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Abstract 

Background  The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms—as 
diverse as bats, dolphins, and elephants—in only 10–20 million years. Behind the scenes, adaptation to new niches 
is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, 
including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these “outward-looking” 
families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression.

Results  Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and com-
prise the “tissue-specific” gene class that lack CpG islands in their promoters. Models of mammalian genome evolution 
have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased 
regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use 
population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expan-
sion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience 
relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find 
that isochores containing gene clusters exhibit low rates of recombination.

Conclusions  Our analyses suggest that tolerance of non-synonymous variation and low recombination are two 
forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts 
a profound effect on their chromatin organization and transcriptional regulation.
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Background
Reports of newly sequenced genomes frequently describe 
gene families that have “bloomed,” undergoing explosive 
diversification in the focal species [1–3]. Gene blooms are 
expansions in cis that result in arrays of dozens or even 
hundreds of genes. During gametogenesis, these tan-
dem duplication events are thought to arise via incorrect 
crossovers between paralogues or via non-homologous 
repair of chromosome breaks [4]. The resulting expan-
sions can confer unique life history traits recognized as 
definitive characteristics of the species: Examples include 
Cytochrome p450 genes for plant detoxification in koala 
and insects, lipocalins for pheromone communication 
in mouse, NK cell receptors for viral response in bats, 
keratins for whale baleen, venom production in snakes, 
and amylase copy number for starch consumption in 
modern humans [1, 2, 5–11]. The definitive gene family 
of mammals, the caseins, arose through local duplication 
of enamel genes [12]. The “birth-and-death” evolution 
of these gene families also results in high rates of pseu-
dogenization, and some species have lost whole fami-
lies [13–19]. In the mouse, we have shown that genes in 
copy-number-variable blooms exhibit extremely high AT 
content in their promoters and are often located in AT-
biased regions of the genome [20].

GC content in mammalian genomes varies markedly at 
the megabase scale [21]. Since the earliest days of cytol-
ogy, variation in staining patterns of DNA-binding dyes 
were apparent across the nucleus (heterochromatin and 
euchromatin) or along chromosomes (banding patterns). 
Banding patterns served as the original genetic maps and 
allowed scientists to link genetic phenotypes to physical 
positions in DNA [22]. Banding patterns were found to 
reflect local variation in AT/GC content: Giemsa-stain-
ing “G-bands” are AT-biased, and Quinacrine-staining 
“Q-bands” are GC-biased [22–25]. Early reports sug-
gested that G-bands were depleted for genes; that genes 
in G-bands tended to be “tissue-specific;” and that genes 
in Q-bands tended to be “housekeeping genes” [22, 26]. 
Moreover, human-chimp divergence rates were found to 
be higher in AT-rich G-bands than in GC-rich Q-bands 
[27]. In the genome sequencing era, breaks between 
bands were found to correspond to local transitions in 
GC content, and bands were found to be composed of 
smaller “isochores” with locally consistent GC content 
[28, 29]. While isochore definition has been debated, a 
representative classification breaks the human genome 
up into ~3000 isochores of 100 kb–5 Mb that range from 
35 to 58% GC [29–32].

The variation in GC content along the chromosome 
that is observed in mammals is not a general feature of 
metazoan, animal, or even vertebrate genomes. Both 
average GC content and the amount of local variation 

show wide divergence across clades [33, 34], leading to 
adaptationist speculation that isochore structure serves 
a function related to endothermy [35]. However, consen-
sus has emerged that GC-biased gene conversion (gBGC) 
following meiotic recombination, which occurs in most 
eukaryotes, is one important contributor to isochore 
emergence in mammals [33, 36]. In this process, cross-
overs are statistically more likely to result in gene con-
version towards more GC-rich sequences, resulting in 
a higher likelihood of inheriting higher-GC alleles. As 
stated by Pouyet and colleagues, “The gBGC model pre-
dicts that the GC content of a given genomic segment 
should reflect its average long-term recombination rate 
over tens of million years” [37, 38]. In this model, the 
isochores themselves do not serve an adaptive function, 
but rather have emerged due to the molecular genetic 
(“neutral”) forces of meiosis. Over evolutionary time, the 
GC-increasing effect of recombination is counteracted by 
the AT-increasing effect of point mutation due to muta-
tion of fragile cytosines to thymines [39–44]. As the rate 
of recombination and cytosine loss may themselves be 
influenced by sequence context (i.e., recombination more 
likely in GC-rich regions, cytosine mutation more com-
mon in AT-rich regions), positive feedback could have 
caused large genomic regions to diverge [27, 37, 39, 45]. 
However, the influence of these neutral forces on the 
genes contained within AT- versus GC-biased isochores 
has not been described.

Here, we examine the local and isochore-level AT/GC 
content of human protein-coding genes. Genes located in 
AT-rich regions of the genome have unique and consist-
ent characteristics: They are copy-number-variable fami-
lies located in tandem arrays, are expressed in terminally 
differentiated cells, are cell surface or secreted proteins, 
lack CpG islands in their promoters, and often have sto-
chastic or variegated expression. These protein fami-
lies are overwhelmingly involved in the “input-output” 
functions of an organism: sensation of the environment, 
protection from the environment, consumption of the 
environment, and production of bodily fluids. AT- ver-
sus GC-skewed isochores differ in their patterns of his-
tone marks; likely as a consequence, they differ in their 
replication timing, associate in nuclear space with other 
isochores of the same type, and occupy different domains 
within the nucleus [23, 46–48]. The distinct treatment of 
AT- versus GC-rich isochores by the molecular machin-
ery of the mammalian cell means that the genes located 
in AT-rich isochores must experience distinct molecular 
events from those located in GC-rich isochores.

Next, we ask how mammalian genes with outward-
looking functions came to be located in AT-rich regions 
of the genome. By comparing gene blooms of different 
sizes within the human genome and across mammalian 



Page 3 of 28Brovkina et al. BMC Biology          (2023) 21:179 	

species, we find that AT content is not necessarily inher-
ited from the ancestral species but can emerge with 
cluster expansion. Many of the mutagenic and repair pro-
cesses that contribute to the neutral mutation spectrum 
are likely to differ in strength across AT-rich and GC-
rich regions (reviewed in [49]). Using human population 
genetic data, we analyze allelic variation, patterns of point 
mutation, and recombination in human genes located 
in AT- versus GC-biased isochores. We find that genes 
in paralogous clusters are subject to less recombination 
than genes located near non-paralogues. Recombina-
tion may be dangerous in gene clusters due to the poten-
tial for chromosome rearrangements or within-cluster 
ectopic exchange that leads to duplications or deletions. 
It could also separate genes in large families from locus 
control regions they depend on for expression.

In addition, we find that while genes in AT-biased 
isochores have high sequence diversity among humans 
and divergence across species, they do not currently 
exhibit excess de novo point mutations (DNMs); as 
expected from the neutral mutation spectrum, GC-rich 
isochores and their genes exhibit higher DNM rates. 

Instead, genes in AT-biased isochores appear to have 
accumulated sequence variants over evolutionary time. 
The outward-looking genes in these allelically variable 
tandem arrays lack CpG island promoters and drive 
the known “tissue specificity” of genes that lack islands 
[26, 50, 51]. We hypothesize that the functional roles 
of genes whose protein products interface with unpre-
dictable and rapidly changing molecules in the environ-
ment (“outward-looking genes”) make them particularly 
likely to tolerate (or benefit from) non-synonymous 
variation. Diminished purifying selection on these 
genes is expected to shift GC content down over evo-
lutionary time due to deamination of cytosine leading 
to C->T transitions [49]; intolerance of recombination 
would prevent gBGC from shifting GC content back 
up [44]. We propose a model in which reduced recom-
bination and diminished selection on point mutations 
act together to strand arrays of outward-looking para-
logues in wells of low GC content (Fig. 1). Loss of CpG 
islands and residence in AT-rich genomic regions pre-
disposes these genes to exotic forms of highly tissue-
specific transcriptional regulation [52–56].

Fig. 1  Outward- versus inward-looking genes. A Summary description of the characteristcs of inward-looking and outward-looking gene 
families and their genomic distinctions. This table is inspired by Holmquist [57]. Descriptions derive from our analyses here and from references 
cited throughout the text. B Model of possible relationships between expansion of gene families in cis, genomic architecture, selective forces, 
and mode of expression. We hypothesize that as gene families duplicate in cis, selection on the amino acid sequence of individual family members 
weakens, while selection against recombination strengthens. Together, these effects would result in loss of GC bases over evolutionary time. Once 
a tandem array is AT-rich, it is more likely to be heterochromatinized and acquires highly tissue-specific expression patterns. The “quarantining” 
of expression reduces the phenotypic consequences of change in copy number, allowing further rounds of gene gain; nevertheless, the numbers 
of intact genes in certain families correlates with natural history and is likely under selection [58–61]. This mode of “birth-and-death evolution” 
also results in frequent gene loss through pseudogenization [17, 18, 62]. We expect that while forces described here are important contributors 
to emergence of sequence bias, our model is incomplete—there are likely to be additional neutral or selective mechanisms that make important 
contributions to the emergence of sequence bias in outward-looking tandem arrays. These could include the basal sequence content of a gene 
prior to any duplication, sequence effects of the molecular mechanism that produces gene duplication, differential amino acid usage in different 
kinds of proteins, or selective mechanisms that preferentially retain duplicates with weak promoters. Ultimately, these forces result in the observed 
gene content in mammalian isochores, where outward-looked arrays (reds and browns) are enriched in AT-rich regions, and single-copy genes 
with inward-looking functions (other colors) in GC-rich isochores
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Results
Characterizing a set of human isochores and their gene 
contents
We first comprehensively characterized the types of 
genes located in AT- versus GC-biased isochores and 
assessed if genes in AT-biased isochores are more likely 
to have numerous paralogues as neighbors. Isochore 
boundaries have been computed for previous genome 
assemblies, including for hg38 [29–31, 63]. While previ-
ous methods of isochore annotation binned the genome 
into 100 kb pieces or used manual inspection to annotate 
isochore ends, we used a segmentation algorithm which 
detects transitions in GC content and created a UCSC 
Genome Browser track for easy visualization of isochore 
assignments versus other genomic elements [64]. Cozzi 
et  al. compare various methods of isochore assignment, 
including GC-Profile, showing that differences are subtle 
and are most prevalent in the mid-ranges of GC content. 
We tested three resolutions and selected a map that visu-
ally matched 100 kb–Mb transitions in GC content using 
the %GC track on the UCSC Genome Browser (Fig. 2A, 
B). At this resolution, we call 4328 isochores; these range 
from ~30–70% GC and most are between 100  kb and 
5  Mb (Fig.  2C, D, Additional files 1 and 2, Additional 
file 3: Fig. S2A-C).

We next defined the home isochore of each gene in the 
NCBI MANE set. The MANE set includes one promoter 
and splice isoform for each intact, protein-coding gene 
and omits pseudogenes and complex “gene parts” such as 
V, D, and J segments of the B and T cell receptors [67]. 
On average, higher-GC isochores were more likely to 
contain protein-coding genes and had higher gene den-
sity (Fig. 2C, Additional file 3: Fig. S2A-B) [22]. To com-
pare features across isochores, we ordered isochores by 
GC% and divided them into ten groups (deciles) of ~400. 
To test whether tandemly arrayed “gene blooms” were 
associated with AT-rich isochores, we used Shannon’s 
H to measure gene name prefix diversity in isochores 
with at least ten genes (Fig. 2D). Gene names were least 

diverse in AT-rich isochores, consistent with the pres-
ence of tandem arrays in these isochores. We extended 
our analysis to isochores with fewer genes (at least five) 
and again found that gene arrays were less common in 
high-GC isochores (Fig.  2E, Additional file  3: Fig. S2H-
I). While AT-rich isochores are longer, gene diversity is 
lower in AT-rich isochores across the length distribution 
and for isochores with different numbers of genes (Addi-
tional file  3: Fig. S2F-G). Arrays in AT-rich isochores 
contained more paralogues, and the kinds of proteins 
present in AT-rich arrays versus GC-rich arrays were 
different (Fig.  2E, Additional file  3: Fig. S2F): Arrays in 
AT-rich isochores often served sensory, digestive, or bar-
rier functions, while arrays in higher-GC isochores most 
often contained HOX and ZNF transcription factors or 
arrays of histones (Fig. 2E, Additional file 3: Fig. S2I).

Only 25% of genes are located in isochores <40% GC. 
What sorts of gene families have bloomed in these iso-
chores? As GO analysis is biased by the annotations 
that are available, especially for extremely tissue-specific 
genes, we simply searched for common gene name pre-
fixes in isochores <40% GC (Fig. 2F). Gene families with 
at least four members in high-AT isochores were over-
whelmingly involved in chemosensation (OR, TAAR​
, TAS2R, MS4); xenobiotic metabolism (e.g., AMY1, 
UGT2, ADH); and immune, defense, and barrier func-
tions (e.g., KLR, IFN, DSC/DSG). Human ORs were also 
shown previously to be located in AT-biased isochores 
[68]. Examples of high-GC isochores with diverse gene 
members and high-AT isochores with repetitive gene 
members are shown in Fig.  2A, B and Additional file  3: 
Fig. S2D-E. While immunoglobulin parts do not appear 
in the MANE gene set, arrays of immunoglobulin V 
regions are also highly AT-biased (Additional file 3: Fig. 
S2G). These analyses demonstrate that AT-biased regions 
of the human genome contain tandem arrays of genes 
with outward-looking functions. We invite readers to 
explore these patterns further on our TrackHub, listed 
under “Availability of data and materials”.

Fig. 2  AT-rich isochores in the human genome contain tandem arrays of genes with outward-looking functions. A, B UCSC Genome Browser 
screenshots showing GC% trajectory [65], CpG islands [66], our isochore calls, and simplified gene models. Gene models are colored according 
to k-means clusters described below. Gene name prefix diversity (Shannon’s H) is shown for the highlighted isochores. C Relationship 
between isochore GC% and gene contents. Isochores shown in A, B are highlighted. Colors show how we binned isochores into deciles according 
to GC%. Dashed line shows the mean GC content of the human genome (41%). D Boxplots representing gene name diversity (Shannon’s H) 
of gene-rich isochores across GC% deciles shown in C. Red points indicate the mean prefix diversity of the decile; black lines show medians. Here 
and throughout, most groups are statistically different from one another, except for adjoining groups; full statistical comparisons are presented 
in Additional file 4. E Comparison of number of genes in an isochore versus number of different gene name prefixes represented in that isochore, 
for isochores of at least five genes. Each dot is an isochore; isochores falling below the trend line contain clusters of genes with the same prefix. 
Isochores are labeled by the most common gene name prefix in that isochore. F Gene families with at least four members in isochores < 40% GC. 
Twenty-five percent of all genes are in isochores less than 40% GC (black line). Red bars depict proportions of genes with that prefix that are located 
in < 40% GC isochores. Gene family prefixes shown in black text are enriched in AT-rich isochores, while those shown in gray text (e.g., KRTAP, TRIM, 
SCN) have multiple family members in AT-rich isochores but are not enriched there. Functions of these gene families are marked at left, and total 
number of genes with that prefix in the MANE set are shown at right

(See figure on next page.)
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Categorizing human genes according to local patterns 
of AT/GC content
We show above that tandemly arrayed genes serv-
ing outward-looking functions are enriched in AT-rich 
regions of the human genome, as they are in mouse 

[20]. We sought next to ask whether the regulatory and 
transcribed regions of genes, which occupy a fraction of 
genome space, also vary in GC content across different 
kinds of genes, and whether GC content of local gene 
features follows that of the isochore context. The null 

Fig. 2  (See legend on previous page.)
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expectation of this analysis is different from a statistical 
genetic versus a molecular point of view. From a statis-
tical standpoint, the expectation would be that GC% 
would co-vary between gene parts (e.g., flanking regions, 
promoter, coding sequence) and their isochore con-
text. From a molecular point of view, transcribed units 
and regulatory regions would be expected to have a GC 
content aligned with their regulatory or protein-coding 
function and would not necessarily match their genomic 
location. We calculated GC% in 50-bp sliding windows 
along the transcriptional unit (transcription start site 
to transcription end site, TSS-TES) and 1-kb flanking 
regions for genes in the MANE set [65, 67]. Our analy-
sis here includes introns, but clustering on exons and 
flanking regions produced similar results (Additional 
file 3: Fig. S3A-B). We used iterative k-means clustering 
to group the 18,640 MANE genes into 3 × 3 sets (Fig. 3A, 
Additional file 3: Fig. S3A). The top-level clusters (1-, 2-, 
3-) reflect overall differences in AT content in different 
genes (Additional file 3: Fig. S3A), while the subclusters 
(1.1, 1.2, 1.3, etc., Fig. 3A) reflect variation in AT content 
of the promoter, transcriptional unit, and 3′ region. To 
capture both the broad isochore context of genes and 
their local sequence features, we use both the isochore 
AT/GC metric and the local sequence-based k-means 
clustering throughout this study; each gene in the MANE 
set is assigned uniquely to one home isochore and one 
k-means cluster (isochore deciles 1–10, red-blue palette; 
k-means clusters 1.1–3.3, rainbow palette). Cluster and 
isochore assignments and other gene-linked data are pro-
vided in Additional files 5 and 6.

The power of this approach is that it captures patterns 
of feature GC% in relation to one another: For most 
gene categories, a sharp rise in GC content marks the 
approach of the TSS, while the transcribed region and 
the region 3′ of the TES share lower GC content. This 
GC rise at the TSS clearly corresponds to the promoter. 
In this context, the paltry GC enrichment at the promot-
ers of genes in cluster 3.3 (and to a lesser extent 3.1) is 
extremely stark (Fig. 3A).

Based on high-confidence annotation of transcription 
start sites, we showed previously that mouse olfactory 
receptor promoters share this GC-poor pattern [20]. At 
that time, the TSS’s of other highly tissue-specific genes 
had not been mapped. Current human annotations in 
the MANE set are high-confidence, curated gene mod-
els. Nevertheless, many of the genes in cluster 3.3 are 
extremely tissue-specific (see below) and have less sup-
porting mRNA data than more widely expressed genes. 
We identified 240 genes in the MANE set (1.3%) that 
lack annotated 5′ UTRs, i.e., where the annotated tran-
scription start site and translation start site are the same. 
While these were indeed mostly contained in cluster 3.3 

(150 of 1636 genes in 3.3, 9%), there was no difference 
in promoter GC content between these suspect gene 
models and other genes in cluster 3.3 (data not shown). 
Indeed, our manual inspection of available RNA data for 
a subset of these genes suggests that the transcription 
start sites are correct, but that translation likely initiates 
at a downstream ATG.

We next examined how a gene’s isochore GC context 
relates to the sequence content of its promoter and cod-
ing region. We found that patterns of local GC content of 
genes predicted the GC content of their home isochore, 
consistent with the statistical genetic null hypothesis, 
but very surprising considering the functional implica-
tions (Fig. 3B). The GC content of a gene with its flanking 
regions (gene extent with 25 kb on each side) correlated 
closely with the GC content of its whole isochore (Addi-
tional file  3: Fig. S3C). Individually, promoter and cod-
ing sequence GC% were also positively correlated with 
isochore sequence content, but the correlation coef-
ficients were weaker: A subset of genes in AT-rich iso-
chores have GC-rich promoters or GC-rich coding 
sequences (Additional file 3: Fig. S3D-E).

Genes in clusters 3.1 and 3.3, lacking GC enrichment in 
their promoters, were highly enriched for the same func-
tional categories as were genes in AT-rich isochores: che-
mosensation, xenobiosis, and defense/barriers. Indeed, as 
can be seen in Fig. 2A, B and Additional file 3: Fig. S2D, 
sometimes entire arrays were members of cluster 3.3 
(brown color). To systematically test this, we plotted the 
promoter GC content distribution of genes in categories 
we term “outward-looking” (chemosensation, defense, 
xenobiosis, barriers) versus “inward-looking” (e.g., tran-
scription, kinase function, morphogens). Outward-look-
ing genes have AT-rich promoters while inward-looking 
genes have GC-rich or average promoters (Fig. 3C). We 
manually annotated common prefixes and enrichment 
of genes in cluster 3.3 (Fig. 3D): This group included all 
the chemosensory families, many sets of digestive and 
detoxifying enzymes, and several receptor arrays in 
the immune system and skin. It also included clustered 
protocadherins, which share transcriptional regulation 
patterns with chemosensors. In accordance with the 
preponderance of tandemly arrayed genes found in clus-
ter 3.3, we found that genes in this cluster were housed 
in fewer unique isochores and had lower name diversity 
than those in the other k-means clusters (Fig. 3E, Addi-
tional file 3: Fig. S3C).

Finally, we asked whether being located near paral-
ogues could predict local sequence features (Fig.  3F). 
Indeed, genes near 1–4 neighbors with the same pre-
fix had more AT-rich promoters than genes not located 
near paralogous genes, and genes with more than four 
same-prefix neighbors had AT-elevated promoters, 
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coding regions, and flanking regions compared to 
both genes in small clusters and singletons. The strik-
ing coordination of isochore, promoter, and coding 
sequence AT content in tandemly arrayed “outward-
looking” gene families prompted us to investigate how 
this pattern relates to the evolution of tandem arrays.

Increasing AT content during evolutionary expansion 
of tandem arrays
As shown above, we find that both the regional and 
local AT content is high in tandemly arrayed gene clus-
ters in human. AT bias could have emerged as gene 
families expanded or could have been pre-existing and 
supported molecular mechanisms of gene duplication. 
To ask whether AT content rises with the number of 
paralogous genes in a tandem array, we sought to track 
copy-number-variable tandem arrays across mammals. 
Assessing the evolution of tandem arrays is difficult, 
as large proportions of local paralogues can be species-
specific duplications (Additional file 3: Fig. S4C and [62, 
69–71]). Therefore, instead of seeking to identify true 
homologous genes across different mammalian species, 
we used synteny analysis to follow whole arrays over 
evolutionary time. We searched for large gene arrays in 
human that could be identified across diverse mammals 
using microsynteny, where conserved heterologous genes 
serve as “bookends” bounding the ends of the paralogous 
tandem array.

While copy-number-invariable gene arrays, such as 
the HOX clusters, were easy to track across all mam-
mals, as expected, the copy-number-variable gene arrays 
that would be informative for this analysis showed fre-
quent assembly errors, micro-inversions, and array inva-
sions by other heterologous genes. For example, while we 
observed that the expanded KLR array of NK cell recep-
tors in the fruit bat Rousettus aegyptiacus and phero-
mone-associated MUP array in Mus musculus each had 
sharply higher AT content than surrounding genomic 
regions, each array had a large assembly gap [9, 72]. 

While this limited the number (and, indeed, the extrem-
ity) of arrays that we were able to track, we identified six 
copy-number-variable arrays that were suitable for analy-
sis: an OR array adjacent to the hemoglobin beta genes 
[73]; the Cyp2ABGFST cluster of xenobiotic enzymes; 
the SERPINA cluster of defensive protease inhibitors; 
the “epidermal differentiation complex” (EDC), contain-
ing skin proteins in the LCE, S100, and SPRR families; 
and two clusters of keratin-associated proteins (KRTAPs) 
which form epidermal appendages such as hair, nails, and 
claws. These six clusters have diverse median GC content 
as can be seen in Fig. 4A–H. We also included the copy-
number-invariable HOXA cluster for comparison.

For each of these clusters, we defined bookend genes 
as indicators of synteny that must be present for a par-
ticular species to be included in analysis. In mammals 
for which we could find these bookends on the same 
scaffold or chromosome, we computed the number of 
genes between bookends, spot-checking species whose 
counts were markedly higher than those of other spe-
cies. The number of paralogues in each cluster is plot-
ted across the mammalian clade in Additional file  3: 
Fig. S4C, showing the frequency of lineage-specific 
cluster expansions and contractions. Our full annota-
tions of the contents of these clusters are provided in 
Additional file 7.

For each cluster in each species, we calculated the GC% 
between the bookend genes; relationships between GC% 
and gene count appeared to be log-linear. We performed 
phylogenetic least squares (PGLS) analysis to test for a 
relationship between GC content and log(paralog num-
ber) while controlling for phylogenetic relatedness in the 
multi-species dataset (Fig. 4A–H). For the OR, EDC, and 
SERPINA clusters, AT content rose significantly with 
paralogue number (PGLS P < 0.05), suggesting that AT 
content can rise as the number of paralogs in tandem 
arrays grows. Certain arrays in certain species will have 
latent assembly or annotation errors; however, for the 
HBB-OR array, we manually counted a subset of species 

(See figure on next page.)
Fig. 3  Genes with outward-looking functions have high local AT content. A GC content trajectory for human protein-coding genes in the MANE 
set. Genes were subdivided by iterative k-means clustering. At top, the average GC content trajectory for each k-means cluster is shown as a line 
graph. At bottom, each gene is a row and GC content across the transcriptional unit and flanking regions is depicted from red (high AT) to blue 
(high GC). Rainbow colors assigned to each k-means cluster here will be used throughout. B Relationship between k-means cluster assignment 
and home isochore GC% for each gene in the MANE set. Red lines depict medians. C GO term distribution by promoter GC content for genes 
in the MANE set. Genes with immune, barrier, chemosensory, and xenobiotic functions have AT-skewed promoters. Genes with developmental 
and intracellular functions have GC-skewed promoters. Gray shading shows promoter GC content distribution of the whole MANE set. D Gene 
name prefixes enriched in cluster 3.3. Families shown have at least four members in cluster 3.3; proportion of the family located in this cluster 
is depicted in brown bars. Less than 10% of genes are in cluster 3.3 (“all”). E Gene prefix diversity (Shannon’s H) is lowest in cluster 3.3. F Distribution 
of promoter, intron, flanking sequence, and coding sequence GC% across genes which do not have paralogous neighbors in their home isochore 
(gray, genes with 0 tandem neighbors), genes which exist in small local duplications (red, genes with 1–4 tandem neighbors), and genes which 
exist in large multigene arrays (brown, genes with 5 or more tandem neighbors). A subset of genes without introns appears as 0’s
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Fig. 3  (See legend on previous page.)
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in parallel and saw the same trend (Additional file  3: 
Fig. S4A). The HOXA cluster showed variation in GC% 
despite maintaining the same number of paralogs in the 
cluster over evolutionary time; this variation appears to 

be predicted by evolutionary variation in the length of 
the cluster (i.e., number of base pairs between bookends, 
not shown). We were able to follow the HBB-OR cluster 
to non-mammalian amniotes and found a sharp rise in 

Fig. 4  AT content is correlated with tandem array expansion. A–G Comparison of number of A OR genes in the Hemoglobin β (HBB) cluster, 
B LCE, SP100, and SRR genes in the Epidermal Differentiation cluster, C CYP2A genes in the CYP2ABGFST cluster, D SERPINA genes, E KRTAPs 
and KRTs in the Type I KRT locus, F KRTAPs in the high tyrosine-glycine KRTAP cluster, and G the HOXA locus with cluster GC% across mammals. All 
p-values report results of phylogenetic least squares analysis (PGLS). H Average GC% across the cluster, intergenic, intronic, promoter, and coding 
sequence of each tandem array. Each point represents one mammal species from panels A–G. I PGLS slope values and J R-squared values 
of phylogeny-corrected correlation of feature GC% to cluster GC%. Asterisks represent magnitude of PGLS p-values for each relationship, i.e., one 
asterisks represents a p-value between 0.05 and 0.01, two represent a p-value between 0.01 and 0.001
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GC content as the number of ORs in the region melted to 
0 (Additional file 3: Fig. S4A-B).

The raw GC% of each cluster was poorly correlated 
with variation in genome-wide GC content across spe-
cies (Fig. 4I, J). However, each cluster type maintained a 
consistent relationship to the overall GC% of the genome: 
Across diverse mammalian species, the OR cluster and 
KRTAP cluster were almost always more AT-rich than 
the genome as a whole, while the other five clusters were 
almost always more GC-rich than the genome as a whole 
(not shown).

What portions of these genomic regions drive the 
variation in local GC content over evolutionary time? 
To assess this, we developed a series of scripts we call 
TandemClipR (see  “Availability of data and materials”), 
which divided each cluster in each species into CDS, 
intron, promoter, and intergenic regions. To avoid the 
“false-TSS” problem described above, we included only 
genes with annotated 5′ UTRs in our promoter analyses. 
We found that the GC% of each sub-region was posi-
tively correlated with the overall cluster GC% (Fig. 4H–
J). As we described above, this is expected from a 
statistical point of view, but surprising from a molecular 
point of view given that coding regions and promoters 
perform important molecular work. For example, only 
some amino acids can be coded with high-GC codons. 
Variation in intergenic regions contributed the most 
to cluster GC%, as expected based on their compris-
ing a preponderance of the sequence. Despite varying 
with cluster GC%, coding regions, introns, and promot-
ers had consistently higher GC content than the cluster 
as a whole, consistent with their functional constraints 
(Fig. 4H).

Finally, we asked how the GC% of sub-regions of the 
cluster were related to the number of paralogues in the 
cluster (Additional file  3: Fig. S4D-E). For the clusters 
whose AT content rose with local paralogue number, the 
AT content of each substituent portion of the sequence 
(promoters, coding regions, introns, intergenic regions) 
also rose. The particular feature that correlated best 
with paralogue number varied across gene families, and 
no individual feature was consistently more correlated  
with paralog number than GC% of the whole cluster. In  
sum, we find that cluster AT content can rise as paralogous  
clusters bloom over evolutionary time; remarkably,  
these trends affect all the sequence components of the 
cluster, suggesting neutral or selective mechanisms  
that act cluster-wide. We hypothesize that local gene 
contents, particularly paralogous clusters of genes, can 
influence the emergence of isochores differing in GC con-
tent. Next, we provide a model for how this could have  
come about.

Accumulation of Coding Sequence Diversity
As we show above, many types of outward-facing genes 
have extremely divergent paralogue number across mam-
malian species (Additional file  3: Fig. S4C). Anecdotally, 
genes in these families also exhibit extreme allelic diversity 
and copy number variations among humans, and polymor-
phisms in these genes underlie human phenotypic varia-
tion in drug metabolism, sensory perception, and immune 
response [1, 11, 62, 74–79]. Outward-looking tandem 
arrays evolve by birth-and-death evolution and are littered 
with pseudogenes [17, 18, 62]. A variety of segregating loss-
of-function polymorphisms in these gene families have 
been described in humans [13–16]. Colloquially, outward-
looking genes are so diverse in copy number and sequence 
that a first step in GWAS is often to “throw out the ORs”.

Previous reports, including ours, have speculated that 
partitioning inward- and outward-looking genes into dif-
ferent parts of the genome could enable a higher ongo-
ing mutation rate in AT-rich, outward-looking genes; 
however, point mutation rate is in general positively cor-
related with GC content because cytosines are especially 
mutation-prone [20, 49, 80, 81]. In the first model, AT 
content would facilitate mutagenesis of genes in these 
families. In the second model, relatively high point muta-
tion drift in large gene families could have contributed to 
their shift to higher AT content over evolutionary time.

To test between these possibilities, we first systemati-
cally examined the degree of coding sequence variation in 
human genes grouped by AT/GC content or by degree of 
local tandem gene duplication, using the gnomAD data-
set of rare single-nucleotide variants ascertained from 
whole exome sequencing of >100,000 unrelated people 
(gnomAD v2.1.1, Fig. 5A, B) [82]. Genes in AT-rich iso-
chores and k-means cluster 3.3 are highly enriched for 
non-synonymous versus synonymous variants (Fig.  5A, 
B). Genes near paralogous neighbors were also enriched 
for non-synonymous variants (Fig.  5E, F). We note that 
use of rare variants profoundly understates the allelic 
variety in outward-looking genes, which exhibit radical 
common variation and high rates of copy number and 
structural variation. For example, any two humans are 
estimated to have function-changing variation (loss of 
function, change in expression level, or change in tuning) 
in 30% of their olfactory receptor genes [83, 84].

Does the high polymorphism of genes in outward-
looking tandem arrays result from differential mutation 
or selection versus inward-looking genes? We first exam-
ined synonymous variants from gnomAD as a proxy for 
mutations. We see that AT-rich genes have fewer syn-
onymous variants across unrelated people than do GC-
rich genes (Fig. 5C, D, Additional file 3: S5A-D). This is 
consistent with point mutation rate being grossly driven 
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by deamination of cytosine, especially in the CmeG con-
text: AT-biased genes have essentially run low on CpG 
dinucleotides to mutate [39–43, 86, 87]. Incidentally, 
we observe that olfactory receptor genes have higher 
rates of variant calls than do other AT-rich genes (Addi-
tional file 3: Fig. S5F). This inflated rate could reflect an 
unknown mutagenic process but could also result from 
incomplete knowledge of the full human “OR-ome” and 
incorrect assignment of homology relationships.

The enrichment of non-synonymous variation in out-
ward-looking genes relative to low levels of synonymous 

variation could result from different selective processes 
acting on single- versus multicopy genes. Single-copy 
genes are uniquely responsible for a particular biological 
process, while tandem arrays may distribute a particular 
process over a large set of family members (i.e., subfunc-
tionalization). Deleterious mutations to single members 
of such large gene families are therefore more likely to be 
of scant phenotypic consequence. Indeed, we find that 
genes with more tandem neighbors have higher rates of 
non-synonymous versus synonymous variants (Fig. 5E, F, 
Additional file 3: Fig. S5E). To test how local and isochore 

Fig. 5  AT-rich genes have high diversity despite experiencing moderate mutation rates in the present. A, B Ratio of non-synonymous (missense 
plus loss of function) versus synonymous rare variants in the MANE gene set identified in gnomAD v2.1.1 exome sequencing of > 100,000 unrelated 
individuals [82]. Genes are binned by isochore decile (A) or k-means cluster (B), and dots indicate means. gnomAD rare variants are defined 
by < 0.1% allele frequency. C, D Raw counts of rare synonymous variants per gene in gnomAD v2.1.1 binned by isochore decile (C) or k-means 
cluster (D). E, F Variant rates from gnomAD v2.1.1 for genes with or without paralogous neighbors. Box plots show median and mid-quartile 
distribution. G, H Cumulative frequency distribution plots of gnomAD pLI (likelihood that a gene is loss-of-function intolerant) relative to a gene’s 
k-means cluster assignment (G) or promoter GC% (H) [82]. I, J Number of de novo point mutations observed per kb across the genes (TSS to TES) 
within an isochore relative to isochore GC% (I) and isochore GC% binned by decile (J). ~700,000 DNM calls are pooled from all ~11,000 trios 
sequenced to date [85]
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GC content relate to the functional dispensability of 
genes, we used the gnomAD metric of “loss-of-function 
intolerance” (pLI): genes have high pLI if deleterious 
mutations are depleted from the population [82, 88]. 
Genes predicted to be loss-of-function intolerant were 
enriched in GC-rich isochores, had GC-rich promoters, 
and were absent from cluster 3.3 (Fig. 5G, H, Additional 
file 3: Fig. S5G); AT-skewed, outward-looking genes had 
lower probabilities of being loss-of-function intolerant, 
i.e., they are relatively dispensable. We emphasize that 
genes in all categories still experience some level of puri-
fying selection, as the observed rate of loss of function 
alleles is still less than expected from the null mutation 
spectrum (Additional file  3: Fig. S5F). For example, the 
total number of intact members of various chemorecep-
tor subfamilies has been observed to correlate with eco-
system or diet [58–61, 89].

To examine modern mutagenesis patterns directly, 
we sought to measure the rate of de novo mutations 
that occur in genes in AT- versus GC-biased regions of 
the human genome. Whole genome sequencing of two 
parents and a child (trios) enables detection of de novo 
mutations (DNMs). We used a recent dataset that com-
piles DNMs from >11,000 trios, nearly all those who have 
been sequenced to date [85]. While these ~700,000 total 
DNMs remain sparse relative to the size of the genome, 
they approximate a record of mutagenesis that has yet 
to be operated on by external selection. Pooling DNMs 
across each isochore and across transcriptional units 
(TSS to TES) within that isochore, we found that both 
genic and isochore-wide DNMs were more common 
in higher-GC isochores (Fig.  5I, J, Additional file  3: Fig. 
S5H-I). This is consistent with sequence-based predic-
tions, prior findings, and our analysis of gnomAD synon-
ymous variants within genes [90, 91]. We note that while 
both DNM and synonymous variant rates are highest in 
high-GC isochores, there is less variation across deciles 
1–5. This may suggest that late replication timing, lack of 
transcription-coupled repair, or higher rate of methyla-
tion of CpG sites in AT-rich regions somewhat counter-
balance CpG prevalence in GC-rich regions.

Regions that are extremely AT- or GC-rich are 
sequenced somewhat less often by short-read meth-
ods than are sequences of middling GC content. There-
fore, higher read depth is required to saturate detection 
of DNMs in sequence-biased regions [90]. To assess the 
saturation and consistency of DNM calls across iso-
chores of varying GC content, we separated the aggregate 
DNM dataset by original study and repeated our analyses 
(Additional file 3: Fig. S5J) [90, 92–96]. We found that the 
trend of more DNMs in higher-GC isochores replicated 
in most individual studies and that this trend became 
stronger in studies with higher sequencing depth, as 

expected. In addition, individuals with certain disor-
ders or diseases, such as autism spectrum disorder, are 
enriched among the individuals who have been assessed 
for DNMs; these differences did not drive the variation 
in DNM rate across isochore GC categories (data not 
shown) [85].

Together, comparison of de novo mutations in meiosis 
and single-nucleotide variants in unrelated humans both 
support the conclusion that despite their high divergence 
and diversity, AT-biased genes experience fewer contem-
porary mutations overall than do GC-biased genes. It is 
therefore unlikely that genes are quarantined in AT-rich 
regions of the genome to facilitate higher mutation rates. 
Instead, diminished purifying selection on members of 
outward-looking gene blooms could underlie both diver-
sity and increased AT content.

Recombination and PRDM9 Binding
Recombination may be the primary influence on large-
scale patterns of AT/GC content due to GC-biased 
gene conversion, which elevates GC content. AT-biased 
chromosomal bands are described as experiencing less 
recombination than GC-biased bands [27, 33, 37]. We 
sought to test how recombination rates relate to GC con-
tent of inward- versus outward-looking genes. We there-
fore used whole genome sequencing data from human 
trios to measure recombination in isochores of different 
GC contents and in their constituent genes [92].

Crossovers appeared rare within gene blooms (Fig. 6A, 
Additional file 3: Fig. S6B). We calculated a relative cross-
over rate for each isochore and found that AT-rich iso-
chores experienced less maternal and paternal crossovers 
than GC-rich isochores, as has been previously observed, 
though maternal crossovers were sharply diminished in 
the highest-GC isochores (Fig.  6C, D) [22, 92, 97, 98]. 
We noticed that these low-crossover, high-GC isochores 
were often at chromosome ends, where maternal recom-
bination has been shown to be low [99]. To systematically 
examine recombination relative to each gene along the 
chromosome, we generated a Manhattan plot of crosso-
ver rate for each gene and its flanking regions (Fig.  6B, 
Additional file  3: Fig. S6A). This highlights the higher 
recombination of genes located in GC-rich isochores, 
except for maternal recombination at chromosome ends.

Recombination in paralogous clusters can induce 
dramatic insertions, deletions, and chromosome rear-
rangements if paralogues errantly pair with one another 
[100]. While clusters of outward-looking paralogues 
are enriched in AT-rich regions, the conserved clusters 
of paralogues located in GC-rich regions, such as Hox 
clusters, may also be risky to recombine. To separate 
the influence of AT/GC content versus clustered-ness, 
we compared recombination rates across clusters of 
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Fig. 6  Crossovers are directed away from AT-rich isochores and genes. A UCSC genome browser screenshot of human KRTAP cluster showing 
recombination rates (maternal meiosis in red, paternal meiosis in blue) and PRDM9 binding calls (black). B Manhattan plot of standardized maternal 
(above 0) and paternal (below 0) recombination rate for each gene with its 25-kb flanking regions. Genes are colored according to the GC content 
of their home isochore (Red: high AT. Blue: high GC). Scale bars: 10 Mb. Chromosome ideograms reflect centromeres (bright red), gaps (dark red) 
and Giemsa bands (grays). Recombination rates are low for genes located in AT-rich isochores, except at chromosome ends, which are depleted 
for maternal recombination. C Maternal and D paternal crossover rates in isochores binned by GC percent. Crossover calls are from deCODE [92]. E 
PRDM9 peak enrichment across isochores binned by GC%. F, G Scatterplot of tandem neighbor counts per genes within the same isochore versus F 
the sum of maternal and paternal standardized relative recombination and G sum PRDM9 enrichment
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different sizes (Fig.  6F). However, most large clusters of 
genes were AT-rich and had little recombination, making 
it difficult for us to separate which variable dominates. 
While recombination is generally directed away from 
genes, some genes experienced crossovers. We plotted 
the isochore and k-means cluster distribution of genes 
with the 10% highest internal crossover rate (TSS-TES, 
Additional file  3: Fig. S6D-E). These genes were in GC-
rich isochores and excluded from AT-rich k-means clus-
ter 3.3. Together, these analyses suggest that gene blooms 
located in AT-rich regions of the genome experience low 
current crossover rates.

In many vertebrates, including humans, crossovers are 
seeded by binding of PRDM9 to its target site [101–103]. 
To test whether variation in observed recombination 
across AT/GC categories is due to differential seeding, 
we examined PRDM9 binding data from human cells 
(Fig. 6E, G, Additional file 3: S6F-G) [104]. We observed 
a striking depletion of PRDM9 binding from AT-biased 
gene clusters and isochores, in line with previous analyses 
[97]. We note that many animals have lost PRDM9, and 
in the absence of PRDM9, recombination is often seeded 
at CpG islands [105]. As described below, AT-biased 
gene families also lack CpG islands. Taken together, these 
results suggest that AT-biased, tandemly arrayed gene 
clusters experience low rates of recombination and that 
this likely results from low rates of crossover initiation.

Transcriptional regulation of outward‑ 
versus inward‑looking genes
Our analyses above lead to the hypothesis that clusters 
of paralogues that are not subject to purifying selection 
(i.e., “outward-looking genes”) lose GC content as they 
bloom due to reduced recombination and increased tol-
erance of point mutations. We further hypothesize that 
the sequence content and context of these genes has been 
evolutionarily co-opted to produce extreme tissue speci-
ficity and/or variegation of their transcription. While 
we expect that isochore-level AT/GC content influences 
genomic organization and histone mark flavors, which 
would influence transcription indirectly, we also noticed 
that paralogous clusters of genes lacked annotated CpG 
islands in their promoters (see CpG Island track, Fig. 2A, 
B, Additional file 3: Fig. S2D) [66]. CpG dinucleotides are 
depleted from vertebrate genomes due to the mutabil-
ity of methylated cytosine; nevertheless, CpGs are rela-
tively enriched in vertebrate promoters, and these “CpG 
islands” frequently remain unmethylated [106]. Previous 
analyses suggested that 50–70% of mammalian genes 
have CpG island promoters [26, 107, 108]. Neverthe-
less, by considering each gene in its sequence context, 

we estimate that 90% of protein-coding genes have GC 
enrichment directly upstream of the TSS (Fig. 3A).

While CpG islands are calculated relative to the GC 
content of the region, we sought to ask if it is even pos-
sible to have a CpG island in an AT-rich region [109]. As 
in Fig. 2, we separated isochores of at least five genes by 
GC content, gene number, and prefix diversity, and then 
calculated CpG island scores on a per-gene basis (Fig. 7A, 
B). Surprisingly, genes located in all types of isochores 
could have CpG islands in their promoters, but genes in 
large paralogous arrays often did not. Highly conserved 
genes in arrays, like Hox and Histone arrays, retained 
their islands regardless of the GC content of the iso-
chores. Gene blooms lacking CpG islands tended to be 
outward-looking, and almost all large, island-poor arrays 
were in AT-rich isochores. We also noticed that the shape 
of islands around the TSS varied across our k-means 
clusters, with some clusters having islands that were sym-
metrical relative to the TSS, and others having islands 
that were polarized to the 3′ side of the TSS (Additional 
file 3: Fig. S7A). CpG island length has also been previ-
ously associated with expression heterogeneity [110].

Because CpGs are only protected from methylation 
when they are located near other CpGs, i.e., in islands, 
and because methylated CpGs are extremely mutation-
prone, CpG loss can be precipitous once it begins [39]. 
We calculated observed promoter CpG sites compared 
to the expected rate based on local sequence content and 
observed a bimodal distribution across genes of all iso-
chores, though the observed/expected CpGs elsewhere 
in the isochore were predicted by GC content (Fig.  7C, 
D, Additional file 3: Fig. S7A-B). Thus, though CpG-less 
promoters are more common in high-AT isochores, 
islands are compatible with genes in any isochore con-
text [109]; island loss appears specific to paralogous gene 
blooms (Fig. 7E). Across a range of isochore GC contents, 
genes near tandem neighbors had CpG-poor promoters 
compared to singletons (Additional file 3: Fig. S7E). This 
promoter state also drives k-means clustering of genes 
in 3.1 and 3.3 (Fig. 7D). Many genes in 3.1 and 3.3 have 
no more CpGs in their promoters than the genome-wide 
average (~25% of expected CpGs). Further separating 
these k-means clustered genes into those with paralogous 
neighbors and those without did not stratify promoter 
architecture, suggesting that the k-means categories are 
already sensitive to the AT/GC sequence features delin-
eating genes in paralogous clusters (Additional file 3: Fig. 
S7D).

As we and others suggested previously in the mouse, 
CpG-less promoters are likely to be regulated by non-
canonical mechanisms that are independent of TATA-
binding protein (TBP) [20, 111]. This could allow the 
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unique and rare expression of these genes relative to 
their CpG-containing brethren: their ground state is to 
be “off forever”. While hemoglobin β and amylase genes, 
which we now know to be small clusters of paralogues, 
were shown to lack CpG islands in their promoters in the 
1980s, measurements of the relationships between tissue 

specificity and promoter architecture were performed 
before the transcription start sites and promoters of the 
vast majority of tissue-specific genes were mapped [22, 
26, 51, 112]. To test how AT/GC distribution in genes 
relates to patterns of gene expression, we used GTEx 
data, which measures gene expression in 54 tissue types 

Fig. 7  Lack of CpG islands and restricted expression is a feature of tandemly arrayed AT-rich genes. A Promoter CpG island frequency (from [66]) 
in isochores of varying gene content. Same plots as in Fig. 2E, recolored to highlight promoter characteristics. Most common gene name prefixes 
in the isochore are labeled. B Multigene score versus isochore GC% for isochores containing tandem duplicated genes. Color represents fraction 
of genes in the isochore with promoter CpG islands. C–E Distribution of promoter CpG rate for genes binned by C isochore GC% decile, D k-means 
cluster assignment, or E tandem duplication score. We counted CpGs from −750 to +250 bp around the gene TSS and compared to the expected 
rate for a sequence of that GC content. F–H Distribution of tissue-level gene expression for genes binned by F isochore GC% decile, G their k-means 
cluster assignment, or H tandem duplication score. GTEx data from 54 human tissues was binarized to “expression” or “no expression” based on RPKM 
of 5. AT-rich genes and those in paralogous arrays are detected in few or no sampled GTEx tissues, while GC-rich genes are frequently detected in all 
sampled tissues. Black bars depict medians
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taken from adult human donor cadavers [113]. We set a 
threshold (RPKM of 5) to binarize this quantitative data 
to “expression” or “no expression”. In agreement with 
Bird’s hypothesis, this simple metric varies sharply across 
genes of different k-means clusters or with differing pro-
moter or home isochore GC content (Fig. 7F–H) [20, 22, 
26, 50, 112]. Genes that are GC-rich are often expressed 
in many or most tissues tested, while AT-biased genes 
most often appear to be expressed nowhere or in one 
tissue. We note the many genes with “no” expression in 
GTEx are specific to tissues not sampled by GTEx (e.g., 
olfactory receptor genes in the olfactory epithelium). We 
infer that genes not detected in any tissue in GTEx data—
i.e., the preponderance of AT-rich genes—are highly tis-
sue-, cell type-, time-, or condition-dependent in their 
expression. As we have shown throughout this study, 
these exotically transcribed, CpG-less genes are located 
in evolutionary dynamic clusters of paralogues and tend 
to be housed in AT-rich isochores.

In the longest-lived cells in the body, post-mitotic neu-
rons, tandemly arrayed gene families have been shown 
to be clustered with one another in nuclear space and 
to be uniquely protected from accumulation of CpH 
(Cp-nonG) methylation [56, 114, 115]. These findings, 
together with the overwhelming transcriptional repres-
sion of these gene families, suggest that they might be 
sequestered in nuclear space away from the transcrip-
tional machinery. Indeed, we found that across 21 tissues 
sampled by Hi-C, AT-rich genes, and genes located in 
AT-rich isochores were likely to be located in transcrip-
tion-suppressing “B” compartments (Additional file  3: 
Fig. S7F-G) [116]. Previous analyses have demonstrated 
that variation in GC content also predicts local chroma-
tin looping and association with the lamina and other 
nuclear structures [23, 46, 63, 117].

Discussion
Animals make extensive and varied contacts with the 
external environment, both engaging with foreign mol-
ecules and producing and excreting their own sub-
stances. Specialization of these input-output functions 
plays a definitive role in animal lifestyle and often occurs 
in mammals via amplification and diversification of tan-
demly arrayed gene families [10, 12, 20, 58, 89]. Extensive 
gene losses are also common—for example, just as the 
vomeronasal organ is vestigial in humans, human genes 
for vomeronasal receptors are no longer functional [19, 
118]. Here, we define a common genomic architecture 
in mammals for genes whose products engage the exter-
nal world: they are in tandem arrays, are found in AT-
biased isochores, and lack CpG islands in their promoters 
(Fig. 1) [20, 53]. In humans today, we find that genes in 
AT-rich tandem arrays experience low rates of point 

mutation and recombination and tend towards tissue-
specific expression patterns.

Modeling the emergence of AT/GC sequence bias 
in outward‑looking tandem arrays
The rapid turnover of genes in tandem arrays by birth-
and-death evolution can complicate efforts to recon-
struct their evolutionary history. Using synteny, we 
were able to track paralogue number changes for a set 
of polymorphic arrays in mammals (Fig.  4). For arrays 
of olfactory receptors, skin proteins, and defensive pro-
tease inhibitors, AT content increases with copy num-
ber across mammals. This analysis suggests that high AT 
content need not be an ancestral feature of gene blooms 
but can emerge during array expansion. Using population 
genetic data from humans, we test whether elevated rates 
of allelic diversity in outward-looking genes results from 
distinct mutational or selective effects. We accept the 
argument of Lynch that AT/GC content itself is unlikely 
to be directly operated on by selection, and instead focus 
on neutral and selective events affecting the genes con-
tained in sequence-biased isochores [34].

We find that genes in AT-biased tandem arrays experi-
ence low ongoing rates of point mutation (Fig. 5) and low 
rates of recombination (Fig.  6). We suggest that exces-
sive allelic diversity in these regions could have arisen 
due to weakened selection on historical point mutations. 
Because the most common point mutations replace C 
or G bases with T or A bases, tolerance of point muta-
tions in expanding tandem arrays could shift GC con-
tent down; low rates of point mutation in the present 
would be due to the scarcity of mutable CpG dinucleo-
tides remaining in these clusters [45]. Tandem arrays 
also appear depleted for recombination events that can 
shift GC content backup (Fig.  6). Together, tolerance of 
historical point mutation and strengthened intolerance 
of recombination as gene families expand would tend to 
bias expanding arrays towards higher AT content (Fig. 1).

While deamination of cytosine in the CpG context 
dominates mutation rates, many other neutral processes 
contribute to the overall mutation spectrum, and these 
too operate differently in copy-number-variable tandem 
arrays. For example, AT-biased regions of the genome are 
late-replicating, which is associated with higher rates of 
germline mutations, and genes in tandem arrays tend not 
to be transcribed in the testis, which would exempt them 
from transcription-coupled repair [49, 119]. Excess allelic 
variation could also result from paralogous gene conver-
sion. While paralogous gene conversion can be measured 
for paralogous pairs, in extended arrays this phenomenon 
would be difficult to distinguish from copy number vari-
ation without long-read data spanning the region [120]. 
Similarly, genes in tandem arrays do not have one-to-one 
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homology relationships across species. Trivially, this 
means that their interspecific divergence is high, but they 
would be left out of gene-wise measures of divergence 
that rely on clear homology assignments.

Other mutagenic and selective forces may also con-
tribute to the evolution of AT-sequence bias. For exam-
ple, the repetitive nature of these regions of the genome 
predisposes them to problems, such as replication 
fork slippage, that require non-homologous end join-
ing (NHEJ) to resolve [121, 122]. RCC4-DNA ligase IV 
is primary ligase complex for NHEJ, and it preferen-
tially ligates poly-dT single-stranded DNA and long dT 
overhangs [123]. Polymerase mu, which is also involved 
in NHEJ, shares a similar bias towards both dT and dC, 
though preferentially towards dT [124]. These biases 
could encourage these regions of the genome to adopting 
AT-rich sequences with each duplication, and thus each 
addition of repetitive material.

Implications for gene regulation
Genes located in AT-biased tandem arrays are typically 
silenced almost everywhere in the body and expressed at 
extremely high levels at a specific place and time. Where 
and when these genes are expressed, they perform the 
definitive work of the cell type. Many of these outward-
looking gene families exhibit some kind of exclusive 
expression, from the fetal to adult switch in hemoglobin 
β expression (i.e., exclusion over time) to the one-recep-
tor-per-neuron pattern of olfactory receptor expression 
(i.e., exclusion over space). We expect that genes located 
in high-AT isochores that lack CpG islands in their pro-
moters are durably silenced by particular mechanisms 
when they are not expressed (i.e., almost everywhere), 
and that their expression will be activated by non-canon-
ical mechanisms in the single condition where each is 
expressed. As we and others suggested previously for 
mouse ORs, CpG-less promoters are likely to be regu-
lated by non-canonical mechanisms that are independ-
ent of TATA-binding protein (TBP) and the recently 
discovered basal CpG-island-binding factors BANP and 
BEND3 [20, 111, 125, 126]. As Bird hypothesized presci-
ently in 1986, “When activated, they appear to be bound 
to a complex of tissue specific factors which presumably 
accomplish what…islands can achieve using ubiquitous, 
non-tissue specific factors. Given that there are usually 
rather few CpGs near tissue specific genes…one would 
not expect to find CpG or methylation built into the 
activation mechanism of genes of this type” [112]. One 
could argue that these genes do not have promoters at 
all and rely completely on locus control regions to con-
centrate and deliver transcription factors to the TSS [54, 
127, 128]. This atypical architecture appears to predis-
pose these genes to restricted expression relative to their 

CpG-containing brethren: their ground state is to be “off 
forever”.

Many or most molecular genetic events are sensitive 
to variation in AT/GC distribution: AT content pre-
dicts compartmentalization of the genome in 3D space, 
replication timing, and patterns of histone marks [48, 
129–133]. Typically, AT-biased sequence is packaged as 
heterochromatin and silenced. Work on olfactory recep-
tors, clustered protocadherins, and secreted liver proteins 
suggest that these gene families are expressed from the 
context of constitutive heterochromatin, which appears 
to be present prior to expression and to be retained on 
family members that are not expressed [134–138]. CpG 
islands also function as molecular beacons: they mark 
transcription start sites, serve as recombination hotspots 
in the absence of PRDM9, and act as replication origins 
in meiosis [105, 129, 139]. The accrual of high AT content 
in gene arrays and the lack of CpG islands is therefore 
likely to exert a strong effect on the molecular regulation 
of these genes. In ectodermal development, single-copy 
genes accrue CpH methylation, perhaps passively, while 
AT-rich gene arrays remain devoid of this modification 
[114]. This suggests that AT-rich gene arrays are locked 
away from the ambient molecular stew of the nucleus, 
perhaps over very long developmental time periods. 
Indeed, tandem arrays clump together in the nucleus in 
post-mitotic neurons [56, 115].

In addition to the extreme time and/or tissue specific-
ity of most outward-looking gene families, a fraction of 
these families exhibit stochastic expression such that 
each cell expresses just one or a sparse subset of family 
members. Chemosensors, B- and T- cell receptors, NK 
cell receptors, and clustered protocadherins all exhibit 
this restricted expression [136, 140, 141]. As we argued 
recently, sparse cell-wise expression patterns compart-
mentalize the effects of mutations [136]. These mecha-
nisms are also likely to result in insensitivity to copy 
number variation, as each cell chooses its own dose of 
family members for expression. Feedback mechanisms 
that ensure cells can “choose again” if they originally pick 
a pseudogene further buffer potential deleterious effects 
of mutations [142, 143]. Combined with the sheer num-
bers of family members that a particular gene function is 
distributed across, these expression mechanisms could 
predispose these genes to selective drift.

While the α and γ families of clustered protocadherins 
are embedded in AT-rich sequence and all three families 
exhibit variegated expression, these genes depart from 
the pattern of CpG island loss exhibited by outward-look-
ing tandem arrays: Each clustered protocadherin variable 
exon promoter is flanked by prominent CpG islands, 
and cytosine methylation plays a critical role in their 
transcriptional regulation [144, 145]. We noticed that 
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singleton protocadherins, as well as other small clusters 
of neurodevelopmental and synaptic genes (i.e., SLITRK, 
GABR, and CDH families), shared this pattern. A subset 
of these smaller clusters show a specific dependence on 
POGZ for transcriptional activation [146]. We plan to 
address the evolutionary history and regulatory conse-
quences for this flavor of gene in a future publication.

Role for recombination in diversification 
versus maintenance of gene arrays
Local sequence diversity and recombination rates are 
usually positively correlated (reviewed in [147]). In con-
trast, we find that AT-biased gene families exhibit high 
diversity and divergence despite low recombination. 
Comparison of the human and chimpanzee genomes 
found two distinct types of high-divergence regions: 
Genome-wide, chromosome ends are GC-rich and have 
high divergence and recombination; in chromosome inte-
riors, however, recombination is more modest overall, 
and divergence is higher in G-bands, which are AT-rich 
[27]. As Holmquist argued previously based on much 
more limited data, we show here that these G-bands con-
tain very different types of genes than do Q-bands [22, 
57].

Overall GC content is theorized to be a record of past 
gene conversion, with high-GC regions having experi-
enced high historical recombination [38]. If this is the 
case, then AT bias in tandem arrays could reflect his-
torical depletion of recombination in these regions, 
while also dampening recombination rates in the present 
(Fig. 6). Modeling suggests that once variation in AT/GC 
content starts to emerge, it can be self-reinforcing via 
positive feedback [39]. There remains conflict between 
the mode by which these gene arrays are thought to have 
bloomed—i.e., via gene duplication through ectopic 
exchange during recombination—and their current 
depletion for recombination events. Other modes of 
duplication, including replication slippage and transposi-
tion, may also be at work in expanding these arrays, and 
duplication mechanisms could themselves influence GC 
content [148].

Ectopic exchange in repetitive gene regions can have 
benign or catastrophic consequences. Induction of copy 
number variation within a gene array may be of small 
phenotypic consequence, as the jobs these genes per-
form are by nature distributed across many family mem-
bers. In contrast, ectopic exchange that deletes a cluster 
or induces recombination between clusters can result in 
catastrophic chromosome rearrangements [100]. Retro-
transposition or ectopic exchange mediated by repeti-
tive elements can seed new gene clusters elsewhere in 
the genome [149, 150], and gene families with more than 
one cluster genome-wide are likely to be particularly 

dangerous for genome stability. Indeed, mammalian 
chromosome evolution appears to have been shaped 
by ectopic exchange between OR clusters, to the extent 
that ORs are often positioned near chromosome ends 
[151–156]; recurrent translocations between OR clusters 
continue to occur [151–153, 157–160]. Finally, even if 
structural variation in outward-looking tandem arrays is 
benign within an individual, it can lead to hybrid incom-
patibility and can initiate or reinforce reproductive isola-
tion that leads to speciation [161–163]. Recent modeling 
work has sought to characterize the tradeoffs between 
the structural fragility of gene blooms and the potential 
positive effects of allelic diversification [164].

Given the genomic danger of these tandem arrays, 
why have gene family members remained in cis with one 
another? An extreme example is the “milk and teeth” 
locus on human chromosome 4. The casein genes in this 
locus evolved via tandem duplication of enamel genes at 
the root of the mammalian tree; the enamel genes them-
selves evolved from follicular dendritic cell secreted pro-
tein in bony fish [12, 165]. Astonishingly, these genes 
have remained syntenic. Why would this be the case, 
given that they are expressed in three separate body sys-
tems and that such tandem arrays are genomically dan-
gerous? We propose that as in the case of maintenance of 
Hox gene synteny, the regulatory elements of these genes 
remain tangled with one another, such that relocation of 
array members elsewhere in the genome would divorce 
them from cis-regulatory elements that they depend on 
for expression [166–168]. Recent research on enhancer 
evolution in animals suggests that enhancer tangling 
can result in the preservation of synteny over ~700 mil-
lion years [169]. In other cases, as in B Cell Receptor, 
hemoglobin, clustered protocadherin, interferon, and 
chemosensor arrays, family members share and compete 
for the same regulatory elements [128, 170–173]. This 
mutual dependence would again increase the phenotypic 
consequences of recombination events that break syn-
teny by separating genes in large families from locus con-
trol regions they depend on for expression.

Array incompatibility between individuals of a spe-
cies and the necessity of remaining co-located with reg-
ulatory elements that may be tangled with or shared by 
other gene family members could cause tandem arrays to 
behave like supergenes—multigene regions inherited as 
an allelic unit. We suspect that depletion of CpG islands 
and PRDM9 sites from tandemly arrayed genes protects 
the genome from the danger of errantly recombining 
these duplicative regions. Nevertheless, recombination 
and gene duplication or deletion still sometimes occur 
in these regions—their crossover rate even today is non-
zero—and the marginal fitness effects of resulting copy 
number variants could allow products of these meiosis to 
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be preserved in the population. As gene arrays get larger, 
point mutation tolerance could shift their GC content 
downward, putting the brakes on recombination as they 
become ever more unwieldy. Overall, recombination in 
these regions would be dampened, while differential tol-
erance of local duplications versus gross rearrangements 
could allow an increase in local allelic diversity.

Implications for chromosome organization
Repetitive elements have shaped chromosomal evolu-
tion since the dawn of eukaryotes. The linear genome is 
proposed to have arisen from erroneous meiotic recom-
bination between Group II introns which invaded the 
circular genome to create the t-loop precursors to sta-
ble telomeres [174]. Similarly, dispersion and expansion 
of ORs and other large tandem gene arrays have shaped 
mammalian chromosome evolution. Tandem arrays of 
ORs represent ancestral breakpoints of chromosomal 
synteny between mice, rats, and humans [156, 175]. A 
large OR cluster is found at the end of the q-arm of chr1 
in humans but not in mice. In addition to ORs, large gene 
families including zinc finger (ZNF) and immunoglobu-
lin heavy chain (IGH) genes are observed at chromosome 
ends across eukaryotes [176]. In the modern human pop-
ulation, unequal crossovers between OR clusters are a 
source of recurrent and pathological rearrangement hot-
spots [158].

While we also observe these AT-rich isochores near 
chromosome ends, terminal isochores are often some 
of the most GC-rich in the genome and can contain het-
erogeneous single-copy genes [177]. Indeed, the larg-
est OR cluster at the end of the q-arm of chromosome 
1 in humans is followed by a higher GC% isochore con-
taining ZNF genes. This strong end-GC% accumulation 
appears to arise paternally: genes in high GC% isochores 
at chromosome ends are enriched for paternal crossovers 
and relatively depleted of maternal crossovers. Over-
all, paternal crossovers are biased towards chromosome 
ends [99, 178]. Chromatin organization of pachytene 
spermatocytes is implicated in this phenomenon. Sper-
matocytes have shorter synaptonemal complexes com-
pared to oocytes, and, further, subtelomeric regions do 
not require PRDM9 for crossovers; however, how these 
factors contribute to paternal crossover end-bias remains 
incompletely understood [179, 180]. Potentially, recombi-
nation-based alternative lengthening of telomeres (ALT) 
in spermatocytes biases hotspots towards chromosome 
ends [181].

Over evolutionary time, as ectopic recombination 
places high-AT tandem arrays at chromosome ends, 
high paternal rates of gBGC at the ends of chromosomes 
would generate new isochores of increasing GC% com-
prising newly evolving genes [182, 183].

Is mutation biased or random with respect to gene 
function?
Recent mutation accumulation studies have suggested 
that de novo mutations could occur with different fre-
quencies in different kinds of genes or in genic versus 
non-genic locations [184]. We and others also argued 
previously that segregation of mutation-tolerant versus 
mutation-intolerant genes into AT- versus GC-biased 
regions of the genome could allow differential mutation 
rates on different classes of genes [20, 80, 81]. However, 
our analyses of synonymous versus non-synonymous 
variants and of de novo mutation rate in AT- versus GC-
biased genes suggest the opposite: that AT-biased genes 
experience fewer mutations in living humans than do 
GC-biased genes. This is in line with neutral, sequence-
based expectations [49]. While CpG prevalence domi-
nates the mutation spectrum, other mutational and 
repair processes that differentially affect AT- versus GC-
biased regions of the genome almost certainly contribute 
to the overall pattern of diversity in inward- versus out-
ward-looking genes. In particular, AT-rich regions of the 
genome are late-replicating, and tandemly arrayed genes 
are excluded from transcription-coupled repair during 
spermatogenesis. Each of these patterns could increase 
the mutation rate in outward-looking genes. Late replica-
tion can worsen the loss of cytosines, while lack of tran-
scription-coupled repair would be expected to increase 
the rate of A>G (T>C) mutations [49, 119].

While mutagenic or repair processes specific to gene 
blooms could contribute to their overall mutation spec-
trum, we expect that for most, allelic diversity and differ-
ential AT/GC content in inward- versus outward-looking 
genes result from differential selection trajectory over 
evolutionary time. One attractive model is that as a gene 
cluster expands in size and the function of that gene fam-
ily is partitioned over more and more members, purifying 
selection becomes weaker on individual family members 
(Fig. 1). Because the most common point mutations are 
C->T and especially CpG->TpG, evolutionary tolerance 
of point mutations would shift GC content down. On the 
other hand, purifying selection and higher recombination 
rate would both preserve the GC content of singleton 
genes.

Matching sequence content for genes and their isochore 
environments
Throughout this study, we show that the local AT/GC 
content of genes correlates closely with that of their 
isochore environment (e.g., Fig. 3B, Additional file 3: Fig. 
S3B-G). We found this pattern perplexing. For example, 
while higher purifying selection on single-copy genes 
can help to explain their higher GC content, we would 
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expect most variants in the non-coding portions of an 
isochore to be phenotypically neutral. Because gene con-
version acts over longer chromosomal distances, differ-
ential recombination could affect the sequence content of 
genes and their environment together. This pattern could 
also result from background/linked selection, which is 
known to vary in strength across the genome [185, 186]. 
Because function-changing variants are physically linked 
to local variants that do not alter phenotype, differential 
purifying selection on mutations in single-copy versus 
multicopy genes would affect the strength of background 
selection in the neighborhood and inheritance of linked 
neutral variants. Background selection will operate over 
shorter distances in regions with higher recombination 
(i.e., GC-rich isochores), but because multiple inward-
looking, single-copy genes are co-located in the same 
isochore, there may be little nearby that is exempt from 
linked selection. In this way, purifying selection that 
results in maintenance of high GC content in single-copy 
genes would also preserve the high GC content of their 
isochore neighborhood. Finally, variation in repetitive 
element distribution could also contribute to the AT/
GC content of isochores housing outward-looking versus 
inward-looking genes. Indeed, increased LINE density in 
chemosensory gene families has been proposed to con-
tribute to their regulation [187].

The matching sequence content of genes and their 
isochore neighborhoods would seem to facilitate coher-
ent patterns of histone marks across entire isochore units 
and their organization in nuclear space. On the other 
hand, genes with AT- versus GC- rich coding sequences 
use distinct codons, which could affect their translation 
rates given variation in the prevalence of various tRNAs. 
Further analysis will be required to assess whether amino 
acid distribution varies for proteins coded by AT-rich 
versus GC-rich sequences.

Finally, while we can find genes with GC-rich pro-
moters in all kinds of isochores (Additional file  3: Fig. 
S3F), we never find genes with AT-rich promoters in 
GC-rich isochores. While we favor the model shown in 
Fig. 1, where isochore-level AT content rises during gene 
blooms due to the parallel actions of protein-coding drift 
and suppressed recombination, we cannot exclude (and 
are indeed fascinated by) the possibility that the dis-
tinct regulatory characteristics that allow LCR-mediated 
expression could be the keystone factor tying outward-
looking genes to AT-rich isochores. For example, reduced 
expression of duplicated genes or lack of CpG islands 
have been associated with more durable evolutionary 
retention of duplicates, though these studies focused 
on paralogous pairs and patterns may be different in 
blooms [188, 189]. Overall, in the absence of other evi-
dence, we think that LCR-driven transcription is a kludge 

that allows expression of paralogous clusters that failed 
to maintain their CpGs, rather than CpG-less promot-
ers emerging via positive selection to allow regulation by 
LCRs.

Is this genomic architecture specific to mammals?
While isochore structure is not unique to mammals, it is 
not a universal feature across animal clades, and the AT/
GC variation observed in mammals is extreme [34]. We 
are curious whether stem mammals evolved molecular 
mechanisms that facilitated the evolution of gene arrays. 
These could include both systems that maintain these 
arrays as constitutive heterochromatin when they are 
not being expressed and unique transcriptional mecha-
nisms that activate them, often in a stochastic or highly 
restricted manner, in their target tissues. One candidate 
factor that mediates long-range enhancer-promoter 
interactions in multiple arrayed families is Ldb1 [54, 190]. 
Social insects have also massively expanded their olfac-
tory receptor gene repertoire in cis; in the ant, this is 
accompanied by increased AT content [191]. Have con-
vergent mechanisms for stochastic expression facilitated 
olfactory receptor repertoire expansion in insects?

Other clades may have evolved distinct mechanisms 
to organize repetitive genes or gene pieces: In Diptera, 
repetitive arrays are often organized as alternative splic-
ing hubs [192–195]. Reptiles and birds exhibit “micro-
chromosomes” which have distinct GC content from 
the rest of the genome and can house arrays of rapidly 
evolving, outward-looking genes such as venoms [196]. 
Trypanosome arrays of surface VSGs are located in sub-
telomeric regions [197]. For mammals, the “isochore 
solution” balances diversity in gene arrays with genomic 
integrity.

Conclusions
To date, models of mammalian genome evolution have 
not included both the sharply distinct functions and tran-
scriptional patterns of genes in AT- versus GC-biased 
regions. Here, we describe a common genomic architec-
ture in mammals for genes whose products engage with 
the external world, which we call outward-looking genes: 
these genes tend to occur in tandem arrays, occupy AT-
biased isochores, and lack CpG islands in their promoters 
(Fig. 1) [20, 53]. In addition, we find that in humans today, 
genes in AT-rich tandem arrays experience low rates of 
point mutation and recombination and tend towards 
tissue-specific expression patterns. We hypothesize that 
as a gene family expands in cis, selection on amino acid 
sequences of individual family members weakens, while 
selection against recombination grows. Together, these 
forces result in loss of GC bases over evolutionary time. 
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Once AT-rich, a tandem array is more likely to be het-
erochromatinized, allowing it to acquire highly tissue-
specific expression patterns, a feature which is enhanced 
when combined with the loss of CpG islands. Variegated 
expression reduces the phenotypic consequences of 
change in copy number, allowing further rounds of copy 
number change, which provide an organism with the 
flexibility to adapt to an ever-changing environment.

Methods
Describing isochores
To call isochores, we implemented a genomic segmen-
tation algorithm called GC-Profile [64] using halting 
parameter (number of segmentation iterations) of t0 
275 and minimum segment length of 3000 bp. Gaps less 
than 1% of the input sequence were filtered out, gener-
ating 4328 distinct isochores in hg38 (Additional file 1). 
Isochores were ranked by average GC%, with rank 1 hav-
ing the highest and 4328 having the lowest. We also per-
formed this analysis in hg19 (Additional file 2).

Statistical analyses
We performed Kruskal-Wallis non-parametric ANOVA 
for each group of comparisons (Additional file  4). We 
then used Dunn’s pairwise analysis to compare indi-
vidual groups with one another (Additional file  4). 
We use phylogenetic generalized least squares (PGLS) 
regression as implemented in caper [198] to test for 
correlations between genomic characteristics across 
vertebrate species while controlling for the evolution-
ary non-independence of the multi-species dataset. We 
used timetree.org [199] to produce our species phylog-
eny for these analyses, where the tree was imported and 
pruned to the subset of species for a given comparison 
using the ape package [200]. In PGLS, lambda was opti-
mized by 0 and 1 by maximum likelihood.

GC content calculations
Genes from the Matched Annotation dataset from the 
NCBI and EMBL-EBI (MANE) Select dataset [67] were 
downloaded from the UCSC Genome Browser. Iso-
chores were matched to genes using the coordinates of 
the transcription start site. GC content across gene fea-
tures, including promoters (−750 to +250  bp flanking 
TSS), flanking regions (+ /−25 kb), coding exons, exons 
and UTRs, and introns were separately calculated from 
FASTA sequences using bedTools [201].

To generate 9  k-means clusters, we used gc5BaseBw 
from the UCSC Genome Browser [65] to calculate 
GC% scores across MANE genes with +/−1 kb flanks. 
We generated 3-kmeans clusters of genes, which were 
further clustered into 3-kmeans clusters each using 

deepTools plotHeatmap [202]. Cluster assignment and 
quantification of other parameters for each gene are 
reported in Additional file 5.

Characterizing types of genes
To characterize the types of genes residing in isochores 
of varying GC, we used 2 categories of descriptors: GO 
terms and gene prefixes. To identify GO terms associ-
ated with genes in each isochore GC decile, we used 
the R package, clusterProfiler (version 4.2.2) [203]. This 
helped us streamline identification of key terms that 
appeared in each decile. With this list, we identified 
GO terms that were most significantly enriched in each 
decile with a depth of at least 30 genes. Using AmiGO 
[204], an online database of GO identifiers, we pulled 
the list of genes associated with our selected group of 
significant GO terms and plotted GC content across 
each term. The terms we chose are listed in the table 
below.

Shortened term (from 
Fig. 2)

Full GO term description GO ID

wnt signaling wnt signaling pathway GO:0016055

kinase activity kinase activity GO:0016301

transcription transcription, DNA-tem-
plated

GO:0006351

defense immune response GO:0006955

xenobiosis xenobiotic metabolic 
process

GO:0006805

keratinization keratinization GO:0031424

chemosensation detection of a chemical 
stimulus

GO:0009593

We wanted an alternative to GO analysis for assess-
ing diversity across isochores and k-means gene clus-
ters. Since the prefixes of well-annotated genes (like the 
ones from the MANE dataset) are shared across genes 
within the same gene family, we used this as a means 
of assessing diversity with more specificity than one 
would achieve through GO analysis. The process of 
assigning gene prefixes is as follows:

(1)	 Convert old names into new nomenclature.

•	Go to the HUGO Gene Nomenclature Commit-
tee’s (HGNC) [205] website and the list of gene 
symbols from the MANE set into their “Multi-
symbol checker”. This will ensure we have the 
most up-to-date names for each of our genes (i.e., 
some which may have been labeled as “FAM” may 
have a new symbol to go with the rest of the gene 
family).
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•	Match names in the MANE set to names labeled 
“Approved symbols” by HGNC, and replace 
those symbols with the HUGO names.

(2)	 Replace numbers with “_”. We cannot remove all 
numbers because there are several genes that have 
more letters after numbers that are not important 
for our purposes (i.e., CSN2A will become CSN_A).

(3)	 Remove anything after the first instance of “_” (i.e., 
CSN_A will become CSN). The goal of this step is 
to keep the first part of the prefix, removing letters 
and numbers that indicate subfamilies.

(4)	 While it is not common, some genes require us to 
know those numbers to know what they do (most 
commonly, enzymes involved in modifying car-
bohydrates). Largely, these genes start with a sin-
gle letter, followed by numbers, then more letters. 
Thus, to fix these genes, we pull out the genes that 
have 1 letter after steps 4 and 5.

(5)	 Look through each of those genes that start with 
only one letter, then decide how best to group them.

(6)	 View gene prefixes in alphabetical order and search 
for prefixes that are likely to be families, then 
rename (i.e., KCNT and KCNQ are both potassium 
channels, so we grouped these together).

Once we had a list of gene prefixes, we calculated a 
Shannon’s H diversity metric for each isochore based 
on the prefix probabilities in each isochore (propor-
tions + log2(1/proportions) = diversity metric). Larger 
values are indicative of more diversity. Similarly, we 
calculated a Shannon’s H diversity metric for each 
k-means cluster.

De novo mutations
De novo mutations (DNMs) were compiled by [85] 
from seven family-based whole genome sequencing 
(WGS) datasets, encompassing a total of 679,547 sin-
gle-nucleotide variants (SNVs), which comprise data 
from both neurotypical and neurodivergent individu-
als. We remapped the dataset to hg38 using LiftOver 
in UCSC Genome Browser. To calculate genomic DNM 
density, we counted the number of DNMs occurring 
within the coordinates listed in the GC calculation sec-
tion above. To calculate DNM density, we pooled genic 
DNMs within each isochore and divided by the sum 
of the region of interest’s size, i.e., we identified all the 
genes in an isochore, summed the DNMs between their 
transcription start and termination sites, then divided 
by the summed length of those genic regions.

For analysis of human genetic variation (DNMs, 
allelic variation, and recombination), we checked 

whether any of the tandem arrays we analyzed were 
too duplicative to allow mapping of short-read data 
or blacklisted for other reasons. We found that these 
genes were sufficiently different that these regions are 
rarely blacklisted. We compared our regions of inter-
est to “problematic regions” compiled on the UCSC 
Genome Browser. These encompass “ENCODE Black-
list” regions, which are problematic for short-read 
sequencing; “GRC Exclusions,” i.e., regions known to 
be incorrect in the hg38 reference but not yet removed; 
and “UCSC Unusual Regions,” which are regions that 
cause frequent confusion for other reasons, such as 
due to there being segregating alternative haplotypes. 
Our outward-looking tandem arrays were almost never 
flagged. We noted two cases that were flagged: A por-
tion of the UGT2 array, centered around UGT2B17, 
which is flagged because there are distinct segregat-
ing haplotypes [13] and in the clustered protocad-
herin locus, which is indeed too duplicative to obtain 
good mapping of short reads. These two cases will not 
affect our genome-wide analyses. The BCR and TCR 
loci also meet UCSC criteria to be confusing for short-
read sequencing, but we did not include these loci in 
our quantitative gene-wise analyses as the repetitive 
segments are gene pieces rather than independent tran-
scribed units.

Allelic variants
We used the gnomAD v2.1.1 dataset of single-nucleo-
tide allelic variants [82]. The authors defined rare sin-
gle-nucleotide variants (< 0.1% allele frequency) from 
125,748 exomes and 15,708 whole genomes and pre-
dicted whether variants within coding regions are likely 
to be functionally synonymous, missense, or loss-of-
function. Here, we used observed synonymous, missense, 
and loss-of-function mutation rates. We ported variant 
calls to MANE genes in hg38 using the gene symbol and 
Ensembl transcript IDs. In Fig. 5, we also use the calcu-
lated pLI score from gnomAD, which describes the likeli-
hood that a gene is loss-of-function intolerant in humans.

Recombination
Crossover data for hg38 was acquired from deCODE 
where the authors used whole genome sequence (WGS) 
of trios and were able to refine crossover boundaries for 
247,942 crossovers in 9423 paternal meioses and 514,039 
crossovers in 11,750 maternal meioses [92]. Of note, the 
data we used here is restricted to autosomes. To calcu-
late crossover density, we assigned crossovers to a region 
of interest based on the median of the crossover coordi-
nates. We normalized counts within a region by divid-
ing by the genomic average for that sex. PRDM9 binding 
data from HEK293T cells transfected with the PRDM9 
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reference allele was acquired from [104]. We selected the 
top 10% of PRDM9 peaks based on enrichment scores to 
account for weak PRDM9 binding sites associated with 
overexpression in the system, as noted by the authors. 
Like with crossovers, we calculated PRDM9 binding site 
density across genes as the summed enrichment scores 
across genic regions within an isochore, mapping by the 
midpoint of the binding coordinates.

Gene regulatory information
To determine tissue specificity of gene expression, RNA-
sequencing data was sourced from Genotype-Tissue 
Expression (GTEx) project (V8, released in August 2019), 
containing 17,382 samples collected from 54 tissues from 
948 donors [113]. For each gene in the MANE set, we 
counted the number of tissues in which expression was at 
least 5 transcripts per million (TPM).

To measure A/B compartment occupancy of genes 
across tissues, AB compartments were sourced from 
published Hi-C data from 21 tissues and cell types [116]. 
MANE genes were lifted over into hg19 to match A/B 
compartment domain calls in hg19. Isochores called in 
hg19 were assigned to a compartment by matching the 
isochore’s midpoint to the midpoint of the closest com-
partment. Genes were assigned to a compartment by 
matching the transcription start site to the midpoint of 
the nearest compartment, as most genes did not fall into 
a single compartment (~90%). Further, we counted the 
occurrences of compartments A and B for each isochore 
and gene. These counts were binned into always A (21 
counts of A), mostly A (14–20 counts of A or 0–6 counts 
of B), equally A or B (7–13 counts of A or B), mostly B 
(0–6 counts of A or 14–20 counts of B), and always B (21 
counts of B).

To identify genes with CpG islands in promoter 
regions, we downloaded the CpG Island track 
(unmasked) from the UCSC Genome Browser [66]. The 
ratio of observed vs. expected CpG dinucleotides was 
converted to a bigwig coverage file and plotted across 
gene TSS’s (+ /−2.5 kb) in 9 k-means clusters using deep-
Tools plotHeatmap. The average score of CpG islands 
within −750 bp and +250 bp of a gene TSS were calcu-
lated using bedTools.

Gene Bloom Evolution with Tandem ClipR
To access and analyze syntenic tandem gene blooms 
across species, we created a pipeline we call Tandem-
ClipR that defines tandem arrays based on orthologous 
“bookend” genes. Bookends define syntenic array bound-
ing positions and are not members of the bloomed family. 
First, we used the biomaRt R package [206] to define the 
human genome as the reference mart, and then created a 
table of bookending ortholog chromosome names, starts, 

and stops using the “getLDS” function and the dec2021 
Ensembl archive as a source. We tabulated these ortholog 
positions in all 193 vertebrate species in the archive (See 
Additional files 7 and 8). If both orthologs were on the 
same scaffold, indicating a contiguous assembly of the 
tandem array, we used the retrieved coordinates to subset 
the gff3 annotation file to the focal region using the sub-
setByOverlaps() function in the GenomicRanges package 
[207]. Filters were applied when imported annotations to 
retain only “gene”, “mRNA”, “CDS”, “exon”, “five_prime_
UTR”, and “three_prime_UTR” annotations.

The resulting gff3 files were used to analyze feature GC 
content across each tandem array based on sequences 
in the Ensembl “toplevel” assemblies. Namely, we used 
command-line tools to subset the gff3 annotations into 
focal features (genes, exons, five_prime_UTR), and used 
while awk and bedtools merge and subtract [201] were 
used to produced genic, intergenic, exonic, intronic, and 
whole cluster bedfiles defining these regions. Addition-
ally, bedfiles defining the promoter region of each gene 
were produced by defining a window 750  bp upstream 
and 250 bp downstream of the transcription start site. We 
fed these bedfiles to bedtools nuc to calculate GC content 
for each feature, which were counted and aggregated into 
average GC% for final analyses. We spot-checked gene 
counts in NCBI’s Genome Data Viewer and noticed that 
there were a few cases in which counts varied between 
recent assemblies. For example, the lion HBB-OR clus-
ter is much shorter in the assembly we used compared to 
the most recent assembly. However, our manual counts 
of the HBB-OR array in a subset of species produced 
similar trends as the automated annotation. To further 
verify that one of these assembly/annotation errors did 
not sway the overall trend, we ran each PGLS analysis 
iteratively, removing one species at a time, and found that 
PGLS p-values of the whole were largely reflected in each 
iteration.

Because a recent analysis has suggested that the 
highest-GC regions can be missing from lower-quality 
genomes [208], we repeated our analyses on a subset of 
genomes, including only recent assemblies templated on 
long-read sequencing (~1/4 of our full set). While this 
reduced our statistical power for PGLS, as some clades of 
animals were missing from the higher-quality assemblies, 
the trends were identical (data not shown).
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