Lee and Dinu BMC Bioinformatics (2015) 16:364
DOI 10.1186/512859-015-0779-6

BMC
Bioinformatics

SOFTWARE Open Access

BitTorious volunteer: server-side extensions @
for centrally-managed volunteer storage in

BitTorrent swarms

Preston V. Lee” and Valentin Dinu

Abstract

wishing to integrate into libtorrent-based projects.

Background: Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed
data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard
BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous
philantropic storage donations by the general public, wherein a small portion of each user's local disk may be used for
archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent
extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built.

Results: Automated test cases for the BitTorious Volunteer extensions have been added to the portal's v3.0.0 release,
supporting validation of the “peer affinity” concept and announcement protocol introduced by this specification.
Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians

Conclusions: The BitTorrent “affinity” extensions as provided in the BitTorious portal reference implementation allow
data publishers to crowdsource the extreme storage prerequisites for research in “big data” fields. With sufficient
awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able
to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.

Keywords: Data transfer, Bioinformatics, Big data, Software, Open source, BitTorrent, BitTorious, Citizen scientist

Background

Individual .torrent files hold compartmentalized meta-
data treating the torrent payload as a sequence of
equally-sized “pieces”, calculated at time of torrent cre-
ation. Hashes for each piece are included in the .torrent
metadata file, which allow clients to validate the correct-
ness and completeness of transferred data.

Under traditional BitTorrent use, users run individual
BitTorrent clients with the intention of downloading the
entirety of a given torrent’s payload to local disk, often
seeding those data to other peers. That is, every piece
listed in the .torrent file will be download and assembled
by each client using the long-standardized and well
understood BitTorrent specification. Our BitTorious
v2.x.x portal release [1] supports these use cases while

* Correspondence: preston@asu.edu
Department of Biomedical Informatics, Arizona State University, 13212 East
Shea Boulevard, Scottsdale, AZ 85259, USA

(BiolMed Central

introducing strict publisher and subscriber role se-
mantics as an access control layer not present in
most BitTorrent networks. (The reader is encouraged
to review this work [1] for a deeper explanation of core
BitTorious concepts, user role types and their relation to
standard BitTorrent.)

The needs of a client in a volunteer storage grid are
fundamentally different from most studies of peer be-
havior [2—4]. We cannot assume the user desires to pro-
vide storage for the entirety of a single torrent, even if
they have sufficient disk space as well as available band-
width. For example, a user donating storage towards a
typical WGS project will almost certainly not want to
contribute more than a mere fraction of the disk space
required for even a single patient study. For this reason
alone, existing BitTorrent portals oriented toward dis-
tribution of scientific data cannot reasonably expect
participation from citizen scientists, as there are no

© 2015 Lee and Dinu. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0779-6&domain=pdf
mailto:preston@asu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lee and Dinu BMC Bioinformatics (2015) 16:364

built-in mechanisms for centrally access controlled, partial
replication.

Additionally, piece selection mechanisms vary between
client implementations and target audience. A client ori-
ented towards distribution of video files may, for ex-
ample, deviate from standard piece selection by favoring
pieces at the beginning of each file, thus supporting real-
time video streaming prior to download completion.
Any such piece and torrent prioritization algorithms ac-
tive within a given BitTorrent client are or little, if any,
use to a BitTorious client, and are likely to impair the
resiliency of the BitTorious network by disproportion-
ately over-replicating certain pieces since BitTorrent
client developers tend to assume that the user chooses
the torrents to join, not the tracker.

BitTorious v3.0.0 addresses these core usage differ-
ences using the publisher/subscriber security model un-
changed from 2.x.x releases.

Implementation

Building upon the existing role-based, per-user-per-feed
security model supported by the BitTorious portal [1],
we introduce several new concepts and capabilities in
order to support controlled, partial replication.

Publisher feed configuration
The BitTorious portal has been extended to support a
number of new configuration options at the feed level

Page 2 of 7

that are used by the built - in BitTorrent tracker to as-
sign piece prioritization across peers (See Fig. 1).

1. Enable Public Archiving (default: disabled) - When
enabled, all volunteer clients will be able to donate
storage to the feed. When enabled, the “private” flag
will not be set for each torrent, which is automatic
in BitTorrious v2.x.x.

2. Target Replication Percentage (default: 20 %, min:
1 %, max: 100 %) — Approximate percentage of
pieces that a volunteer should replicate for a given
torrent. The effective piece count will always be
rounded up, and applies to all torrents published to
the feed. A low percentage increases the capacity of
the network at the expense of limited piece
replication, while a higher value favors high piece
replication to maximize availability at the expense
of capacity.

Piece affinity

BitTorious v3.0.0 introduces a concept we call “piece af-
finity”, which must be understood and calculated by the
portal as well as fully compatible peers. The affinity of a
peer declares the pieces it intends to replicate and seed.
Affinity values are calculated via a simple, pre-defined
function based on publisher-defined feed configuration
as well as peer ID, thus enabling coordinated partial rep-
lication across the entire network and a limited degree
of peer-peer affinity enforcement as every peer is able to

I Torrents / Settings

Name

Sample Feed

Description

Enable Public Archiving

Target Replication Percentage

20

an “enabling public archiving” flag and “target replication percentage”

A feed of random data torrents for demonstration, evaluation and testing purposes.

All feed data will replicate to anonymous volunteer peers, which is roughly equivalent to granting subscriber permissions to all anonymous
users. When changing this settings, users may have to reimport the torrent files into their client(s) to receive the new settings,
depending on if they're subscribed to the RSS feed and have their client configured to automatically apply torrent updates.

Fig. 1 Feed-level volunteer configuration. The BitTorious portal has been extended to support several new feed-level configuration parameters:

Lee and Dinu BMC Bioinformatics (2015) 16:364

calculate the affiny of every other peer without querying
the portal.

All BitTorrent swarms require that all N pieces of a tor-
rent must be of the same length, in bytes. (BitTorious rec-
ommends a piece size of exactly 4MiB, ie., 2 » 22 bytes).
Unlike standard BitTorrent, volunteer clients should only
download pieces to which they are affine, though this can-
not be enforced by the server since P2P transfers do not,
by definition, route through the server. Also, strict server
enforcement would likely introduce incompatibilities with
normal, non-BitTorious-aware BitTorrent clients.

For a volunteer client to be compatible with the Bit-
Torious network in a well-behaved manner, it must:

1. Inform the tracker of configuration parameters
when announcing.

2. Obey a user-configurable local storage limit.

3. Delete non-affine pieces if and only if disk
space is required for affine pieces or requested
by the user.

4. Keep all portal/tracker interactions over HTTPS.

5. Delete all pieces for a given torrent when
the time since last successful announce
passes a pre-set time period.

6. Only send a given peers pieces to which it’s affine,
regardless of what peers request.

Outside of these core semantic differences, a volunteer
client uses the existing BitTorrent peer wire protocol.

Volunteer announce parameters

At announcement time, volunteer peers must provide
support for additional announce request parameters.
By requiring these self-reported settings to the portal
during the regular, periodic peer “announce” request
process, the tracker may intelligently rebalance the
network, if desired, as well as provide reporting cap-
abilities to the feed publisher. The portal is thus also
able to differentiate between BitTorious-enabled clients
and normal BitTorrent clients.

Key Example Type Required?
volunteer 1 Only a value of "1" Yes
[enabled] will be recognized

by the tracker as

a volunteer

announcement.
volunteer 8589934592 The hard storage Yes

[disk_maximum_bytes] limit, in bytes, as

set by the user.

1234567890 The amount of Yes
storage, in bytes, used
by the client on the
user's machine.

volunteer
[disk_used_bytes]

Page 3 of 7

To facilitate the tracking process, the BitTorious tracker
observes a “volunteer = 1”7 option. Note that the semantic
of the “left” value (the number of missing bytes across the
entire torrent) submitted on peer announcement is un-
changed, even if the client never intends on replicating
remaining pieces. That is, it is perfectly normal for a vol-
unteer client’s “left” to never reach zero, and a value below
a calculatable threshold to be a symptom of a misbehaving
client.

Unlike standard BitTorrent, BitTorious also defines a
Target Replication Percentage, P, of the total number of
pieces, N, sent to each client as part of the “announce”
response. The value being expressed is an integer be-
tween 1 (inclusive) and 100 (inclusive), which is the
maximum percentage of pieces, rounded up to the near-
est integer, that all volunteer clients should keep locally
replicated. The value is simply ignored by “normal” Bit-
Torrent publisher and subscriber clients unaware of the
volunteer extensions. The total number of pieces a client
must download per torrent, M, is thus the same for
every volunteer participating in the torrent, and is always
rounded up to the nearest integer value.

M = ceiling(N * P /100.0)

All M pieces download by a given client must be lim-
ited to a contiguous region of piece numbers starting at
an “Affinity Offset”, A, defined by each client as:

A = BASE10(SHA256(peerid))%(N—1)

Since the Peer ID is known to both peer and tracker,
A does not technically need to be explicitly exchanged.
Both M and A are returned as part of the announce re-
sponse, however, as respective “volunteer[affinity_length]”
and “volunteer[affinity offset]” integers to allow clients to
join without needing to first fetch feed configuration data,
as well as for validation purposes. The last piece in the off-
set to be downloaded, L, is defined as follows, but is not
necessarily reflective of the order in which pieces will be
acquired:

L=(A+M-1)

A client should attempt to locally replicate a given
piece number, X, if and only if the following function
evaluates to true:

should_replicate (X) := (X >=A & & X<=L) || (N<=
L&&X<=L-N)

The first half of the expression handles common cases
where every block has a sequential piece number (see
Fig. 2). This fails, however, when the pieces per torrent,
M, would require a piece “past” the end of the torrent
(see Figs. 3 and 4). In this scenario, the latter half of the
expression simply allows the piece range to “wrap
around” to the beginning of the torrent data at piece

Lee and Dinu BMC Bioinformatics (2015) 16:364

Page 4 of 7

piece numbers

{8,9,10,11} >= 8 && {8,9,10,11} <= 11

replicated since:
X > A && X <=1L

TRUE && TRUE
TRUE

]

o|l1]|2|3|a|s5|6|7]|8]|9|10|11]|12]|13]14]15
P =25 I N - 1)
N = 16 T i e 3]
M=4=ceil(N * P / 100.0) 2 At N
L=11=A+M-1 L2 Ay M1

Fig. 2 Affinity common case. A volunteer client's view of a torrent with 16 pieces published to a feed with configuration computing to 4 torrent
pieces per client, where the client’s affinity offset is 8. The range of affine pieces is contiguous

offset #0. These extensions in addition to correspond-
ing GUI changes encapsulate the portal changes
made for BitTorious v3.0.0 tracker and portal GUIL

The portal may, in future releases, provide a piece
prioritization component by returning a dynamic piece
acquistion priority order as part of the volunteer an-
nouncement response, but expects no specific piece
prioritization in v3.x.x releases. Leaving piece order in
the hands of client implementations allows for use of
existing piece selection and peer choke/unchoke logic
inherent to every BitTorrent client, given those pieces
are within the assigned affiny range (see Fig. 5). In such
event, the tracker will return an ordered array within the
root level of the dictionary keyed by “piece_priority”
when the client “volunteer” bit is present in the an-
nouncement as defined above, with higher priority
pieces listed first. The client should obey this request
when observed, but is not strictly required to do so since
implementation inherently requires further modification
of peer choking/unchocking determination.

Results

We demonstrate affinity calculation with two reference
implementations, both distributed as part of the portal
source code. The first is written in Ruby and built into
the portal’s peer registration logic. Automated regression
test cases are provided to validate correct volunteer an-
nouncement extension behavior as well as server-side
affinity calculation.

The second is a standalone command-line application
written in C++ to quickly test how affinity will be calcu-
lated by the server (and compatible clients) for any valid
feed configuration that may be easily integrated into
existing C/C++ BitTorrent clients, such as those based
on the popular “libtorrent” C++ library. Both implemen-
tations are released under unencumbered Open Source-
compatible licenses.

Discussion
Notable existing computing platforms such as BOINC
have long proved the viability of using crowd sourced

replicated since:
N<=1L & X <=L - N
{0,1} <= 17 && {0,1} <=1
TRUE && TRUE
TRUE

—

{12,13,14,15} >= 12 && {12,13,14,15} <= 17

replicated since:
X >= A && X <=L

TRUE && TRUE
TRUE

~A—

15
A

piece numbers

HR 2w

/)‘0 |1 |2 |3 |4 ‘5 ‘6 ‘7 ‘8 l9 |10|11|12|13|14
-

Fig. 3 Affinity “wrap-around” case. A volunteer client’s view of a torrent with a “wrap-around” affinity. In this example N is still 16, but P has been
raised to 35 % and A happens to be 12. Since L is greater than or equal to N, the first two pieces will also be included in the clients acquisition list

35
16 --
6
17

Lee and Dinu BMC Bioinformatics (2015) 16:364

Page 5 of 7

preston:affinity preston$./affinity -t 42 -p 0.65 -c 20 #
Simulating:
Pieces: 42
Percent Per
Clients: 20

Small

Client: 0.65

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
#17
#18
#19

RRRRRRRRRR

OOOOOOORRERREY v v v v o v v v
RRRERRRRRPRPR

RRRERRRERRRRPRR
SR RPRRERRRERRRERPY v v v v oo o

RRRERRRERRRR PR

OOOORRPRRRERERREY v« v v v v v v v o

RRRERRRERRRR PR

OCOOOORRPPRPRRPY v v v v v v v v u

RRRERRRERRRRRPR

RRRERRRERRRRRR
OOOOOORRFERRERREY v v v v v v v .o

OO O OO OOOORY v v v v v v v v u

RPRRERRRERRRRRPR

OO OO0 OO® v v v v v v v v

OCOORRPRRPRERRERRLRE
SORRPRRPRRRRERRLERE
SRRPRPRRPRPRRPRPRPRPPE

OO0 OOOY v v v v o v v v

COOORRRRERRER

PO O OO0 OO®Y v v v v v v w w w

SO0 RPRRLPRELPRP

R R OO0 O® v v v v v v v v

OO0 RPRPLRP

PRPPRPOOOOOO®: v v v v eeweeseso

SIS S IS I

RPRRRPOOOOOO: v v vevweses oo

(SRR NSRS SRS NS

OO O OOOOORRY v« v v v v v v v u

to configuring a feed

RRRERRRERRRRRPR

RRRRERRREPRRERPBY v« v v v e ow oo

torrent,

Fig. 4 Command-line affinity calculation. The C/C++ command-line utility allows you to quickly visualize how piece affinity will be calculated prior

high replication percentage.

RRRERRRERRRRRPR
RRRRRRRPRRS
RRRRRRRRPROS
RPRRRRPRPRROSS
RPRRERRREPRPROOSS

RRRRERRRERRBRERBPBY v« v v v o woe v

PRRPRRPRRPRPRPRRPEPR
BPRRPRRPRRPRPRPRRBEPR
PRPRPRRPOOSSS
RPRRPRPROSOSOSOSS
PRrRPROOOSOSSS

PRRPRPRPRPRRPRRY v v v v o v v o o
PRPrOOOSOSOSSeS
POOOOSOSOSeSeS

RRRPRRERRPBRRERRBRRERBPBY « v v v oo oo

RRRERRRERRRRRPR
RRRERRRERRRR PR
RRRERRRERRRRRPR

RRRRERRPBRREPRERBPY v« v v v e ovoe oo

(SIS SIS IS RS RS SRS)

RRRRERRBRRERRRERBRBY v v e ve oo

SRS IS IS IS S I

RPRRPRRPRRPRRPBRPROY v v v v v v oo o

SRS SIS IS IS S I

resources in real-world research, but have evolved with a
strong skew towards time-heavy computing: algorithms
that divide a problem into small distributed computing
tasks later assembled to conquer the whole. Users of
BOINC must abide by BOINC-specific API and proto-
tcol mechanisms [5, 6] only well known within scientific

communities. BitTorious is equal and opposite in this
regard, providing centralized control of a storage “grid”,
but designed foremost to address space-heavy storage of
scientific data, not CPU cycles. BitTorious maintains dir-
ect compatibility with the most popular, widely known
and best understood algorithms — BitTorrent — and leaves

Volunteer Client Sequence Diagram

:
Read or generate peed ID. (Each feed may define a “Target Replication
Get public feed list. Percentqge“, P, where 0.0 < P <= 1.0,. which
> applies to all data published to it.
I feed. (
Select dandtion feed Get all torrents in feed and announce/register.

If [available space < 10%], then

delete pieces no longer affine

unl ve; Poll RSS Feed Over SSL:
https:/ffoo.bittorious.com/volunteer.rss

Other Volunteer Clients >

Repeat untif user quits.

p2p transfer

i

H a;yn(chml;mus Volunteer clients are affine to certain

\ p transfer blocks of a given torrent, and will not

H attempt to download any others for that
asynchronous

torrent, even if unused space is available
on local disk.

) Update statistics.

Render dynamic RSS feed.

[Wait <T> minutes. (

Deregister.

|
|
|
Reap missing peers. H
|
|
|
|
|
:

Fig. 5 Volunteer client sequence diagram. The announcement and piece acquisition process used by a compatible volunteer client

Lee and Dinu BMC Bioinformatics (2015) 16:364

the existing core “peer wire protocol” unchanged, allowing
voluminous amounts of research from other BitTorrent-
based systems to be adapted far easier [7].

Developers implementing compatible clients are strongly
encouraged to allow user control of when the client runs,
where on local disk to put the data, a hard upper donation
limit, GUI mechanism for selecting the feed(s) to which
the resources will be donated, and automatic disabling of
transfers while on “metered” Internet connections. Add-
itionally, support for uPnP of NAT devices is very strongly
recommended to facilitate inbound network connections
without manual port forwarding configuration [8]. Failure
to address the reality of home firewalls will significantly
limit the overall network performance of a BitTorious-
compatible client.

Conclusions

In addition to clear functional potential, we observe our
place in human evolution as marked by the advent of
the citizen scientist. Legal, philosophical and ethical
battles regarding regulation of “medical devices” (as they
pertain to bioinformatics specifically) and digital govern-
ance (of BitTorrent networks in general [9, 10]) in
American government are far from over, but the expect-
ation of direct engagement with scientific communities
has been set. Philanthropically, users expect voluntary
contributions to be direct, online, and with clear account-
ability of how contributions are allocated. BitTorious’
v3.0.0 extensions fall in line with these cultural expecta-
tions by enabling the public to individually donate local
storage resources to specific projects of their choosing via
standards-compliant clients provided by the research
community. Such a simple, direct and individually ac-
tionable mechanism for volunteer storage does not
exist in practice.

The value of networks such as BitTorious, while not
constrained by any fundamental limits of technological
possibility, is limited by the magnitude of its user base.
Any such effort to build a significantly sized storage net-
work based on BitTorious must be met with a propor-
tional effort in volunteer recruitment. Notwithstanding,
introduction of a simple piece affinity mechanism as
presented here is paramount to respecting the generous
but limited contributions of volunteer peers. Without
such a partial replication function, any general-purpose
P2P technology is unlikely to be met with success in big
data fields where payload size often exceeds locally avail-
able storage resources by an order of magnitude or
more.

The adaptation of BitTorrent algorithms and protocols
to public volunteer computing is important in its own
right, but more importantly, has far-reaching potential
to change the fundamental economics of 21st-century
science. To the scientific community, the potential cost

Page 6 of 7

savings resultant of using a large volunteer network of
partial-replication peers is most dramatic when consid-
ered at scale. For example, a theoretical personalized
medicine trial syndicating a total of 1 PB of data into a
single feed across 1000 torrents would average 1 TB of
individual study data per torrent. At a minimum 1 %
default Target Replication Percentage and volunteer
maximum donation mode of 20GB, peers would hit
their local 20GB device limit before reaching the 1 %-
per-torrent (10GB) target threshold. To achieve 4x re-
dundancy of each byte in the entire syndicated feed —
that is, 4 distributed copies exclusive of the original
seed copy — approximately 2 million volunteer devices
are needed on the network. While lofty, this is significantly
less than the 3 million active volunteer compute devices
on the World Community Grid [11] network. Using 1 PB
of Amazon S3 reduced-redundancy pricing as a baseline,
we estimate the annual storage savings of this network
alone to be in excess of $300,000 (USD) annually.

Openly available P2P technologies have disrupted the
entertainment industry enough to create entirely new
means of distributing artistic works, and BitTorious aims
to do the same for scientific data. BitTorious decouples
distributed storage from any singular domain, geographic,
institutional or national interest, and if run at an adoption
scale similar to World Community Grid would provide
peta-scale distribution and archival resources to scientists
in every domain worldwide.

Availability and requirements

The BitTorious portal software may be downloaded
and deployed via the public source code repository at
https://github.com/preston/bittorious. Non-administra
tive, subscriber-only evaluation may be performed by
requesting an account from the demo site, below, in
conjunction with the free uTorrent client software.

Project name: BitTorious
Project home page:
o Source code (portal): https://github.com/
preston/bittorious
o Demo: https://try.bittorious.com
o Tutorial: https://try.bittorious.com/
getting_started
e Operating system(s): Both portal and clients are
platform independent.
e Programming language: Ruby on Rails, Angular]S,
Bootstrap, PostgreSQL.
Other requirements: Ruby 2.2.1 or higher.
License: MIT
e Any restrictions to use by non-academics: None

Competing interests
The authors declare that they have no competing interests.

https://github.com/preston/bittorious
https://github.com/preston/bittorious
https://github.com/preston/bittorious
https://try.bittorious.com/
https://try.bittorious.com/getting_started
https://try.bittorious.com/getting_started

Lee and Dinu BMC Bioinformatics (2015) 16:364

Authors’ contributions

PVL provided architecture, design, development and authorship. VD provided
advisement, guidance and manuscript editing. Both authors read and approved
the final manuscript.

Acknowledgements
We would like to thank the Arizona State University College of Health
Solutions. BitTorious research and development is self-funded.

Received: 13 March 2015 Accepted: 14 October 2015
Published online: 04 November 2015

References

1. Lee PV, Dinu V. BitTorious: global controlled genomics data publication,
research and archiving via BitTorrent extensions. BMC Bioinformatics.
2014;15(1):424. doi:10.1186/512859-014-0424-9.

2. Kash 1A Lai JK, Zhang H, Zohar A. Economics of BitTorrent Communities.
New York, New York, USA: ACM; 2012. p. 221-30. doi:10.1145/2187836.2187867.

3. Adamsky F, Khayam SA, Jager R, Rajarajan M. Who Is Going to Be the Next
BitTorrent Peer Idol? 2014 12th IEEE International Conference on Embedded
and Ubiquitous Computing (EUC). 2014:293-298. doi:10.1109/EUC.2014.50.

4. Cai QC, Lo KT. An analysis of user behavior in a private BitTorrent
community. Int J Commun Syst. 2014;27(10):1572-81. doi:10.1002/dac.2420.

5. Anderson DP. Boinc: A system for public-resource computing and storage.
GRID '04 Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing. 2004;4-10. doi:10.1109/GRID.2004.14.

6. Elwaer A, Harrison A, Kelley |, Taylor I. Attic: A Case Study for Distributing
Data in BOINC Projects. Distributed Processing, Workshops and Phd Forum
(IPDPSW). 2011:1863-1870. doi:10.1109/IPDPS.2011.348.

7. Leon X, Chaabouni R, Sanchez-Artigas M, Garcia-Lopez P. Smart Cloud
Seeding for BitTorrent in Datacenters. IEEE Internet Computing.
2014;18(4):47-54. doi:10.1109/MIC.2014.43.

8. LiuY, Chang L, Pan J. On the performance and fairness of BitTorrent-like
data swarming systems with NAT devices. Comput Netw. 2014;59:197-212.
doi10.1016/j0jp.2013.11.005.

9. Druckerman JA. The Uncertifiable Swarm: Why Defendant Class Actions and
Mass BitTorrent Copyright Litigation Don't Mix. NYL Sch L Rev. Hein Online.
2013,931.

10. Foreman VS. Problems with BitTorrent Litigation in the United states:
Personal Jurisdiction, Joinder, Evidentiary Issues, and Why the Dutch Have a
Better System. Wash U Global Stud L Rev. Hein Online. 2014;127.

11, World Community Grid: Global Statistics. Downloaded September 3, 2015
from http://www.worldcommunitygrid.org/stat/viewGlobal.do; 2015.

Page 7 of 7

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolVied Central

http://dx.doi.org/10.1186/s12859-014-0424-9
http://dx.doi.org/10.1145/2187836.2187867
http://dx.doi.org/10.1109/EUC.2014.50
http://dx.doi.org/10.1002/dac.2420
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/IPDPS.2011.348
http://dx.doi.org/10.1109/MIC.2014.43
http://dx.doi.org/10.1016/j.bjp.2013.11.005
http://www.worldcommunitygrid.org/stat/viewGlobal.do

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Publisher feed configuration
	Piece affinity
	Volunteer announce parameters

	Results
	Discussion
	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

