thus aggravate the syndrome. However, this
syndrome can be found in healthy individuals, with
body weight and normal glucose tolerance [4].
According to Duncan & Schmidt [5], metabolic syn-
drome is characterized by a cluster of risk factors for
cardiovascular disease and diabetes, usually linked to
insulin resistance and central obesity. Recently, the Eur-
opean Association for the Study of Diabetes (EASD), in
conjunction with the American Diabetes Association
published positions about the metabolic syndrome.
According to these associations, the metabolic syn-
drome, which is regarded as a predictor of cardiovascu-
lar disease, is poorly defined, requiring more research to
help understanding more adequate procedures for its
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treatment [6,7]. Also according to these associations, the
metabolic syndrome is generally defined by the presence
of three or more of the following characteristics: high
waist circumference, increased blood concentrations of
triglycerides, high blood pressure, low circulating HDL
cholesterol and high blood glucose concentrations [6,7].

The World Health Organization (WHO) offers a
slightly different definition, including anyone who has
diabetes or insulin resistance and two of the following
characteristics: high waist-hip ratio, high serum concen-
trations of triglycerides or low serum HDL cholesterol
concentration, high blood pressure and high urinary
albumin excretion [8]. According to Gale [6] and Kahn
[7], taken individually, each of the aforementioned con-
ditions is considered as a risk factor for cardiovascular
disease and should be treated as such. All together,
these observations show the urgency to expand the stu-
dies on the metabolic syndrome.

There are clinical and epidemiological evidence sug-
gesting an association between the progressive develop-
ment of metabolic syndrome and high consumption of
fructose [9]. Indeed, a significant increase in the preva-
lence of obesity and metabolic syndrome has been
linked to a 30% increase in total intake of fructose in
the last 20 years in the United States. This has been
coupled with the introduction of corn syrups and sweet-
eners in soft drinks and other foods with high amounts
of fructose [10].

Moderate hypertension, glucose intolerance, insulin
resistance, hyperinsulinemia and hypertriglyceridemia,
which are signs of metabolic syndrome, were induced in
rats by prolonged feeding with high-fructose diets
[11,12]. Therefore, rats fed with this type of diet have
been widely used as an experimental model of human
metabolic syndrome [13-15]. However, there are studies
showing that in the absence of other dietary manipula-
tions, fructose-fed rats do not develop the complete pic-
ture of the disease [12]. Also, there are still discrepancies
in the literature regarding the changes in glucose home-
ostasis by administration of fructose-rich diets. Some stu-
dies state that these changes occur [16-19], but others do
not confirm [20-22]. Therefore the study of the factors
that characterize fructose-induced metabolic syndrome
in rodents deserve more attention.

It is also known that poor nutrition in uterus can
“program” the fetal tissues in order to make them more
vulnerable to food-related disorders such as type 2 dia-
betes, metabolic syndrome and chronic degenerative dis-
eases in adulthood [23]. Considering that studies using
animals maintained on fructose-rich diets as an experi-
mental model of metabolic syndrome, administer the
diet after birth, at different periods of life, is of interest
to determine the metabolic effects of high fructose
doses consumed in uterus.
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Moreover, it was shown that the amount of food
consumed during breast feeding has an important role
in determining the feeding behavior in adulthood. In
a study with rats kept during lactation in litters of 4,
13, 17 or 22 pups per mother, the litter size was
inversely associated with dietary intake in adulthood
[24]. According to the authors, this shows that the
control of food intake of newborn rats permits “pro-
gramming” of food intake later in life. Therefore, it is
also of interest to manipulate the amount of food
offered to the neonate animal undergoing treatment
with fructose.

In the treatment of metabolic syndrome, exercise has
been considered of great importance [25]. Such an inter-
vention demonstrated to improve glucose tolerance and
to attenuate insulin resistance. Since there are limita-
tions in human research, animal models offer more sui-
table conditions to study the issue. Therefore, it seems
of importance to verify if the feeding protocols imposed
to rats early in life interfere with the ability to perform
physical exercise in adulthood.

In search of a suitable experimental model to study
the role of exercise in the treatment of metabolic syn-
drome, this study examined the metabolic profile as well
as glucose uptake by skeletal muscle and aerobic capa-
city of rats maintained on a fructose-rich diet during
intrauterine and postnatal life.

Materials and methods

Animals and treatment

Adult pregnant Wistar (90 days) rats, fed during preg-
nancy and lactation with two diets: balanced (AIN-93G)
or fructose-rich (60% fructose) were used. During
breastfeeding, the pups were distributed in small (4/
mother) or adequate (8/mother) litters. After weaning,
they were kept in the same diets until 90 days. All ani-
mals had body weight and length (nose to anus) and
food intake recorded once a week from weaning (21
days) on. All procedures used with animals were
approved by the Ethics Committee in Animal Experi-
mentation/CEEA, Campinas State University (UNI-
CAMP), under the Protocol 1487-1.

Diet treatment
During the experiment, food consisted of balanced or
fructose-rich semi-purified diets, as described in Table 1.

Experimental Groups
1. Control (C): rats maintained on the balanced diet
in intrauterine and postnatal life, nursed in appropri-
ate litters (n = 7);
2. Control/Small litter (CS) rats maintained on the
balanced diet in intrauterine and postnatal, nursed
in small litters (n = 7);
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Table 1 Diet treatment

Components (g/kg) Balanced’ Fructose-rich (60%)
Casein 202 202
Com Starch 397 -
Dextrin 1305 -
Sucrose 100 276
Fructose - 600
L-cystine 3 3
Soybean oil 70 70
Mineral mix (AIN-93GMX)’ 35 35
Vitamin mix (AIN-93GVX)' 10 10
Fiber 50 50
Choline chloridrate 25 25

1. According to the Reeves [26].

3. Fructose (F) rats maintained on the high-fructose
diet in intrauterine and postnatal life, nursed in
appropriate litters (n = 7);

4. Fructose/Small litter (FS) rats maintained on the
high-fructose diet in intrauterine and postnatal life,
nursed in small litters (n = 7);

Glucose tolerance test - GTT

This test was performed with the animals at the end of
the experiment, after 12 hours of fasting. A first blood
sampling was performed through a small cut on the tip
of the tail (time 0). Afterwards, an 80% glucose solution
(2 g/kg of weight) was administered to the rats through
a polyethylene gastric probe. Blood samples were col-
lected after 30, 60 and 120 minutes with heparinized
capillaries and calibrated to 25 uL, for of glucose and
insulin determinations. The blood glucose concentra-
tions were determined by the glucose oxidase-peroxidase
enzymatic colorimetric method using commercial kits
(LABORLAB®) and the blood insulin concentrations by
ELISA, also employing commercial kits (SIGMA®). The
area under the serum glucose curve during the test
were evaluated using the trapezoidal method (AG =
mg*120 min) with ORIGIN PRO 8 software.

Insulin tolerance test - ITT

Insulin sensitivity was evaluated by the insulin tolerance
test. The test consisted of a bolus injection of insulin
(300 mU/kg body weight) followed by blood sample col-
lections, for the measurement of glucose concentrations,
from a cut at the tip of the tail before and 30, 60 and
120 minutes after the insulin injection. The serum glu-
cose disappearance rate (Kitt) was calculated using
the formula 0.693/t,,o where t,,, is the half-life of
the process. The serum glucose half-life was calculated
from the slope of a least-square analysis of serum
glucose concentrations from 0 to 60 minutes after the
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subcutaneous injection of insulin, during this time, the
glucose reduces linearly [27].

Maximal Lactate Steady State - MLSS

The identification of the aerobic/anaerobic metabolic
transition during swimming was performed using the
MLSS protocol. The first swimming test was started 48
hours after the completion of the ITT. In short, the ani-
mals were submitted to four swimming tests of increas-
ingly intensities in which they supported constant
workloads relative to body weight in each test. These
tests were given at intervals of forty eight hours until
the stabilization of blood lactate concentrations during
exercise was no longer possible. Each test consisted of
thirty minutes of continuous swimming supporting the
chosen workload, with blood collection by a small cut at
the tip of the tail every five minutes to determine the
concentrations of lactate. The blood lactate concentra-
tions were then determined by a spectrophotometer
[28]. The criterion used for stabilization was a difference
less than or equal to 1.0 mM of blood lactate between
the 10" and 25" minutes of exercise [29].

Blood and Tissue sample collection

At the end of the experiment, the animals were killed by
decapitation, 48 hours after the last in vivo evaluation, at
rest, the blood being collected for the determination of
serum concentrations of glucose, triglycerides, total cho-
lesterol, LDL cholesterol, HDL cholesterol by colori-
metric methods, using commercial kits (LABORLAB®)
and of insulin by ELISA, also using commercial kits
(SIGMA®).

The adipose tissue of the posterior subcutaneous,
mesenteric and retroperitoneal regions were removed
and weighed for determination of total lipids content.
Excision of the different fat deposits was carried out
according to the description of Cinti [30] The total lipid
concentrations were determined by the procedure
described by Nogueira [31].

For the assessment of glucose metabolism, soleus
muscle longitudinal strips weighing 25 - 35 mg (wet
weight) were first incubated for 30 min at 37°C in a
Dubinoff water bath, inside glass scintillation vials con-
taining 1.5 mL of a Krebs bicarbonate buffer (NaCl
0.6%; HEPES 6.64 mM; KCl 0.032%; CaCl, 1.14 mM;
KH,P040.015%; NaHCO3 0.19%; MgSO, 0.03%) equili-
brated with a mixture of 95%0,-5%CO,, pH 7.4. After
this, the muscle strips were transferred to new glass
scintillation vials (outer vials) containing 1.5 mL of
Krebs-bicarbonate buffer supplemented with glucose 5.5
mM, containing [UMC]glucose (0.25 mCi/mL) and [3H
+] 2-deoxiglucose (2DG, 0.5 pCi/mL) and insulin (100
pU/mL). Inside these scintillation vials, other glass vials
(inner vials), which were formed like a scoop with an
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upwards-directed straight shaft, containing 700 mL of
hyamine 10-x were installed. The shafts of the inner
vials were squeezed about 1 cm through a small hole in
a round rubber membrane. The outer vials were sealed
with the rubber membrane and lacked with plastic
rings. This system, containing the muscle strips, was
incubated in the Dubinoff water bath for 60 min. The
release of CO, was stimulated by the injection of 200
uL of trichloroacetic acid 25% into the outer vials and
the CO, was trapped in hyamine 10-x during a further
3 h incubation at 37°C. Glucose incorporation to glyco-
gen (glycogen synthesis) was determined by measuring
the radioactivity of the **C in the precipitated obtained
during muscle glycogen extraction process [32]. Glucose
oxidation was estimated by the measurement of the
radioactivity of the *C in the inner vial liquid. Glucose
(2DG) uptake was evaluated in the alkaline phase
obtained during muscle glycogen extraction process, by
measuring the radioactivity of the 3H+. All measure-
ments of radioactivity were carried out in a PACKARD
Tricarb 2100 scintillation counter, in a TRITON X-100
toluene-based scintillant

Statistics

The results were analyzed by analysis of variance
(ANOVA) and, when necessary, by post hoc Newman-
Keuls. In all cases, the level of significance was set at
5%. The software used for the analysis was Statistica 7.0.

Results
Figure 1 (A) reveal the evolution of animals’ body
weight throughout the experiment. Data analysis
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Figure 1 Body Weight and Area Under the Curve of Body
Weight (A) Body weight (g) and (B) area under the curve of body
weight (.10 weeks) during the experiment. C = balanced diet,
adequate litter; CS = balanced diet, small litter, F = fructose-rich
diet, adequate litter, FS = high-fructose diet, small litter. Results are
mean + SD of 7 animals per group. Different letters indicate
statistically significant differences (Two-way ANOVA and Newman-
Keuls post hoc, P < 0.05).
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was performed by the area under the curve of body
weight (B). The groups fed with the fructose-rich diet
(F and FS) had lower body weight than controls, with
the lowest values given by the group kept in appropriate
litters during lactation (F).

Figure 2: Presents the results of the nose-to-anus
length of the animals (A). Data analysis was performed
by the area under the curve of nose-to-anus length (B).
No significant difference was found between the groups.

Figure 3 shows the food intake per 100 g of body
weight and per day of the animals during the experi-
ment (A). Data analysis was performed by the area
under the curve of food intake (B) of the animals. No
significant difference was found between the groups.

Figure 4 contains the blood glucose concentrations
data (A) and area under blood glucose curve (B) during
the glucose tolerance test (GTT). No significant differ-
ence was found between the groups.

Figure 5 displays the blood glucose (A) and the blood
glucose removal rate (KITT) (B) during insulin tolerance
test. The F group showed significantly lower values of
KITT than the others, indicating insulin resistance.

Figure 6 shows the mean load (A) and the mean blood
lactate concentration corresponding to maximal lactate
steady state (B) for the different groups. There was no
statistical difference between the groups.

In the Figure 7 the values of adipose tissue weight for
the mesenteric, retroperitoneal and subcutaneous
regions are presented, while Figure 8 reveals the values
for fat content in the same adipose tissue deposits. No
significant difference between the groups was found.

The serum parameters for the groups at the end of
the experiment are presented in Table 2. There were no
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Figure 2 Nose-Anus Length and Area Under the Curve of
Nose-Anus Length (A) Nose to anus length (cm) and (B) area
under the curve of nose-anus length (cmx10 weeks) from weaning
(21 days) to the end of the experiment (90 days). C = balanced diet,
adequate litter; CS = balanced diet, small litter, F = fructose-rich
diet, adequate litter, FS = high-fructose diet, small litter. Results are
mean + SD of 7 animals per group.
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Figure 3 Food Intake and Area Under the Curve of Food Intake Figure 5 Glucose Kinetics and Serum Glucose Removal Rate
(A) Food intake per 100 g of body weight (g/100 g) and (B) area (Kitt) during ITT (A) Serum glucose (mg/dl) and (B) serum glucose
under the curve of food intake (g/100 g. 10 weeks) weight body removal rate (KITT) during the insulin tolerance test. C = balanced
from weaning (21 days) to the end of the experiment (90 days). C = diet, adequate litter; CS = balanced diet, small litter, F = fructose-
balanced diet, adequate litter; CS = balanced diet, small litter, F = rich diet, adequate litter, FS = high-fructose diet, small litter. Results
fructose-rich diet, adequate litter, FS = high-fructose diet, small litter. are mean + SD of 7 animals per group. Different letters indicate
Results are mean + SD of 7 animals per group. statistically significant differences (Two-way ANOVA and Newman-
Keuls post hoc, P < 0.05).

significant differences in glucose and LDL cholesterol
values between the groups but for total cholesterol it
can be observed that the FS group showed statistically
higher values than C and CS groups. It was observed
that the F and FS groups showed significantly higher tri-
glycerides concentrations than the C group. It was also
observed significantly higher values of HDL in the
groups fed the fructose-rich diet than in C group.

There were no significant differences in glucose and
LDL cholesterol values between the groups but for total
cholesterol it can be observed that the FS group showed
statistically higher values than C and CS groups. It was
observed that the F and FS groups showed significantly

higher triglycerides concentrations than the C group. It
was also observed significantly higher values of HDL in
the groups fed the fructose-rich diet than in C group.

In Table 3 no significant difference was found in gly-
cogen synthesis, glucose uptake and glucose oxidation
rates by the isolated soleous muscle between rats fed
the fructose-rich diet and those fed the control.

Discussion

This study analyzed the effects of fructose and of the
amount of food during the fetal and post natal periods
on the metabolic profile and on the aerobic capacity of
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Figure 4 Glucose Kinetics and Area Under Curve of Glucose
During OGTT (A) Serum glucose (mg/dl) and (B) area under serum
glucose curve (mg/dl.120) during the oral Glucose Tolerance Test
(GTT). C = balanced diet, adequate litter; CS = balanced diet, small
litter, F = fructose-rich diet, adequate litter, FS = high-fructose diet,
small litter. Results are mean + SD of 7 animals per group.
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Figure 6 Overload and Blood Lactate Concentration of MLSS
(A) Overload and (B) blood lactate concentration corresponding to
the Maximal Lactate Steady State. C = balanced diet, adequate litter;
CS = balanced diet, small litter, F = fructose-rich diet, adequate
litter, FS = high-fructose diet, small litter. Results are mean + SD of

7 animals per group.
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Figure 7 Weight of Mesenteric, Retroperitonial and Subcutane-
ous Adipose Tissue Adipose tissue weight (9/100 g) of the
mesenteric, retroperitoneal and posterior subcutaneous regions.

C = balanced diet, adequate litter; CS = balanced diet, small litter,

F = fructose-rich diet, adequate litter, FS = high-fructose diet, small
litter. Results are mean + SD of 7 animals per group.

rats in adulthood. Much of the knowledge we have
today about the etiology of metabolic syndrome refers
to studies in experimental models, but few studies were
successful in developing all the metabolic changes that
characterize this syndrome in animals. Some studies use
genetically modified animals, which show isolated
changes as dyslipidemia, hypertension and obesity [33].
Fructose-rich diet has been used in several studies to
develop the signs of the metabolic syndrome for further
studies of this disease that has affected millions of peo-
ple around the world [11,12].

Increased amounts of fructose (group F) and/or food
(groups FS and CS) administered during the fetal and
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Figure 8 Lipid Concentration in Mesenteric, Retroperitonial
and Subcutaneous Adipose Tissue Total lipid concentration
(9/100 g) in adipose tissue of the mesenteric, retroperitoneal and
subcutaneous regions. C = balanced diet, adequate litter; CS =
balanced diet, small litter, F = fructose-rich diet, adequate litter, FS =
high-fructose diet, small litter. Results are mean + SD of 7 animals

per group.
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Table 2 Serum glucose (mg/dl), total cholesterol (mg/dl),
HDL (mg/dl), LDL (mg/dl) e triglycerides (mg/dl) at
90 days

Parameters Groups

C cs F FS
Glucose 85+ 14 106+28  117+47 114+ 31
Total Cholesterol 53 + 2° 50+ 7% 69 +21®° 80+ 22°
HDL Cholesterol 24+5 31 +8P 36 + 8° 39 +15°
LDL Cholesterol 34 +5 38+4 3345 37+5
Triglycerides 42 +10° 78433 118 +66° 120 + 39°

Results expressed as mean + SD of 7 animals per group. Different letters
indicate significantly different values. C = balanced diet, adequate litter; CS =
balanced diet, small litter, F = fructose-rich diet, adequate litter, FS = high-
fructose diet, small litter. Different letters indicate statistically significant
differences (Two-way ANOVA and Newman-Keuls post hoc, P < 0.05).

postnatal periods did not change food intake of the ani-
mals when compared to controls (group C). Similar
findings were reported by Moura [34]. These authors
found that early administration (after weaning) of high
amounts of fructose in drinking water or food did not
alter food intake of rats. Increased amounts of fructose
and/or food during fetal and postnatal periods did not
affect the linear growth of the animals. These results
also are consistent with those of Choi [35] observed in
animals fed fructose after weaning.

The FS group showed weight loss when compared
with C and CS groups and this loss was even greater in
the F group that ingested fructose and was kept in
proper litters. On the other hand, Kelley [17] and
Bezerra [12] found no difference in body weight of ani-
mals fed with fructose, but these studies differ from the
present study, since here the administration of fructose
was made during the fetal/neonatal life, an extremely
important stage for growth and development.

One aspect that deserves attention is that, at the
moment of sacrifice, it was observed that the stomach
and intestines of some animals fed the fructose-rich diet
appeared dilated, apparently containing large amounts
of gases. Symptoms such as increased diameter of the
abdominal area and abdominal pain are signals present
in fructose intolerance [35]. It was reported that under
normal conditions, in the prenatal and suckling periods

Table 3 Glucose oxidation, glucose uptake and glycogen
synthesis by isolated soleus muscle of rats at 90 days
(umol/g.60 min)

Parameters Groups

C cs F FS
Glucose Oxidation 491 £12 493+13 52+17 45+£09
Glucose Uptake 244 £123 232+£100 22780 230+98
Gycogen Synthesis 08 +02 088+02 08+04 09+02

Results expressed as mean + SD of 7 animals per group. C = balanced diet,
adequate litter; CS = balanced diet, small litter, F = fructose-rich diet,
adequate litter, FS = high-fructose diet, small litter.
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of rat development, intestinal GLUT5 (the fructose
transporter at the apical cell membrane) mRNA levels
and fructose transport rates are very low [36]. Therefore,
the administration of large amounts of fructose during
the fetal/neonatal period may lead to intolerance to the
substrate, which may impair body weight gain.

The glucose tolerance of the animals was not altered
by the excessive intake of fructose. However, insulin
sensitivity decreased in the group fed the fructose-rich
diet and maintained in proper litters (F group) during
lactation. This contrasts with the study by Moura et al.
[34], in which a fructose-rich diet, administered after
weaning, made the animals intolerant to glucose without
changing insulin sensitivity. Moreover, similar to what
occurred in the present study, Bezerra [12] found insulin
resistance, determined by the KITT during an insulin
tolerance test.

The aerobic capacity of the animals determined by the
maximal lactate steady state protocol was not affected
by the ingestion of fructose, because there was no statis-
tical difference between the animals fed fructose and
balanced diet neither in the work load nor in the blood
lactate concentration at the MLSS intensity during
swimming exercise, in accordance with previous studies
using young (weaned) rats subjected to high fructose
diets [37]. Therefore, the fructose-rich diet does not
impair the ability to perform aerobic exercises. This was
further reinforced by the fact that, in the skeletal mus-
cle, neither glucose oxidation nor glucose uptake and
glycogen synthesis rates were also affected by the fruc-
tose-rich diet early administration.

The accumulation of adipose tissue in the mesenteric,
retroperitoneal and subcutaneous regions was not
affected by the fructose-rich diet. In studies with Spra-
gue-Dowley adult rats receiving a fructose solution com-
bined with standard diet, there was a higher body weight
gain and weight of fat tissues than in the control group
fed only the standard diet [38]. Therefore, an important
factor, when dealing obesity/metabolic syndrome in
experimental rat models, is the animal strain, as there
are animals that are more susceptible to certain meta-
bolic disorders than others.

The effects of dietary fructose on lipoprotein metabo-
lism is an important issue, and the effects of dietary
fructose on circulating triglyceride and on circulating
total cholesterol as well as on HDL and LDL cholesterol
become crucial in the evaluation of the metabolic
impact of fructose. Serum concentrations of total cho-
lesterol in the present study were significantly higher in
the group that ate the fructose-rich diet and was kept in
small litters (FS) compared to C group. Triglyceride
concentrations showed to be increased in groups fed the
fructose-rich diet (F and FS) when compared with C
group. In the group fed the high- fructose diet and
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maintained in small litters (FS), the increase was even
more pronounced. Several studies have also observed an
increase in circulating triglyceride concentrations in rats
subjected to elevated fructose intake, regardless time of
life the diet was imposed [17,12]. Serum HDL concen-
trations were significantly elevated in the groups fed the
fructose-rich diet (F and FS) when compared to con-
trols. Similar feature was reported previously by Moz
and colleagues [39] in adult Sprague-Dawley rats fed
with various levels of fructose.

Studies have shown that one of the factors that often
lead to insulin resistance is the excess of circulating
non-esterified fatty acid (NEFA), which may be derived
from the triglyceride-rich lipoproteins LDL and VLDL
or from the adipose tissue. Because the anti-lipolytic
action and the stimulation of lipoprotein lipase by insu-
lin, resistance to this hormone contributes to the
increase in lipolysis and in serum NEFA concentrations.
NEFA acts in the liver in order to increase glucose and
triglycerides synthesis and induces the increase of circu-
lating LDL [40]. This would explain, at least in part, the
origin of the insulin resistance and of the increased
serum cholesterol and triglycerides in the present study
in the rats that ingested fructose. Unfortunately, serum
NEFA concentrations were not measured in the present
study.

Conclusion

In summary, feeding the fructose-rich diet during the
intrauterine and the postnatal periods led to insulin
resistance. When associated to increased food intake,
feeding the fructose rich diet induced dyslipidemia, with
increased serum concentrations of total cholesterol and
triglycerides. Fructose rich diet intake did not impair
either the aerobic capacity or the glucose oxidation by
the skeletal muscle in the conditions of the present
study. Taken together, these results show that the ani-
mal model evaluated is potentially interesting for the
study the role of exercise in the metabolic syndrome.
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