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Introduction
Habituation is defined as a response decrement resulting
from repeated stimulation [1]. This process is very
important in filtering a large amount of information in
the surrounding environment and focusing our attention
on only the features of the environment that are impor-
tant to us. Here we address the problem of objectively
assessing long-term habituation using electroencephalo-
graphic auditory late responses (ALRs). We propose
using a Bayesian change point algorithm to measure the
novelty process and apply it to two experimental data
sets of 50dB and 100dB stimuli responses. These corre-
spond to cases of habituation and non-habituation
respectively.

Methods
We use unprocessed raw data along with a denoised
variant of the same data for the analysis. The nonlocal
means algorithm is used for 2 diemensional denoising of
ALR single sweeps, arranged in matrix, see [2] for
detials. Data consists of 900 artefact free sweeps of 410
samples. We analyzed the data at all time instances over
all sweeps. This procedure is applied to the unprocessed
and processed data set. The Bayesian change point
detection algorithm estimates a probability distribution
over a run-length parameter. The run-length parameter
has two states. It either increases by one time-step, or
resets to zero indicating a change point. We calculate an
average run-length variation value for all signals, based
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Figure 1 The following images show the likelihood of change points over all ALR sweeps arranged in matrix. The run-length likelihood

is computed recursively by p(rt , at|x1:t) = p(rt , at, x1:t)
(∑

rt

∑
at
p(rt , at , x1:t)

)−1
. The resulting likelihoods for having change point

are plotted, (brighter corresponds to higher likelihoods). There is more variations in the likelihood of change points in 50dB throughout
80-120 ms across the sweeps. For 100dB the likelihood of change point remains the same through all sweeps indicating no habituation is
occurring.
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on changes in the maximum likelihood run-length. This
provides a metric for comparing habituation and non-
habituation processes.

Conclusion
The results illustrate that the preprocessing method can
significantly enhance the results of the Bayesian change-
point algorithm. The algorithm is likely to fail in case of
the unprocessed version of the data. After noise-sup-
pression, the behavior of run-length variations over
sweeps is expressed more clearly. Also, on average (9
out of 11 data set) there exists higher change point var-
iations for 50dB compared to 100dB responses. This is
illustrated in Figure 1 where the likelihood of change
points tends to remain at a high value through all
sweeps indicating a constant state generation. The find-
ing illustrates that there exists a higher level of novelty
degree involved in case of habituation (50dB) compared
to non-habituation (100dB).
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