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Abstract
Background: Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in 
response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To 
understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library 
using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene 
regulation in radish seedlings in response to short-term Ra and blue-light exposure.

Results: The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were 
associated with genes involved in common defence mechanisms, including thirty four genes homologous to 
Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the 
library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis 
revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-
induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, 
among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different 
intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation 
of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated 
defence mechanism.

Conclusions: This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results 
described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further 
our understanding of how Ra is involved in light-mediated mechanisms of plant defence.

Background
Raphanusanin (3-methylthio-methylene-2-pyrrolidone-
thione) (Ra) can be isolated from radish seedlings grown
under illumination and plays a role in the light-induced
inhibition of hypocotyl growth [1]. When applied unilat-
erally, Ra suppresses hypocotyl growth on the treated side
more than on the opposite side, inducing a differential
growth gradient that causes the hypocotyl to bend
towards the side of application [2,3]. Blue-light irradia-
tion rapidly decreases the 4-methylthio-3-butenyl glu-
cosinolate (MTBG) content and abruptly increases the
content of 4-methylthio-3-butenyl isothiocyanate
(MTBI) and raphanusanin in the radish hypocotyls within
30 min after the onset of irradiation [4]. When MTBG,

MTBI, and raphanusanin at endogenous levels were
applied unilaterally to etiolated hypocotyls, MTBI and
raphanusanin caused hypocotyls to bend, but MTBG
induced no activity. Blue-light irradiation promoted
myrosinase (thioglucosidase) activity, which releases
MTBI from MTBG, in hypocotyls after 10 min, although
the enzyme activity in the dark controls did not change
[4]. Some chemical studies on 4-methylthio-3-butenyl
isothiocyanate (MTB-ITC) have been carried out, where
MTB-ITC has been spontaneously converted into
raphanusanins in MeOH-H2O or H2O solution [5]. The
biosynthetic pathway of Ra is shown in Figure 1. Pho-
totropic stimulation promotes myrosinase activity on the
illuminated side of radish hypocotyls, releasing bio-active
4-methylthio-3-butenyl isothiocyanate (4-MTBI) from
bio-inactive 4-methylthio-3-butenyl glucosinolate (4-
MTBG), and simultaneously producing bio-active Ra.
Sakoda et al. demonstrated that the IAA-mediated trans-
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verse microtubule reorientation is significantly inhibited
by the simultaneous addition of Ra analogues [6]. More-
over, Nakajima et al. showed that Ra inhibited apical
dominance in pea seedlings [7]. There are certainly addi-
tional ways in which Ra may help a plant to adapt to the
prevailing light environments, and these may be discov-
ered through further photophysiological, cellular, bio-
chemical, and genetic testing. We demonstrated the
physiological role of Ra in differential growth and identi-
fied the first four genes shown to be induced by Ra using
modified Differential Display RT-PCR (DD-RT-PCR). We
characterised one of these genes, RsCSN3, as an essential
element in the inhibition of hypocotyl growth [3]. How-
ever, our first attempt using the DD-RT-PCR method was
limited to the identification of a large number of genes
induced by Ra. The comprehensive understanding of the
functional activity of Ra still remains elusive. To search
for additional components required for the understand-
ing of the roles of Ra, we constructed the Ra-induced
gene library using the Suppression Subtractive Hybridisa-
tion (SSH) technique. The use of a rapid and sensitive
mRNA expression comparison technique (SSH) and its
application in comparative studies with light will be cru-
cial to revealing the possible roles of Ra and its functional
coupling to light signalling. Here, we present a compara-
tive investigation of gene regulation in radish seedlings in
response to short-term Ra and blue-light exposure.
Among the transcripts identified to be up-regulated in
response to raphanusanin, we observed many genes that
are related to the multiple signalling of cellular defence.
This observation has allowed us to infer raphanusanin

regulatory roles for a large fraction of products associated
with movement, transporters, protein metabolism, pro-
tein kinases, and hydrolases.

Results
Raphanusanin-induced genes that are linked to cellular 
defence
To obtain Ra-induced genes, we subtracted the cDNAs in
the Ra-untreated four-day-old radish seedlings from
those in the samples treated with Ra (approximate endog-
enous level, 50 ng) 15 min (see additional file 1). Starting
with two micrograms of poly-A+ RNA prepared from Ra-
treated samples, 287 cDNA clones induced by Ra were
obtained (Table 1). The nucleotide sequences of all of the
clones were determined by sequencing the inserts from
both ends, altogether generating 574 ESTs (287 × 2 = 574;
Table 1). The Ra-induced cDNA library digested with
RsaI contained on average 400 bp inserts. Thus, the
sequences from both ends were overlapping. All of the
sequences were then assembled by the Phrap program
(Codon Code Aligner Sequence Assembler v3.0.1) and
classified into 101 non-redundant forms after building
the contigs (Table 1). All of the 101 non-redundant
sequences were submitted to the DDBJ database with
accession numbers assigned (see additional file 2). The
sequence of each non-redundant EST was identified by
similarity search in the NCBI non-redundant public
sequence database (nr) [8]. If a gene contained the RsaI
digestion site, two cDNA clones could be identified.
Therefore, neighbouring clones were joined by alignment
with subject sequences obtained by a BLAST search.

Figure 1 Formation of raphanusanin growth inhibitor by hydrolysis of 4-MTBG by myrosinase. Phototropic stimulation promotes myrosinase 
activity on the illuminated side of radish hypocotyls, releasing bioactive, 4-MTGI from inactive 4-MTBG and simultaneously producing bioactive 
raphanusanin (modified from Yamada et al., 2003).
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After the BLAST search, 88 Ra-induced independent
genes were identified, and 13 were duplicates. Of the 88
independent genes, 77 were demonstrated to have signifi-
cant homology with Arabidopsis thaliana genes, 9 were
homologous with other organisms such as Brassica and
chicken, and 2 were novel ESTs (Table 1). The 88 inde-
pendent genes were classified into three physiological
associations or ten biochemical functional categories
based on the best BLASTX match of the corresponding
ESTs against NCBI non-redundant protein database
(expect value < 0.01) or TAIR Arabidopsis protein data-
base (Figure 2 and see additional file 2).

Forty-eight of the 88 Ra-inducible genes (55%) were
categorised as related to cellular defence, and 7 genes
(8%) were categorised as related to energy metabolism
(Figure 2A). On the other hand, 33 of the 88 Ra-inducible
genes (37%) could not be assigned to any physiological
category (Figure 2A and see additional file 2). A high por-
tion of these genes are involved in common defence
mechanisms, including CIPK1, PTI1, GTF, RPK
(ERECTA), HSP90, MBP1, CAMTA3, ACC oxidase
(ACCO), GTPase, UBQ, DRP, PLC, and PLD [9-18]. Fur-
thermore, nine genes function in the response to abiotic
stress, including USP, SDR, RALF 23, and GASA4 [19-
22]. There were also five genes known to be involved in
toxic catabolic processes and in the response to oxidative
stress, such as catalase2 (CAT2), peroxidase, NTRA, and
MetE [23-25]. In addition, two genes, pescadillo and
coproporphyrinogen III oxidase (CPOX), are induced by
DNA damage and protein lesions [26,27].

Based on biochemical classification (Figure 2B and see
additional file 3), 31 genes among the 88 Ra-inducible

genes were categorised as signalling-related, such as
kinases (10 genes, 12%), protein metabolism/binding (11
genes, 13%), and signal transduction (10 genes, 12%). The
leucine-rich repeat (LRR) disease-resistance protein
kinases, serine/threonine, and tyrosine protein kinases,
such as CIPK1, PKC, MAK, and Pti1, were included in
the kinase category. Six genes involved in the ubiquitin-
proteasome pathway, such as CSN3, KEG, CUL1, UMP1,
UBQ3, and RING finger [11,28-32], were categorised into
protein metabolism. In addition, the nine genes involved
in signal transduction are all known to be associated with
defence against environmental stress (e.g., PLC, PLD,
DRP, and ERECTA). Other than the genes involved in
housekeeping functions, those associated with signal
transduction, kinases, movement and transporter, and
hydrolase were the most abundant (Figure 2B and see
additional file 3). These results indicate that Ra induces
changes in the genetic network in preparation for a dis-
tinct phase of cellular communication. In addition, a bio-
informatic analysis revealed that 34 genes among the 88
Ra-induced genes homologous to Arabidopsis genes were
implicated in the function of the R-gene-triggered resis-
tance in programmed cell death (PCD), as shown in Table
2.

The determination of reference genes for qRT-PCR
In order to evaluate transcriptional regulation, the selec-
tion of the most appropriate and stable housekeeping
gene as a control is necessary. The information for choos-
ing the proper housekeeping gene in the radish system is
still limited. Therefore, the transcript levels of seven
housekeeping genes commonly used in plant gene
expression analysis, actin8, ubiquitin3, 18S rRNA, tubulin
α-6, rRNA protein (L4), initiation factor 2 (eIf2), and
elongation factor 1B-alpha (ef1α), were measured before
and after the Ra treatment (see additional file 4). The
entire experiment was performed in triplicate, and the
results were combined for statistical analysis. The cycle
threshold (CT) of each transcript was compared. Tubulin
α-6 was the most abundant (lowest CT) transcript and L4
was the least abundant (see additional file 4 and addi-
tional file 5). The ANOVA F-test of differences among
time points after Ra treatment indicated that the tran-
script levels of three genes, ef1α, eIf2, and L4, were not
significantly altered before and after Ra treatment in rad-
ish seedlings. Two of these three genes, ef1α and eIf2, had
a small coefficient of variation (CV) (see additional file 5).
Both consistency across time points (low slope) and high
predictability (low CV) are desired for a control. The sta-
bility index was calculated based on the product of the
slope and the CV (see additional file 5). The gene with the
lowest stability index provides the best control. In this
study, ef1α had the lowest stability index and eIf2 had the
second lowest as evidenced by their low slope and CV.

Table 1: Summary of the structural analysis of the 
raphanusanin-induced cDNA library

Category Number of sequences

Redundancy consideration

Clones 287

Sequenced 574

Non-redundant sequence 101

Independent gene 88

Ra-induced genes with 
high similarity against 
BLASTX

Arabidopsis thaliana EST 77

Raphanus sativus EST 3

Brassica napus EST 4

Brassica oleracea EST 1

Gallus gallus EST 1

Novel EST 2
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Therefore, ef1α and eIf2 were used to normalise the
expression levels of the genes of interest.

Defence-related genes are positively regulated in response 
to raphanusanin
Fifty expressed sequence tags (ESTs) from various func-
tional categories were selected from among the 88 inde-
pendent genes from the Ra-induced library to confirm
the induction of transcripts by quantitative RT-PCR.
Three independent preparations of mRNA for each bio-
logical replicate were pooled to eliminate inconsistencies
due to sampling. Three independent experiments were
carried out from three independent pools. An analysis of
the genes exhibiting changes in expression greater than
1.5-fold or less than 0.6-fold at both time points (15 min
and/or 30 min) in comparison to the untreated samples
revealed that 44 genes were up-regulated and 4 were
down-regulated (Table 3 and Figure 3). Some genes were
highly expressed during the first 15 min, while others
were more pronounced at 30 min. An analysis of genes
with assigned functional categories revealed that several
metabolic processes linked to common protective func-
tions, including the biosynthesis of stress-activated hor-
mones, reactive oxygen scavenging enzymes, signal
transducers, and components of the protein degradation
system, were up-regulated (Table 3). The number of up-
regulated genes and the expression levels were substan-
tially greater at 15 min than at 30 min (Figure 3). This dif-
ference could be attributed to the early activation of
genes underlying the mechanistic response to Ra. Among
the down-regulated genes, the transcript levels of RMB1
and RMB2 were lower at 15 min, whereas those of
CND41 and PKC were lower at 30 min. The highly
expressed genes, NTRA (>70) and peroxidase (>5), are
reactive oxygen-scavenging enzymes involved in the

removal of superoxide radicals [33,34]. In addition, DRP,
ERECTA (>10), and CAMTA 3 (>3) are signal transduc-
ers that rescue cells from pathogenic attacks [35-37]. Two
genes, ACCO and MBP1 (>10), encode the genes
involved in induction of the major defence-related hor-
mones, ethylene and jasmonate acid, respectively [38,39].
It should be noted that seven genes (UBQ3, PMF1, CUL1,
CSN3, KEG, and C3HC4-type Ring Finger, HSP90)
involved in the proteolytic pathway were up-regulated in
response to Ra. These genes are implicated in the regula-
tion of a vast array of biological processes, including the
cell cycle [40], apoptosis [41], the adaptive immune sys-
tem [42], plant growth regulation [43,44], and responses
to oxidative stress [45,46]. The most highly expressed
genes were defence-associated genes, implicating the cor-
relation of Ra with cellular defence.

Raphanusanin is functionally coupled with the early blue-
light response
Because Ra is a blue light (BL)-induced growth inhibitor
of radish seedlings [3], elucidating the relationship
between Ra and blue light is a crucial step in understand-
ing the proper roles of Ra. To obtain information regard-
ing the strict specificity of the Ra involvement in the early
light-mediated development, four-day-old etiolated rad-
ish seedlings were irradiated with three different kinds of
BL fluences. The transcriptional profiles of 33 highly Ra-
inducible genes were analysed in response to BL. The 25
ESTs were commonly regulated by the different intensi-
ties and durations of BL irradiation (Figure 4). Many
stress-related genes (e.g., CUL1, CSN3, and MBP1) were
observed to respond early during the first five minutes of
high-fluence pulses, while they increased dramatically
over time in the continuous light of low fluence, poten-

Figure 2 Functional classification of raphanusanin-induced cDNA clones. A total of 88 genes were classified in to their physiological functions, 
A, and biochemical functions, B, based on the BLASTX homology search.
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Table 2: Annotation of Ra-induced genes homologous to Arabidopsis genes that are involved in R-gene-triggered 
resistance in PCD pathway

Gene family No. of gene Putative function Reference

Protein kinase R proteins as regulatory adaptors 
in plant apotosomes

Leucine Rich Repeat transmembrane protein 4 Torres et al. (2006); Hofius et al. 
(2007) [56,47]

Serine-theorine protein kinases (CIPK1, Pit1, Mak) 3 Schwachtje et al. (2006); Hofius et 
al. (2007) [16,47]

Receptor-like kinase (ERECTA) 1 Chen et al. (2003) [49]

Glycoprotein 1 Wycoff et al. (1995) [48]

Oxidative & electrophilic stress 3 Signal activators in tranduction 
network of HR-related PCD

Zhang and Kirkham (1994); Arner 
and Holmgren (2000); Laloi et al. 
(2001); Heinemann et al. (2008); 
Zhu et al. (2008) [60,57,58,34,66]

NTRA,CAT2, Peroxidase

Channel activators 4 Gelli et al. (1997); Nurnberger et al. 
(2004); Zimmermann et al. (1997); 
Galon et al. (2008) [52,51,53,37]

CAMTA3, KT, POT, H+ ATPase

Lignin-associated genes 3

DRP, Peroxidase , RALF23 Franssen and Bisseling (2001); 
Pearce et al. (2001); Navarro et al. 
(2004) [19,84,35]

GTPases 2

(Rab-like small GTPase, FfG SRP GTPase) Ono et al. (2001); Cheung et al. 
(2008) [110,111]

Chloroplast target gene 1

CPOX Ishigawa (2005) [27]

Ubiquitin-proteosome system 7 Modulators of R-gene-triggered 
resistance

Zou et al. (2006);Liu et al. (2002); 
Shirasu et al. (2003); Ren et al. 
(2005); Stone et al. (2006); 
Kawasaki et al. (2005); Taupp et al. 
(2008). [9,28,67,71,30,70,32]

HSP90, CSN3, CUL1, KEG, C3HC4-type Ring Finger, UBQ3, 
PMF1

Stress responsive hormones 3 R-gene function in hormonal 
control of PCD activation

Ohtsubo et al. (1999); Ciardi et al. 
(2001); Desikan et al. (2001); Kim 
et al. (2003); Hudgins et al. (2004) 
[73,74,77,38,12]

ACC oxidase, MBP1, CAMTA3

Phosphatidic acid precursors 2 Modulators of lipid-based signals 
in PCD

Smith et al. (2004); Chen et al., 
2007; Ramina et al. (2007) 
[42,49,18]

PLC, PLD
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Table 3: Annotation of up- and down-regulated genes in the Ra+-Ra- library

Familya Genome initiative No. and Putative function Expression ratio Function b

15 min 30 min

NTRA AT2G17420 NTRA (NADPH-dependent thioredoxin reductase 2) 74.3 ± 11.2* 4.18 ± 1.9 1

DRP AT4G23690 Disease resistence response protein (DRP) 33.7 ± 6.4* 9.65 ± 2* 2

ERECTA ATG26330 Receptor Protein kinase ERECTA (ER) 10.88 ± 2.3* 15.82 ± 1* 2

CCR4-NOT AT3G44260 CCR4-NOT transcription complex protein 4.86 ± 0.4* 3.4 ± 0.2* 3

CSN3 AB-355980 cop9 signalosome subunit 3 4.2 ± 0.7* 1.5 ± 0.3 4

Kinesin AT2G21380 kinesin motor-protein-related 3.93 ± 0.8* 3.97 ± 1 5

UMP1 AT1G67250 Proteasome maturation factor UMP1 3.9 ± 0.6* 3 ± 0.4* 4

ACCO X81628.1 ACC oxidase 3.67 ± 0.2* 3.96 ± 1.4 1

USP AT3G53990 Universal stress protein (USP) family protein 1.93 ± 0.2* 2.02 ± 0.6 2

MBP 1 Y11482 Myrosinase binding protein MBP1 3.6 ± 0.5 5.1 ± 0.8* 4

KT AT4G19960 potassium iron transporter (KT) 3.4 ± 0.9 2.24 ± 0.4* 5

CAMTA 3 AT2G22300 Calmodulin-binding transcription activator 3 (CAMTA 3) 1.65 ± 0.2 2.03 ± 0.1* 3

PTI1 AT2G30740 PTI1-like protein tyrosine kinase 2.18 ± 0.2* 3.12 ± 0.6 6

CUL1 AT4G02570 Cullin-like protein, a subunit of E3 ubiquitin ligase 2.83 ± 0.4 1.86 ± 0.2 4

SDR AT4G09750 short-chain dehydrogenase 2.37 ± 0.3 2.2 ± 0.0.4 7

Peroxidase AT3G32980 Heme-dependent peroxidase 5.5 ± 0.5* 3.43 ± 0.3* 1

HSP90 AT4G24190 SHD (SHEPHERD) HSP90 1.38 ± 0.3 1.26 ± 0.1 4

KEG AT5G13530 RING E3 ligase protein (KEG) 2.13 ± 0.1* 0.8 ± 0.1 4

CIPKI AT2G30360 SNF 1-related protein kinase 2.19 ± 0.4 2.9 ± 0.38* 6

GH3 AT5G20950 Glycosyl hydrolase family 3 protein(GH3) 2.1 ± 0.3 1.4 ± 0.1 7

CESA5 AT5G09870 Cellulose synthase 5- transferase 1.5 ± 0.1 1.95 ± 0.1* 5

CAT2 AF139538 Catalase2 1.97 ± 0.2* 1.6 ± 0.3 1

Glycoprotein AT1G14710 Hydroxy proline rich glycoprotein family 1.88 ± 0.2* 0.9 ± 0.1 10

POT AT3G16180 Proton-dependent oligopeptide transport (POT) family protein 1.82 ± 0.1* 1.05 ± 0.1 5

LRT AT2G31880 Leucine-rich repeat tranmemberane protein kinase 1.91 ± 0.5 1.7 ± 0.2 6

Clathrin AT1G60780 Clathrin adaptor complexs medium subunit family protein 1.8 ± 0.14* 1.2 ± 0.1 5

PKC AY835401.1 Protein Kinase C conserved region 2 1.7 ± 0.2 0.38 ± 0.1* 6

Pescadillo AT5G14520 Pescadillo-related protein 1.7 ± 0.2 2.12 ± 0.4 3

3KCS4 AT1G19440 Very long-chain fatty acid condensing enzyme 1.6 ± 0.1 1.5 ± 0.2 5

Profilin AT2G19760 Profilin1 1.59 ± 0.1 2.23 ± 0.1* 9

Dehydrin AT2G39750 Dehydration-responsive family protein 1.67 ± 0.2 1.8 ± 0.3 10

PGβ1 AT1G70370 Polygalacturonase isoenzyme 1 beta subunit homolog 1.56 ± 0.2 1.44 ± 0.2 10

MAK AT5G45430 serine/threonine-protein kinase Mak 1.6 ± 0.3 1.25 ± 0.1 6

3PGDH AT1G17745 3-phosphoglycerate dehydrogenase 1.65 ± 0.1* 1.8 ± 0.2 7

Ring Finger AT3G09760 C3HC4-type Ring Finger 1.55 ± 0.2 1.92 ± 0.1* 4

G6PDH AT5G35790 Glucose 6 -phosphate dehydrogenase 0.69 ± 0.1 1.6 ± 0.2 7

GTPase AT5G53570 Gtpase activator protein for Rab-like GTPase-like protein 1.5 ± 0.1 2 ± 0.2 2

UBQ3 At5g03240 UBQ3 1.4 ± 0.1 2.35 ± 0.2* 4

CND41 AT3G18490 aspartyl protease family protein 1.3 ± 0.1 0.01 ± 0.1* 4

MetE AT5G17920 Cobalamin-independent methionine synthase 1.4 ± 0.1 1.13 ± 0.1 4

RALF AT3G16570 Rapid Alkalization Factor 23 (RALF23) 1.31 ± 0.2 2.3 ± 0.4 2

PPEase AT2G26870 Phosphoesterase family protein 1.3 ± 0.1 1.3 ± 0.1 7

CPOX AF375424 Coproporphyrinogen III oxidase 1.3 ± 0.1 1.45 ± 0.1 1

BURP AT1G70370 Polygalacturonase isoenzyme 1 beta subunit homolog 1.3 ± 0.1 1.1 ± 0.1 10
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tially resulting from the reciprocity of the dose response
(Table 4). Two genes (PKC and SDR) were specific to the
continuous-light response, and three genes (PLC, USP,
and 3KCS4-21) were specific to the pulsed-light response.
There were also a few genes regulated by Ra and BL in the
opposite manners (e.g., RMB2, and CAT). The observed
responses for different fluences reveal that the range of
fluences over which the response specificities to continu-
ous or pulsed light may be attributed to the action of
phot1 at lower fluence rates (0.1-50 μmol m2 s-1) and
phot2 at higher fluence rates (1-250 μmol m2 s-1). Several
genes involved in growth inhibition were up-regulated by
Ra and BL (Figure 4 and Table 4). To validate, the expres-
sion levels of seven genes participating in growth inhibi-
tion were measured by semi-quantitative RT-PCR
analysis (Figure 5). These results suggest that blue light
facilitates the expression of Ra-inducible genes.

Discussion
In this study, we constructed a Ra-specific subtraction
library and further selected 33 genes based on the expres-
sion analysis to analyse their functional correlation with
the early blue-light response. The existence of highly spe-
cific genes and low percentages of housekeeping genes
indicate that the subtraction was effectively performed
for the Ra+-Ra- library. Since SSH is expected to norma-
lise the DNA population, the less prevalent genes and
highly redundant genes contained in the Ra+-Ra- library
indicate that the normalisation was successful. The abun-
dance of functionally annotated genes and, in particular,
the high proportion of genes related to signalling suggests
that Ra activates distinct genetic networks. This high sub-
tractive efficiency allowed us to monitor the expression of
many genes in different biochemical or physiological
pathways in which Ra is implicated.

Does raphanusanin modulate cellular defence?
The molecular evidence reported herein indicates that
raphanusanin (Ra) is involved in several metabolic pro-
cesses in which many defence-associated genes are up-
regulated and very few genes are down-regulated (Table 3
and Figure 3). Accordingly, questions arise with regard to
why Ra activates many defence-associated genes and how
this is associated with cellular defence. Ra induced the
regulation of leucine-rich repeat (LRR) proteins, LRR
transmembrane proteins, the receptor-like kinase
(ERECTA), serine-threonine kinases, and glycoproteins
(Table 2). Several studies have emphasised the conserved
functions of LRR domains, LRR transmembrane proteins
[47], membrane-spanning glycoproteins such as hydroxyl
proline-rich glycoproteins [48], RLKs such as ERECTA
[13,49], and cytoplasmic serine-threonine kinases, such
as Ca+ inducers. CBL-interacting protein kinase (CIPK1)
[16] acted as a resistant (R) protein in the defence system.
Van der Biezen and Jones hypothesised that R proteins
may function as regulatory adaptors in plant apopto-

GASA4 AT5G15230 GASA4 (GAST1 protein homolog) 1.27 ± 0.2 3.1 ± 0.7 10

PLC AAD26119.1 Phosphoinositide- specific phospholipase C 1.23 ± 0.1 1.78 ± 0.2 2

MAG2 AT3G47700 MAG2(chromosome structure maintenance protein-related) 1.2 ± 0.1 1.7 ± 0.1* 5

GTF AT1G19710 Glycosyl transferase family 1 protein 1.07 ± 0.1 1.95 ± 0.1* 5

RMB2 AB042187 Myrosinase (RMB2) 0.45 ± 0.1 1.66 ± 0.1* 7

RMB1 AB04218 Myrosinase (RMB1) 0.52 ± 0.1 1.52 ± 0.2 7

a one representative clone for each gene is shown. Three independent biological replicates were performed. Value ± s.e. indicates expression ratio 
of Treatment/Control after normalization ± standard error of the mean (n = 3).Genes in the table are listed in decreasing expression ratios 
according to genes in the Ra+-Ra- library. Genes that differ significantly (student t test p-value less than 0.05) in their expression between the 
treatment and control are marked with an asterisk (*). Bold represents the expression ratios (≥ 1.5 or ≤ 0.6). bThe functional categories are, 1: 
Oxidase, 2: signal tranduction, 3: transcription and translation, 4: protein metabolism/binding, 5: movement and transport, 6: kinases, 7: 
Hydrolases, 8: Energy, 9: Cellular biogenesis, 10: Unclassified. The values shown represent fold change (treatment vs. control).

Table 3: Annotation of up- and down-regulated genes in the Ra+-Ra- library (Continued)

Figure 3 Genes differentially regulated in a time dependent man-
ner in 4-d-old etiolated seedlings subjected to 50 ng of raphanu-
sanin (Ra) treatment over time. Number of genes up-and down-
regulated by Ra after 15 min and/or 30 min time points. To clarify, the 
genes expression levels (≤ 1.5 or ≥ 0.6) were excluded from the total 
number of differentially regulated genes.
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Table 4: Summary of expression ratio of 33 ESTs from highly regulated Ra-induced genes over BL at different fluen
seedlings

Familya Function 5 min 15 min

Continuous1 Continuous2 pulse Continuous1 Continuous2 pulse

Ubi-3 1 2.8 ± 0.6 1.34 ± 0.2 2.5 ± 0.5 6 ± 0.7* 2.7 ± 0.2* 2.8 ± 0

CSN3 1 1.5 ± 0.1 1.23 ± 0.1 3.8 ± 0.5* 2.9 ± 0.3* 1.97 ± 0.2* 1.13 ±

Zinc Finger 1 1.3 ± 0.2 0.9 ± 0.2 2.6 ± 0.3* 2.68 ± 0.6 1.5 ± 0.6 1.23 ±

PMF1 1 1.5 ± 0.2 3.2 ± 0.5 2.14 ± 0.4 2 ± 0.2 2.8 ± 0.3* 1.2 ± 0

CND41 1 0.8 ± 0.2 0.78 ± 0.1 1.04 ± 0.1 0.62 ± 0.1 0.25 ± 0.2 1.96 ±

CUL1 1 1.19 ± 0.1 1.65 ± 0.1 4.1 ± 0.7* 1.56 ± 0.2 1.85 ± 0.1* 1.49 ±

NTRA 2 2.7 ± 0.4 1.8 ± 0.5 2.3 ± 0.3 3.2 ± 0.6 2.98 ± 0.6 2.15 ±

ERECTA 2 5.3 ± 0.6* 16.5 ± 2.3* 1.8 ± 0.2 9.16 ± 1.7* 5.5 ± 1.5 2.2 ± 0

CAT 2 1.37 ± 0.2 0.89 ± 0.1 0.7 ± 0.1 0.42 ± 0.1* 0.22 ± 0.1* 0.58 ±

MBP1 2 1.01 ± 0.1 0.88 ± 0.1 2.1 ± 0.3 2.76 ± 0.4* 1.86 ± 0.3 1.12 ±

CIPKI 2 1.8 ± 0.3 0.89 ± 0.2 1.05 ± 0.1 2.39 ± 0.2* 1.34 ± 0.2 1.4 ± 0

CAMTA3 2 0.77 ± 0.1 1.21 ± 0.1 0.98 ± 0.1 1.98 ± 0.2* 1.8 ± 0.1* 2.63 ±

DRP 2 2.03 ± 0.4 4.9 ± 1.2 3.8 ± 0.6 2.2 ± 0.2* 3.8 ± 0.5* 2 ± 0.3

RMB2 2 1.22 ± 0.1 1.35 ± 0.3 0.91 ± 0.1 1.89 ± 0.3 1.81 ± 0.2 1.2 ± 0

Glycoprotein 2 0.6 ± 0.1 0.56 ± 0.2 0.78 ± 0.1 1.73 ± 0.2 2.57 ± 0.4 0.75 ±

ACCO 2 1.12 ± 0.2 1.09 ± 0.1 3.14 ± 0.3* 1.98 ± 0.2 1.83 ± 0.3 1.56 ±

LRT 2 1.06 ± 0.1 1.12 ± 0.1 0.9 ± 0.1 0.95 ± 0.2 0.85 ± 0.2 0.8 ± 0

Kinesin 3 1.9 ± 0.5 1.45 ± 0.4 2.55 ± 0.8 3.2 ± 0.2* 2.65 ± 0.7 3.1 ± 1

CCR4-NOT 4 2.89 ± 0.3* 3.67 ± 0.2* 2.3 ± 0.2* 4.5 ± 1.2 1.88 ± 0.3 1.3 ± 0

PPFP 4 1.48 ± 0.1 6.8 ± 1.5 2 ± 0.2 1.8 ± 0.2 3 ± 0.4* 0.33 ±

PPEase 4 2.4 ± 0.3 1.2 ± 0.2 7.9 ± 1.3* 2.3 ± 0.2* 2.4 ± 0.4 4.5 ± 0

PTI1 4 2.8 ± 0.5 4 ± 0.6* 2.05 ± 0.6 2 ± 0.3 1.5 ± 0.5 0.98 ±

KT 4 0.73 ± 0.1 1.35 ± 0.2 1.8 ± 0.2 1.65 ± 0.1 1.5 ± 0.6 0.38 ±

SDR 3 0.85 ± 0.2 0.7 ± 0.1 1.09 ± 0.1 2.64 ± 0.1* 1.8 ± 0.2 0.9 ± 0

PKC 4 0.5 ± 0.3 0.25 ± 0.2* 1.4 ± 0.1 0.77 ± 0.1 0.18 ± 0.1* 0.78 ±
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GTPase 2 0.94 ± 0.1 0.83 ± 0.1 2.6 ± 0.3* 1.13 ± 0.1 0.42 ± 0.2 3.55 ± 0.7 0.92 ± 0.1 0.47 ± 0.3 3.1 ± 0.3*
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GH3 3 1.1 ± 0.1 1.17 ± 0.1 1.4 ± 0.3 1.34 ± 0.2 1.8 ± 0.3 2.1 ± 0

PLC 4 0.98 ± 0.1 0.87 ± 0.2 1.32 ± 0.1 0.7 ± 0.1 1.12 ± 0.1 0.93 ±

PGβ1 4 0.98 ± 0.2 1.16 ± 0.1 1.55 ± 0.2 1.3 ± 0.1 1.85 ± 0.4 3.3 ± 0

Peroxidase 2 2.76 ± 0.3* 0.95 ± 0.1 2.5 ± 0.6 1.8 ± 0.4 2.5 ± 0.2* 1.2 ± 0

USP 2 1.03 ± 0.2 0.9 ± 0.2 0.69 ± 0.1 1 ± 0.1 1.2 ± 0.1 0.5 ± 0

3KCS4-21 3 1.1 ± 0.1 0.95 ± 0.1 1.7 ± 0.2 1.18 ± 0.2 1.14 ± 0.1 1.23 ±

a one representative clone for each gene is shown. Three independent biological replicates were performed. Value ± s.e. indicates expre
standard error of the mean (n = 3). Genes that differ significantly (student t test p-value less than 0.05) in their expression between the t
represents expression ratios (≥1.5 or ≤0.6). Underlined values show the opposite regulation on different fluences. The functional catego
metabolism, 4: Unclassified. Continuous 1: 0.45 μmol m-2 s-1; Continuous 2: 0.1 μmol m-2 s-1; Pulse: 30 μmol m-2 s-1 for 15 sec. The values s

Table 4: Summary of expression ratio of 33 ESTs from highly regulated Ra-induced genes over BL at different fluen
seedlings (Continued)
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somes that are activated by pathogen-derived avirulence
(Avr) signals [50].

Moreover, Ra-induced genes (Table 2), such as the anti-
oxidant genes NTRA, CAT, and peroxidase, the channel
activators CAMTA3, KT, POT, and H+ ATPase, the

lignin-associated genes DRP and peroxidase (overlapping
functions as antioxidants), the membrane-associated G-
protein Rab, and CPOX are involved in the signal trans-
duction network of the HR (hypersensitive response)-
related programmed cell death (PCD) in plants [47]. The
earliest cellular response upon R activation includes a
rapid burst of reactive oxygen species (ROSs), leading to a
dramatic increase in oxidation reactions, increased trans-
membrane ion flux, especially of Ca+, K+ and H+, the
cross-linking of phenolic moieties with cell-wall compo-
nents and the reinforcement of the plant cell wall (callose
and lignins), the transient activation of protein kinases
(wound-induced and salicylic acid (SA)-induced kinases),
the production of defensins and phytoalexins, the synthe-
sis of resistance (R) proteins, and transcriptional repro-
gramming [51].

Many reports have highlighted the involvement of ion
channels, especially that of Ca+, on the plasma membrane
during early defence signalling in Arabidopsis, tomato,
tobacco, and parsley [52-54]. CAMTA 3 mutants attenu-
ated the propagation of a virulent strain of the bacterial
pathogen Pseudomonas syringae and the fungal pathogen
Botrytis cinerea during Arabidopsis development [37].
The rapid and sustained increase in Ca+ is necessary for
the oxidative burst and hypersensitive cell death facili-
tated by the plant disease resistance gene, RPM1, in Ara-
bidopsis [55]. Subsequently, the production of ROSs leads
to cell-wall fortification, the induction of defence gene
expression, and PCD [55,56]. The NADPH thioredoxin
(NTR) is involved in the signalling associated with apop-
tosis and hypersensitivity to stress in Arabidopsis [57,58].
The loss of function in the Arabidopsis double mutant
ntra ntrb plant results in hypersensitivity to buthionine
sulfoximine (BSO), a specific inhibitor of glutathione bio-
synthesis, demonstrating the involvement of ntr genes in
the glutathione pathway [59]. Moreover, DRP has been
suggested to play a role in defence responses and in pro-
moting lignin deposition in juglone-stressed soybeans
[15]. Peroxidase is associated with the catalytic reactions
of H2O2, and many studies demonstrate the peroxidase-
reduced cell-wall extensibility and elevated lignin content
in stressed plants [60-65]. Furthermore, Arabidopsis
lesion initiation 2 (LIN2) encodes CPOX, and the lin2
mutant develops lesions on its leaves and siliques in a
developmentally regulated and light-dependent manner
[27].

The abundance of genes involved in protein metabo-
lism is remarkable, especially those genes comprising the
ubiquitin-proteosome system, HSP90, PMF1, CSN3,
UBQ3, CUL1, KEG (a Novel RING E3), and C3HC4-type
Ring Finger. The ubiquitin-proteosome pathway is likely
to be an important modulator of the R-gene-triggered
resistance [47]. One study showed that one regulator of

Figure 4 Response of raphanusanin (Ra)-induced genes to three 
different blue light (BL) intensities (0.45 μmol m-2 s-1), BL (0.1 
μmol m-2 s-1), BL (30 μmol m-2 s-1, pulse for 15 sec). Venn diagram in-
dicates the differential expression of genes upon the three different 
treatments of BL at different time points.

Figure 5 BL and Ra induce the genes related to growth inhibition 
and cellular defence. Time courses of transcript levels of seven genes 
involved in growth inhibition pathways relative to controls following 
treatment with BL and Ra at the indicated concentrations were validat-
ed by reverse transcriptase-polymerase chain reaction (RT-PCR). Tran-
script levels of seven genes, NADPH-dependent thioredoxin reductase 
A (NTRA), catalase2 (CAT2), peroxidase, calmodulin- binding transcrip-
tion factor 3 (CAMTA3), SNF-1 related protein kinase (CIPK1), disease re-
sistance protein (DRP), and ACC oxidase. The bottom panels show the 
elongation factor α (ef1α) as loading control. Primers for all genes are 
specific to transcripts from the respective cDNA. The data represents 
the typical gel image of one of three replicates. BL: blue light; Ra: 
raphanusanin.

Elf α (control)

BL (0.45 µmol m-2 s-1) Ra (50 ng)
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R-genes, SGT1 (suppressor of G2 allele of SKP1), is
essential for the function of the Skp1-cullin-F-box pro-
tein (SCF) E3 ubiquitin ligase complex that targets pro-
teins for degradation by the 26S proteosome. RAR1
(required for Mla-dependent resistance1), SGT1, and
HSP90 are thought to form a complex that mediates the
folding of R proteins into functional complexes [66]. In
addition, the COP9 signalosome, a multiprotein complex
involved in the recognition of correct substrates for pro-
tein degradation, is required for the resistance to tobacco
mosaic virus mediated by the tobacco TIR-NB-LRR N
protein [67]. Moreover, RING-finger E3 ligases in Arabi-
dopsis are involved in the RPM1- and RPS2-mediated
elicitation of HR [68]. The knock-down of RING1 tran-
scripts with an artificial microRNA (amiR-R1159) leads to
hyposensitivity to the pathogenic toxin fumonisin B1
(FB1), whereas over-expression of RING1 confers hyper-
sensitivity [69]. Furthermore, Arabidopsis CUL1 (a sub-
unit of E3 ligase) was assembled into the SCF complex
containing COI1, an F-box protein required for the
response to jasmonates (JA), which regulate plant fertility
and defence responses [70], and KEG, an E3 ligase that
acts as a negative regulator of abscisic acid (ABA) signal-
ling in Arabidopsis. The KEG mutant undergoes growth
arrest immediately after germination, suggesting an
increase in ABA signalling that regulates the plant sur-
vival in unfavourable conditions [30].

Moreover, Ra positively regulated MBP1 (myrosin-
binding protein or jasmonate-inducible protein), 1-amin-
ocyclopropane-1-carboxylic acid oxidase (ACCO) (ethyl-
ene-forming enzyme), and CAMTA3 (also called
ethylene-forming calmodulin-binding protein 1), also
correlating with R-gene functions in the hormonal con-
trol of PCD activation [47]. The hormone ethylene (ET) is
involved in stimulating developmental and inducible
forms of PCD during aerenchyma formation [71]. ET
positively contributes to HR cell death and lesion size in
TMV-infected tobacco leaves, as well as in tomato plants
challenged with an avirulent Xanthomonas strain [72,73].
Moreover, infection with TMV activates the SIPK cas-
cade (a tobacco mitogen-activated protein kinase MAPK)
and induces ethylene biosynthesis. It also induces ACC
oxidase [38] because pest-induced wounding increased
the ACC oxidase protein in the conifer stem, whereas the
methyl jasmonate (MJ) treatment produced a higher and
more rapid ACC oxidase response, indicating the coordi-
nated action of ET and JA in defence [12]. Furthermore,
JA has been shown to promote cell death events induced
by singlet oxygen in the protoplasts of the conditional flu
mutant in Arabidopsis [74] and to affect hairpin-induced
hypersensitive cell death in tobacco suspension-cultured
BY-2 cells [75]. Genes encoding myrosinase-binding pro-
teins (MBPs) were shown to be H2O2-responsive [76],

and H2O2 induces PCD in Arabidopsis and other species
[77-80].

Ra has also been shown to induce the regulation of the
phosphatidic acid precursors, phospholipase C (PLC) and
phospholipase D (PLD), both of which modulate the PCD
as lipid-based signals. For example, the expression of the
phosphoinositide-specific phospholipase C gene, OsPI-
PLC1, was activated in rice cells after benzothiadiazole
(BTH) treatment and in BTH-treated cells after Xan-
thomonas oryza pv. oryza (Xoo) infection, resulting in
the production of an oxidative burst and hypersensitive
cell death [17]. The coactivation of PLC, PLD, and ET
induces PCD in tomato, and inhibitors of the PLC and
PLD signalling pathway intermediates greatly reduce the
chemical-induced cell death of suspension-cultured
tomato (Lycopersicon esculentum Mill.) cells (line MsK8).
Ethylene, while not inducing cell death when applied
alone, stimulates chemical-induced cell death, indicating
that the activation of the PLC, PLD, and ET signalling
pathways is required for cell death [18].

The primary role of Ra in hypocotyl growth inhibition,
as demonstrated by Moehninsi et al. [3], is likely due to
cell-wall strengthening via the induction of lignin to pro-
tect cells from environmental stimuli. Alternatively, the
interactions between defence and growth suppression
could also be a main reason for induction of genes
involved in both defence and growth suppression signal-
ling. In support of this notion, one study shows that the
indirect activation of the MAPK cascade in H2O2-treated
Arabidopsis protoplasts induced the expression of genes
involved in defence against oxidative stress and sup-
pressed those associated with growth [81]. In our Ra+-Ra-

library, four genes thought to be implicated in the func-
tional roles of growth inhibition, DRP, peroxidase, rapid
alkalinisation factor 23 (RALF23), and CSN3, were up-
regulated in response to Ra. RALF23 is associated with
defence via its activation of MAPKs and the induction of
medium alkalinisation, leading to growth arrest [19,82].
Moreover, a rapid transient up-regulation of CSN3 is
observed in response to various growth inhibition stimuli
[3]. In addition, the up-regulation of cellular biogenesis
genes such as actin, profilin, cellulose synthase 5-trans-
ferase, kinesin, and α-tubulins may also be involved in
elaborate cell-wall thickening.

Raphanusanin-induced gene networks associated with 
early blue-light (BL) signalling
An attempt to identify the functional correlations
between Ra and light regulation led us to monitor the
expression of many genes in response to different flu-
ences of early BL. We found that the selected 33 genes
were commonly regulated under BL in an intensity or
duration-dependent manner (Figure 4 and Table 4). In
addition, most gene expression patterns largely over-
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lapped between the BL and exogenous Ra treatments.
The above results contribute to an emerging body of evi-
dence indicating that Ra may be functionally correlated
with early BL, and thereby affects the regulation of genes
involved in establishing plant acclimation to light.

Early blue light effects include the hyperpolarisation of
the cell membrane, increased input resistance, and induc-
tion of carotenoid biosynthesis, all of which can be
observed within the first 30 min after the exposure to
light. In addition, light-induced mRNA synthesis of some
fast light-regulated genes can be detected within five min
after a light pulse [83-89]. Our data are in agreement with
the above findings that many genes are induced within
the first 30 min, including membrane transporters and
many defence-associated and chloroplast-associated
genes. The overlapping expression of many genes, espe-
cially those with conserved functions involved in early
light responses between BL and Ra, indicates that BL and
Ra may use a similar signalling mechanism. Many studies
show that a rapid phot1-dependent Ca2+ concentration
increase occurs in response to blue-light exposure [90-
93], thereby triggering the inhibition of hypocotyl growth
[94,95]. In addition, the proton extrusion of the phot1-
mediated stomatal opening is mediated by an H+-ATPase
or proton pump, which is triggered by phosphorylation
[96-98]. Furthermore, Pedmale and Liscum demon-
strated the links between phot1, NPH3, and E3 based-
ubiquitin-dependent proteosomal degradation in light-
mediated processes [99]. The transporters (especially
POT, and H+-ATPase), membrane bound kinases, E3
ligases, and genes that trigger Ca2+ influx, such as 1, 4, 5-
IP3-catalyzing enzyme PLC, CAMTA3, and CIPKI, are
differentially regulated in response to both BL and Ra. In
addition, under low-BL fluence rates, phot1 is the princi-
ple photoreceptor regulating both growth inhibition and
phototropism [100-102]. With regard to our experimental
system, the ability of unilateral irradiation with low light
(LL) fluences of BL to inhibit growth is expected to be
under PHOTs control. Taken together, the differential
expression of genes induced by BL in this context is likely
to be triggered by PHOTs, and the unique signalling cas-
cades triggered by PHOTs may reflect crosstalk between
the light and defence systems. This notion is supported
by a report showing that the FMN moiety of PHOT1 con-
fers redox sensitivity that leads to its activation [103,104].
Many previous studies demonstrated BL-induced gene
expression profile changes using experimental conditions
that include high light (HL) and long time-exposure [105-
107]. Our data showing gene expression profiles within
the first 30 min under LL intensities are informative with
regard to the signalling pathways responsive to variable
fluence rates and early light responses while plants are
acclimating to sudden environmental changes. This
information may be useful for identifying the photosen-

sory signalling networks that interact with cellular
defence.

Raphanusanin may mediate the links between the light 
signalling and defence responses
Because Ra induces the up-regulation of many defence-
related genes, the obvious question is how light affects
the Ra-induced signalling cascades involved in the induc-
tion of transcription factors and their target genes. Earlier
studies have pointed out that light not only modulates the
defence responses via its influence on biochemistry and
plant development, but is also essential for the develop-
ment of resistance [108]. For examples, light is necessary
for development of the resistance responses to
Pseudomonas solanacearum in tobacco (Nicotiana
tubacum) [109], Xanthomonas oryzae in rice (Oryza
sativa) [110], and Pseudomonas syringae and Peronospora
parasitica in Arabidopsis [111,112]. There are also sev-
eral examples of plant responses to isolated pathogenic
elicitors that are light-dependent. Leaf necrosis on
tomato in response to an avirulence elicitor from Cla-
dosporium fulvum is substantially reduced in the dark
[113], cell death induced by the fungal toxins AAL from
Alternaria alternata [114] requires light, and one of the
pathogenic toxins (FB1) capable of inducing cell death in
Arabidopsis protoplasts is light-dependent and requires
phytohormones, as well as the SA, JA, and ET-mediated
signalling pathways [115]. The importance of the cellular
energy status and redox balance (H2O2/ROS) produced in
chloroplasts and plant stress responses in the regulation
of PCD is supported by the finding that various forms of
cell death triggered by pathogens, or spontaneously in
lesion-mimic mutants, are light-dependent [88,110,116-
119]. Additionally, at least some of the pathways involved
in the biosynthesis of the major-related hormones, JA,
SA, and ABA, are located in the chloroplast, thus reveal-
ing a role for photosynthesis in both abiotic and biotic
stress responses [87,108]. Considering that, many Ra-
induced genes involved in the predicted PCD pathways
may simply reflect the light-dependent manner of PCD,
and the roles of Ra in cellular defence may be dependent
upon light.

Conclusions
This is the first report on comprehensive survey of tran-
scriptional regulation in response to the light-induced
growth inhibitor, Ra. Although physiological evidence for
it roles in the inhibition of hypocotyls growth, microtu-
bule orientation, and inhibition of apical dominance have
been demonstrated, the molecular mechanisms underly-
ing regulation by Ra are still limited. Our data offer the
comprehensive understanding of transcriptional regula-
tion in etiolated radish seedlings in response to Ra and its
functional correlation with BL. We also provide a number
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of genes that are regulated in response to Ra that could be
tested in many functional analyses to increase our under-
standing of the roles of Ra. Most of the genes important
for cellular defence are highly regulated by both Ra and
BL. These results suggest the link between Ra and cellular
defence and light signalling. Further research on the bio-
logical relevance of the effects of Ra on plant-light-
microbe interactions and the analysis of null mutants in
specific pathways should provide new insights into the
role of Ra in cellular defence.

Methods
Plant material and plant growth
Sakurajima radish (Raphanus sativus var. hortensis f.
gigantissimus Makino) seeds were germinated in vermic-
ulite moistened with water in large trays (37 × 60 × 14
cm) in absolute darkness at 25°C. About 3 d later, uniform
seedlings were transplanted to small trays (8.5 × 17.7 ×
3.5 cm) containing moist vermiculite under extremely
dim green 'safelight' (<0.01 μmol m-2 s-1) and incubated in
the dark at 25°C for 1 d.

Light treatments and unilateral application of 
raphanusanin
Light treatments were performed using an LED array
(NSPB 520S; NICHIA for blue light (BL). Etiolated seed-
lings (with a hypocotyl length of about 4 cm) were unilat-
erally illuminated with BL (LED array; mix: 470 nm; half
band width: 20 nm) for 30 min at 25°C. The incident
energy was 0.45 μmol m-2 s-1, 0.1 μmol m-2 s-1, or a pulse
(30 μmol m-2 s-1 for 10 sec) at plant level. Fluence rates
were assessed with a LI-COR LI-189 photometer.
Raphanusanin was isolated from fresh radish roots based
on the procedures described by Kosemura et al., 1997. An
estimated endogenous amount of 50 ng of Ra was mixed
with 0.5 mg of lanolin and unilaterally applied to the
hypocotyls in a lengthwise manner from 0 to 2 cm below
the hook of uniform four-day old etiolated seedlings.
Control seedlings were also treated with 0.5 mg lanolin.
Treated seedlings were incubated in absolute darkness at
25°C. All manipulations were performed under safelight
(>0.01 μmol m-2 s-1).

Sample collection
Etiolated four-day-old seedlings were unilaterally illumi-
nated with BL (0.45 μmol m-2 s-1, 0.1 μmol m-2 s-1 or pulse
30 μmol m-2 s-1 for 10 sec) or treated with a unilateral
application of raphanusanin (50 ng) using the same pro-
cedure mentioned above. The seedlings were harvested
and immediately submerged in liquid nitrogen with mini-
mal exposure to 'safelight' after the indicated time peri-
ods. Treated samples were immediately replaced in the
dark box for 5, 15, or 30 min until harvested. Ten repli-
cates (both control and treated samples) were harvested

directly into liquid nitrogen after the following treat-
ments.

Subtraction library construction
Suppression subtractive hybridization (SSH) was per-
formed using a PCR-select cDNA subtraction kit (Clon-
tech Laboratories, U.S.A.) according to the
manufacturer's instructions (see detailed in additional file
1 and additional file 6).

Determination of nucleotide sequences and sequence 
annotation
Nucleotide sequences were determined with a DNA
autosequencer (ABI 310 Applied Biosystems, USA) using
Big-Dye terminators. All sequencing reactions involved
either the standard M13 forward or reverse primers, and
thus both the 5' and 3' sequences of each cDNA were
obtained. The sequence text files were edited to remove
vector sequence and ambiguous bases. Two reads from
both ends of a clone were merged using the Codon Code
Aligner based on pairwise alignments. The resulting
sequences were then assembled by the Phrap program
(Codon Code Aligner Sequence Assembler v3.0.1). The
annotation is based on the best BLASTX match of the
corresponding radish sequences against NCBI non-
redundant protein sequences (nr) (expect value < 0.01) or
TAIR Arabidopsis protein database. Physiological and
biochemical classification of the clones were clustered
according to GO annotations http://www.ebi.ac.uk/
GOA/.

Selection of radish sequences and PCR primer design
To identify the true reference gene for evaluating the gene
expression level of raphanusanin-induced clones, seven
housekeeping genes commonly used as controls for plant
gene expression studies, elongation factor 1-α (ef1α),
translation initiation factor (eIf2), 18s rRNA, actin, tubu-
lin, ubiquitin and ribosomal protein (L4), were selected.
Radish nucleotide sequences for tubulin, eIf2, ubiquitin,
and ribosomal protein (L4) were obtained from the
sequences of radish-subtracted library clones. The
sequences of 18s rRNA and actin were obtained from
radish ESTs deposited in the Gene bank database. The
only ef1α sequence found was from Arabidopsis thaliana,
and the conserved region of this gene was selected for
primer design. Seven primer pairs were designed based
on these sequences for reference gene analysis using
Primer3 software (see additional file 7). Fifty primer pairs
for expression analysis of Ra-induced clones were
designed based on the sequences of raphanusanin-
induced ESTs using Primer3 software (see additional file
8). BLASTX searches were performed against the
sequence databases to confirm the gene specificity of the
primer sequences.

http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/GOA/
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Quantitative real-Time RT-PCR
Total cellular RNA was extracted using a plant RNeasy
Mini kit (QIAGEN, Germany) according to the manufac-
turer's instructions, followed by removal of contaminat-
ing genomic DNA with an RNase-Free DNase Set
(QIAGEN, Germany). The first strand of cDNA was then
synthesized using ThermoScript RNase H- RT (Invitro-
gen, USA) with an Oligo (dT)12-18 primer (Invitrogen,
USA). Three independent preparations of mRNA for
each biological replicate were pooled to eliminate the
inconsistent variation with sampling. Quantitative real-
time PCR (qRT-PCR) was performed with a Thermal
Cycler Dice™ Real Time System (TAKARA BIO INC.,
Japan) using SYBR® Premix Ex Taq™ II (perfect real time)
(TAKARA BIO INC., Japan). Reactions were performed
in a total volume of 20 ul containing 1×SYBR Premix Ex
Taq II, 25 ng of cDNA, 200 nM of each specific sense and
antisense primer, except for 18s rRNA primers, for which
50 nM of each was used. The two-step amplification pro-
gram was: 95°C for 10 sec, 45 cycles of 95°C for 5 s, fol-
lowed by 61°C for 45 s. Each sample had 2 replicates and
non-template control to ensure reproducibility of the
results. The real-time PCR efficiency was determined for
each gene and each treatment via standard curve analysis.
For this, each cDNA sample was pooled and then used as
the PCR template (range of 50, 25, 12.5, 7.5, and 3.75 ng).
All PCR reactions displayed efficiencies between 88% and
105%. The specificity of the amplification was verified by
both dissociation curve analysis and by visualization via
gel electrophoresis. The most stable gene, eIf2 or ef1α,
resulting from the control gene analysis was used as a ref-
erence gene. Relative expression levels were calculated
using the comparative CT method. For each gene, expres-
sion values were normalized to the control samples (time
zero), which were set to equal 1. Each value represents
the average of three experimental replications. Within a
single experiment, aliquots of the same cDNA synthesis
reaction were used for real-time PCR amplification of
each of the seven genes and all gene primers and cDNA
combinations were amplified in duplicate in a single PCR
run.

RT-PCR detection
The preparation of total RNA and first strand cDNA syn-
thesis were performed as above. The PCR amplification
was carried out in a 20 μl reaction volume containing 100
ng of cDNA as template, 1 × PCR buffer, 20 μM dNTPs,
2.5 mM MgCl2+, 0.4 μM primers, and 0.5 U of HS (Hot
Start) Taq polymerase (Takara, Japan). The number of
cycles used for the PCR reaction was adjusted for each
gene to obtain barely visible bands by agarose gel electro-
phoresis. The PCR conditions were as follows: 95°C for 3
min, followed by the indicated number of cycles at 94°C

for 30 s, 61°C for 30 s, and 72°C for 45 s. A final extension
was carried out at 72°C for 5 min. A 15 μl aliquot of each
PCR product was electrophoresed in a 3.5% w/v agarose
gel. The primer pairs used for each gene were the same as
those used for qRT-PCR.

Statistical analyses
Results (CT values) from the Thermal Cycler Dice™ Real
Time System were analyzed in Microsoft Excel. The levels
present in different samples were calculated by F statistics
[F = between tissue sample mean square/error mean
square]. Other statistics defined in Table 2 were calcu-
lated using the method of Brunner et al., 2003 [120].
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