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The effect of prior assumptions over the weights
in BayesPI with application to study protein-DNA
interactions from ChIP-based high-throughput
data
Junbai Wang

Abstract

Background: To further understand the implementation of hyperparameters re-estimation technique in Bayesian
hierarchical model, we added two more prior assumptions over the weight in BayesPI, namely Laplace prior and
Cauchy prior, by using the evidence approximation method. In addition, we divided hyperparameter (regularization
constants a of the model) into multiple distinct classes based on either the structure of the neural networks or the
property of the weights.

Results: The newly implemented BayesPI was tested on both synthetic and real ChIP-based high-throughput
datasets to identify the corresponding protein binding energy matrices. The results obtained were encouraging: 1)
there was a minor effect on the quality of predictions when prior assumptions over the weights were altered (e.g.
the prior probability distributions to the weights and the number of classes to the hyperparameters) in BayesPI; 2)
however, there was a significant impact on the computational speed when tuning the weight prior in the model:
for example, BayesPI with a Laplace weight prior achieved the best performance with regard to both the
computational speed and the prediction accuracy.

Conclusions: From this study, we learned that it is absolutely necessary to try different prior assumptions over the
weights in Bayesian hierarchical model to design an efficient learning algorithm, though the quality of the final
results may not be associated with such changes. In future, the evidence approximation method can be an
alternative to Monte Carlo methods for computational implementation of Bayesian hierarchical model.

Background
In our previous study, we developed a Bayesian neural
network type of model - BayesPI - to study protein-
DNA interactions, using ChIP-based high-throughput
data [1]. In BayesPI, the model error function (data
error) is interpreted as defining a likelihood function,
and the model regularizer (a penalty term to the error
function) corresponds to a prior probability distribution
over the weights, and such a framework is considered as
a Bayesian hierarchical model. In addition to the com-
mon model parameters, BayesPI includes unknown
hyperparameters (e.g. weight decay rate a and model

noise level b) that need to be learned from the data.
There are three possible implementations to control the
model hyperparameters when using Bayesian neural net-
works to infer the model parameters: 1) using Markov
chain Monte Carlo methods to simulate the probability
distribution - MCMC [2]; 2) integrating out the model
hyperparameters analytically before the application of
Gaussian approximation of posterior distribution, and
subsequently maximizing the true posterior over the
model parameters - Maximum A Posterior Probability
(MAP) [3]; and 3) integrating out the model parameters
first, and then maximizing the resulting evidence over
the hyperparameters - the Evidence Approximation [4].
Descriptions of the first two implementations can be
found in the earlier papers [2,3], and in this study, weCorrespondence: junbai.wang@rr-research.no
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will focus only on the last approach (the evidence
approximation) implemented in BayesPI.
Three motivations inspired us to pursue an investiga-

tion on the effect of prior assumptions over the weights
(the evidence approximation) in Bayesian neural net-
works to study protein-DNA interactions from ChIP-
based high-throughput data: 1) With regard to others’
concern, before BayesPI paper was published, we
received some criticisms about the treatment of hyper-
parameters in Bayesian neural networks. For example,
do alternative definitions of hyperparameters according
to the model parameters (e.g. divide the hyperpara-
meters a into several classes based on either the struc-
ture of neural networks or the property of the model
parameters) strongly influence the model inference? 2)
With regard to our own interest, how significant will a
different assignment of prior distribution (e.g. Gaussian
prior, Laplace prior or Cauchy prior) to weights affect
the outcome of Bayesian neural networks (e.g. predic-
tion accuracy and computational time cost)? 3) With
respect to a general survey of the application of Bayesian
inferences in ChIP-based experiments, we searched
PubMed using the keywords “Bayesian, chip” or “Baye-
sian, ChIP-chip,” and then downloaded the search
results that had been recorded before May 28, 2010.
From this search, we obtained 33 papers that contained
the above-mentioned keywords. Subsequently, we car-
ried out a literature study of these 33 papers. To our
surprise, only 14 of the 33 papers had applied Bayesian
methods on issues related to motif discovery (e.g. DNA
binding site identification) by using ChIP-based high-
throughput data, and the remaining 19 papers had
applied Bayesian methods in data integration, clustering
and network reconstructions, etc. A detailed examina-
tion of the 14 papers relevant to protein-DNA interac-
tion study reveal that BayesPI applied used evidence
approximation to solve the posterior distribution in
Bayesian inference, while the remaining 12 papers uti-
lized the sampling methods (e.g. MCMC and Gibbs
sampling) to simulate the posterior distribution of the
Bayesian models (one paper cannot be determined
because of lack of method description; detailed informa-
tion of the 33 papers is available in [Additional file 1:
Supplemental Data]). Though the present implementa-
tion (the evidence approximation) in BayesPI for hand-
ling hyperparameters has been rarely applied earlier,
there are clear advantages of using it to solve the data
mining problems [5]. Thus, by being motivated by the
last finding along with the earlier two inspirations, we
decided to carry out a follow-up study on the effect of
prior assumption over the weights in BayesPI. Our study
may pave the way for the future development of evi-
dence approximation in Bayesian inferences as well as

for the further application of the Bayesian methods in
bioinformatics research.

Results
Performance comparisons from simulated ChIP-chip
datasets
To evaluate the performance of BayesPI under (15) dif-
ferent prior assumptions over the weights, we first tried
each of them on the same set of simulated ChIP-chip
experiments (16 synthetic ChIP-chip datasets), where
the synthetic DNA sequences and ChIP-chip log ratios
were generated using MATLAB Bay Net toolbox and
MATLAB build-in random number generator, respec-
tively [1]. The accuracy of the predictions was accessed
from motif similarity scores by comparing the predicted
motif energy matrix with the corresponding SGD con-
sensus sequences [6]. In Figure 1, we have illustrated
the outcomes of the above-mentioned simulations in 15
different prior assumptions, where both the CPU hours
required for the calculation and distribution of the motif
similarity scores among all the tests are shown. The
results are very interesting because no significant
changes of the prediction quality could be observed
across the tests after changing either the prior probabil-
ity assumption or the number of subclasses for a hyper-
parameters, except for the tests with Gaussian
approximation (e.g. comparing the distribution of motif
similarity scores using Wilcoxon rank-sum test: Gaus-
sian vs. Cauchy, p < 0.03; Laplace vs. Cauchy, p < 0.04).
However, the CPU hours used for various tests differed
significantly. Particularly, the selection of prior probabil-
ity assumption over the weights in Bayesian neural net-
works had a much stronger impact on the cost of CPU
hours than that by tuning the number of subclasses of
hyperparameters. For examples, by using a Laplace
assumption over the weights in BayesPI, the CPU hours
used for the calculations were shortened by almost two
to five times when compared with the assumptions of
the weights by the other two probability distributions (e.
g. comparing the distribution of used CPU hours by
Wilcoxon rank-sum test: Gaussian vs. Laplace, p < 1.4e-
9; Cauchy vs. Laplace, p < 5.8e-8). It is worth noting
that the assignment of Laplace prior probability to
weights utilizes the least CPU hours for the calculation,
but provides the best prediction accuracy. Thus, we can
expect Laplace approximation over the weights to pro-
vide the most efficient computation for BayesPI if real
ChIP-chip datasets are used.

Performance comparisons from real ChIP-chip datasets
After testing the effect of prior assumptions over the
weights in BayesPI using the synthetic ChIP-chip data-
sets, we tried it on the real protein-DNA interaction
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datasets from ChIP-chip experiments. We collected
ChIP-chip datasets for nine yeast TFs in rich medium
condition [7], among which four (SWI4, INO4, ACE2,
and XBP1) had the same consensus sequences as the
TFs in the synthetic datasets. In the earlier tests, we
neither found a significant variation in the prediction
accuracy nor observed a strong perturbation of the com-
putational time cost (Figure 1) through tuning the num-
ber of subclasses of a hyperparameters: hence, we
decided to select only four subclasses for the hyperpara-
meters in the rest of the studies. The results of these
tests both with and without the inclusion of nucleosome
information are presented in Figure 2 that shows that
there is little difference in the prediction accuracies
among the tests regarding the selection of prior prob-
ability assumptions and the inclusion of the nucleosome
information. A comparison between the motif similarity
scores provided by the three prior weight assumptions
in BayesPI and those obtained by MatrixREDUCE is
presented in Table 1. The results indicate that all poor
predictions are caused by stress-induced transcription
factors (e.g. ROX1, MSN2, and XBP1). Though BayesPI
may provide some reasonable answers to TFs that are

nonfunctional under certain growth conditions (e.g.
Table 1, SKN7 and MSN2 in the YPD condition), its
computational speed is much slower than that by the
popular program MatrixREDUCE [8]. Nevertheless, the
CPU hours used by BayesPI among the three prior
weight assumptions differ significantly (e.g. comparing
the distribution of used CPU hours without considering
the nucleosome information by Wilcoxon rank-sum test:
Gaussian vs. Laplace, p < 4.2e-5; Gaussian vs. Cauchy, p
< 4.2e-5; Cauchy vs. Laplace, p < 2.9e-4). Furthermore,
we found that the cost of the CPU hours for the com-
putation was slightly reduced with regard to the nucleo-
some information. Taken together, it can be concluded
that the computational efficiency of the Laplace prior
assumption over the weights in the Bayesian neural net-
works clearly surpasses that of the other two weight
priors, and that the Laplace prior may be suitable for
the further improvement of BayesPI algorithm.

Performance comparisons from human ChIP-Seq datasets
After the successful application of the earlier tests on
ChIP-chip datasets, we tried the new BayesPI program
on three human ChIP-Seq datasets [9] by applying three

Figure 1 Performance comparisons from simulated ChIP-chip datasets. The upper panel of the figure shows the box plots of the
distribution of motif similarity scores across 15 different weight prior configurations. The lower panel of the figures shows the box plots of the
distribution of CPU hours used by 15 prior assumptions over the weights. Here, the red line represents Gaussian prior assumption to the weights
(e.g. G1, G2, G3, G4, and G5), the blue line represents Laplace prior approximation over the weights (e.g. L1, L2, L3, L4, and L5), and the black
line indicates Cauchy priors to the weights (C1, C2, C3, C4, and C5), in which the numerical values 1, 2, 3, 4, and 5 represent regularization
constant a with one, two, three, four, and greater than five classes, respectively.
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different prior assumptions (e.g. Gaussian, Lasso, and
Cauchy) over the weights with predefined four groups
of regularization constants a. Here, the inputs to Baye-
sPI were pre-processed raw ChIP-Seq measurements,
which are a set of putative protein binding sites (e.g.

there are 5814, 26815, and 73957 putative TF binding
sites for NRFS, CTCF, and STAT1, respectively.), and
the corresponding tag densities obtained from SISSRs
method [9]. The results of these tests are shown in
Figure 3, which demonstrates that the Laplace prior

Figure 2 Performance comparisons from real ChIP-chip datasets. The upper panel of the figure shows the box plots of the distribution of
motif similarity scores across six different weight prior configurations. The lower panel of the figure shows the box plots of the distribution of
CPU hours used by six prior assumptions over the weights. Here, the red line represents the prior assumptions over the weights without
inclusion of the nucleosome information, and the blue line indicates the prior assumptions over the weights with the inclusion of the
nucleosome information. G4, L4, and C4 indicates Gaussian prior, Laplace prior, and Cauchy prior assumptions to the weights with four classes of
regularization constants a, respectively.

Table 1 Comparing motif similarity scores of nine yeast TFs from four different calculations

TF Name (consensus sequence
length)

Activated in stress
conditions

BayesPI - Gaussian
prior

BayesPI - Laplace
prior

BayesPI - Cauchy
prior

MatrixREDUCE

ACE2 (6) No 0.89 0.95 0.96 0.90

MSN2 (6) Yes[17] 0.76 0.93 0.79 NA

SWI4 (7) No 0.96 0.94 0.94 0.95

YAP1 (7) Yes[18] 0.93 0.92 0.92 0.93

INO4 (8) No 0.90 0.92 0.94 0.97

SKN7 (9) Yes[19] 0.86 0.87 0.86 0.82

FHL1 (10) No 0.95 0.95 0.93 0.88

ROX1 (12) Yes[20] 0.72 0.72 0.78 0.75

XBP1 (12) Yes[21] 0.76 0.77 0.76 NA

For the nine yeast TFs, the ChIP-chip datasets were obtained from [7]; the regularization constants a in BayesPI were divided into four classes; MatrixREDUCE
program was downloaded from the publication [8] and its default parameters were used in the present study. Here, the motif similarity scores greater than 0.85
represents a good match between the prediction and the SGD consensus sequences [1]. Poor predictions are marked by bold text. NA indicates that no results
are available owing to the program reason. All the programs were applied on the same datasets and were run under a PC cluster (a dual-core CPU SUN X6220
blade node with 16 GB of RAM).
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requires much less CPU hours when compared with
that required by the other two assumptions. For
instance, to complete the same calculation, Laplace
approximation needs only 50 percent to 25 percent of
the CPU hours that is used by either Cauchy or Gaus-
sian approximation. However, interestingly, the accuracy
of the predictions does not differ significantly among
various prior assumptions similar to the previous tests
that employed the ChIP-chip datasets: tuning of the
prior assumption over the weights does not seem to
affect the quality of the predictions, but is rather
observed to bring strong impact on the CPU require-
ment. Thus, a careful design of the weight priors in a
Bayesian model may significantly reduce the computa-
tional cost for the calculation.

Discussion
Nowadays, chromatin immunoprecipitation followed by
massively paralleled sequencing (ChIP-Seq) is being
used widely in various molecular biological researches
such as investigating genome-wide protein-DNA inter-
actions [7] and histone modification studies [10]. It is
possible that the ChIP-Seq experiment may replace
ChIP-chip technology completely [11] in future. That is

because the ChIP-Seq experiment produces higher qual-
ity and higher resolution data than the ChIP-chip,
which also avoids several pitfalls that accompany with
the ChIP-chip technology: for example, array probe-spe-
cific behavior and dye bias [12]. In this work, we studied
the effect of prior assumptions over the weight in Baye-
sPI to predict the protein binding energy matrices from
ChIP-based high-throughput datasets. The results on
both synthetic and real experimental datasets were con-
sistent: in general, the prior assumptions over the
weights and the classification of regularization constants
(e.g. hyperparameters a) into several classes did not
strongly affect the final outcome of BayesPI (e.g. Figures
1, 2, and 3) if sufficient training datasets were provided;
particularly, a change in the number of classes over the
regularization constants had a much weaker impact on
the requirement of computational resource than a
change in the weight prior in BayesPI; nevertheless, the
selection of prior approximation over the weights had
the most significant influence on the CPU hours that
were used for calculation (e.g. by using a Laplace prior,
the computational time was reduced by more than
50 percent when compared with that utilized by the old
BayesPI [1], a Gaussian prior.) Thus, the present study

Figure 3 Performance comparisons from human ChIP-Seq datasets. The upper panel of the figure shows the box plots of the distribution
of motif similarity scores across three different weight prior configurations. The lower panel of the figure shows the box plots of the distribution
of CPU hours used by three prior assumptions over the weights. The red line represents Gaussian prior assumption over the weights, the blue
line indicates the Laplace prior assumption over the weights, and the black line represents Cauchy prior assumption to the weights. Here, there
are four distinct weight classes in the regularization constants a.
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reveals the importance of defining a right weight prior
to a Bayesian hierarchical model, which may dramati-
cally speed up the calculation when the program is
applied to a large dataset.
In addition to the above-mentioned findings that the

computation efficiency of BayesPI is highly associated with
prior assumptions over the weights, we also provided a
detailed illustration of the hyperparameter re-estimation
technique by using the evidence approximation method.
We presume that the evidence method may become a
popular approximate method for computational imple-
mentation of Bayesian hierarchical model (a deterministic
algorithm), as well as become an alternative to Monte
Carlo methods that are currently being widely used in
bioinformatics research fields [13]. Particularly, the evi-
dence method can overcome some of the inherent limita-
tions of the sampling approaches, such as nonreproducible
results, long burning period, and unknown stopping time.

Conclusions
The present study has clarified several doubts in the
early implementation of BayesPI: 1) prediction accuracy
of BayesPI is robust against dividing the hyperpara-
meters (e.g. regularization constants a) into multiple
distinct groups; 2) there is a minor effect on the quality
of predictions by selecting alternative prior assumptions
over the weights in BayesPI; 3) however, there is a
strong impact on the computational requirement for
calculation when a proper weight prior is chosen. Over-
all, we have derived the new re-estimation formulas for
both Laplace prior and Cauchy prior over the weights in
the Bayesian neural networks, and the new implements
have been tested successfully in both synthetic and real
ChIP-based high-throughput datasets.

Methods
Computational modeling of protein-DNA interactions in
BayesPI
In this study, we have only focused on the effect of prior
assumption over the parameters in Bayesian neural net-
works. The descriptions of the biophysical background
behind BayesPI and the implementation of the Bayesian
predicative model to estimate the protein binding para-
meters by combining ChIP-based datasets with DNA
sequence information will not be repeated, because they
are available in the previous paper [1]. First, we regular-
ized the objective function

M w E D w E wD w( ) ( | , , ) ( | , )= +   Λ Λ Γ (1)

which can be used by the Bayesian neural networks [4]
to determine the parameters (e.g. w, a, b). In the above-
mentioned equation, ED, Ew, D, and 〈Λ, h, Γ〉 are the
model error function (data error), the model regularizer

(a penalty term to the error function), the input data, and
the hypothesis model space (e.g. Λ is the protein binding
probability and Γ is the regularization function), respec-
tively; a and b are the two unknown hyperparameters (e.g.
weight decay rate and model noise level) that must be
determined from the input data; and w indicates the
model parameters (e.g. weights in the Bayesian neural net-
works), which represents the inferred the protein binding
energy matrix and the chemical potentials from ChIP-
based high-throughput data [1].
Here, a Gaussian model error function ED is assumed

throughout as

E t YD i i

i

g

= −( )
=
∑1

2
2

1

(2)

where ti is the measured ChIP-based data to gene i,
and Yi is the predicted TF occupancy data for that gene,
according to a predefined TF binding probability (e.g.
either inclusion or exclusion of nucleosome binding
information in the protein-binding probability [1]). For
the model regularizer Ew, three types of weight prior
assumptions were selected [3]: 1) Gaussian prior
assumption over the weights,

E ww q

q

Q

=
=

∑1
2

2

1

(3)

in which Q is the number of parameters in the model,
such as w; 2) Laplace prior distribution as the model
regularization function,

E ww q

q

Q

=
=

∑| |
1

(4)

3) Cauchy prior assumption over the model para-
meters w in BayesPI

E ww q

q

Q

= +
=

∑1
1 2 2

1
a

alog( ) (5)

Based on the above-mentioned three weight priors, we
applied the evidence approximation method [4] to deter-
mine the corresponding re-estimation formulas for both
a and b, which can be used by Bayesian neural networks
to fit the model (e.g. to learn the model parameters w
from the data).

Bayesian choice of a and b through the evidence
approximation
Evidence approximation
Based on Bayes’ theorem, a posterior distribution of the
model parameters, can be given as
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P w D
M w

ZM
| , , , , ,

exp( ( ))
( , )

a b h
a b

Λ Γ( ) = −
(6)

where M is a probability framework of the objective
function described in equation (1) and ZM is a normali-
zation factor [4]. By employing a Gaussian approxima-
tion of the posterior probability, we have

P w D

M w w A w w

Z

MP MP
T

MP

M

| , , , , ,

exp( )exp( ( ) ( ))

’

  Λ Γ( )

≈
− − − −1

2
(7)

in which Z dw M wM MP
’ exp( ( ))= −∫ and A is the Hes-

sian of M (e.g. A = a∇∇Ew + b∇∇ED) evaluated at wMP.
Here, we first assume that the most probable model
parameters wMP are known (integrating out the model
parameters), and then infer the hyperparameters
through Bayes’ rule

P D

P D P
P D

a b h

a b h a b h
h

, | , , ,

( | , , , , ) ( , | , , )
( | , , )

Λ Γ
Λ Γ Λ Γ

Λ Γ

( )
=

(8)

where we also assume equal priors P(a, b|Λ, h, Γ) to
the alternative models and a constant term to the P
(D|Λ, Γ, h). Thus

P D P Da b h a b h, | , , , ( | , , , , )Λ Γ Λ Γ( ) ≈ (9)

where P(D|a, b, Λ, h, Γ) is the evidence for the overall
model,

P D
Z

Z Z
M

w D

| , , , ,
( , )

( ) ( )
  

 
 

Λ Γ( ) = (10)

including both the model architecture and the regular-
izing parameters [4], where Zw(a) and ZD(b) are the
normalization factors given by Zw(a) = ∫ dwexp(-aEw)
and ZD(b) = ∫ dDexp(-bED), respectively. By maximizing
the log evidence of equation (10), we can determine the
re-estimation formulas for hyperparameters a and b
according to the weight assumptions Ew in BayesPI.
Gaussian prior
The log evidence for hyperparameters is

log( ( | , , , , )) log log logP D Z Z ZM w Da b hΛ Γ = − − (11)

where a Gaussian prior, equation (3), is used for Ew
and

Z M AM MP
k≈ − −exp( )( ) det/ /2 2 1 2  (12)

Zw
k≈ ( ) /2 2p

a
(13)

ZD
N≈ ( ) /2 2p

b
(14)

After replacing ZM, Zw, ZD by equations (12), (13),
and (14), respectively, equation (11) becomes

log( ( | , , , , ))

log det log log log

P D

M A
k N N

MP

a b h

a p b

Λ Γ

≈ − − + − +1
2 2 2

2
2

(15)

To determine the conditions that are satisfied at the
maximum log evidence, we differentiated equation (15)
with respect to a and b, and then set the derivative to
zero from which we can obtain the re-estimation formu-
las for both a and b as follows

a a= − −k Trace A I
Ew

( )1

2
(16)


= − + −N k Trace A

ED

( )1

2
(17)

Let

g a= − −k Trace A( )1 (18)

The equations (16) and (17) can be rewritten as

a g=
2Ew

(19)


= −N

ED2
(20)

where g are eigenvectors of A. For example, equation
(18) can be transformed to

g
l

l a
=

+∑ q

qq

(21)

Where lq are the eigenvalues of the b∇∇ED and the
negative lq are omitted from the sum. Thus, for a Gaus-
sian weight prior, we used equation (21) to update the
hyperparameters a and b through equations (19) and
(20).
Laplace prior
By using equation (4) as a prior assumption over the
weights, the Hessian of M becomes

Wang BMC Bioinformatics 2010, 11:412
http://www.biomedcentral.com/1471-2105/11/412

Page 7 of 10



A ED= ∇∇b (22)

The log evidence for the hyperparameters is

log( ( | , , , , ))

log log det log log

P D A R

M
k

A Z ZMP w D

a b h

p≈ − + − − −
2

2
1
2

(23)

where

Zw
k≈ ( )

2
a

(24)

ZD
N≈ ( ) /2 2p

b
(25)

After inserting equations (24) and (25) into the log
evidence, we get

log( ( | , , , , ))

log det log log log l

P D A R

M A
k

k k
N

MP

  

 ≈ − − + − + −1
2 2

2 2
2

oog log2
2

 + N (26)

To maximize the log evidence over the hyperpara-
meters, we differentiated equation (26) with respect to a
and b, and the derivative was set to zero, then we
obtained the following re-estimation formulas

a = k
Ew

(27)

 = −N k

ED2
(28)

for the hyperparameters, when assuming a Laplace
prior over the weights.
Cauchy prior
Here, we used equation (5) as the prior assumption over
the weights, and the log evidence for the model can be
given as

log( ( | , , , , ))

log log det log log

P D A R

M
k

A Z ZMP w D

a b h

p≈ − + − − −
2

2
1
2

(29)

Zw
k≈ (

| |
)

p
a

(30)

where

ZD
N≈ ( ) /2 2p

b
(31)

After inserting equations (30) and (31) into equation
(29), the log evidence becomes

L

M A
k

k k

N N

MP

( , )

log det log log log | |

log log

 

  

 

= − − + − +

− +

1
2 2

2

2
2

2

(32)

where we assume that a is known for Ew, ∇Ew, and
∇∇Ew. To determine the conditions suitable for the maxi-
mum log evidence, equation (32) was differentiated with
respect to hyperparameters, and the derivative was set to
zero. Then the re-estimation formulas for a and b are

| |
= +k

Ew2
(33)

b g= −N
ED2

(34)

where

g
l

l a
=

+ ∇∇∑ q

q Ewq

(35)

where lq are the eigenvalues of data error b∇∇ED.
Thus, for a Cauchy prior, equation (35) can be used to
compute hyperparameters a and b through equations
(33) and (34). Detailed derivations of hyperparameters
update functions for above three priors are available in
[Additional file 1: Supplemental Methods].
Application of R-propagation algorithm
In equation (35), there is a second derivative ∇∇Ew,
which can be estimated from an efficient R-propagation
algorithm of Pearlmutter [14]. The algorithm applies a
differential operator R() on the Back-propagation neural
networks. For example, let us assume that equation (5)
is used by the model regularizer Ew. Then

E aw = 1
2a

(36)

where a2 is the node of the output layer

a Hq

q

2
21= +∑ log( ) (37)

in which Hq is the node of the hidden layer

H aq
q= a 1 (38)
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and a1
q is the node of the input layer

a wq
q1 = (39)

After completing the above-mentioned forward com-
putation of the neural networks, a backward pass can be
subsequently obtained as

∂
∂

=

∂
∂

=
+

∂

∂
=

+

∂
∂

=
+

E
a

E
Hq

Hq
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a q
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Hq

E
wq

Hq

Hq

2

1

1 2

1 2

1

2

1 2

2

1 2

a

a

(40)

and R-forward computation can be carried out as
follows

R a V

R H R a

R a
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R H
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q
q

q

q

q
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( ) ( )

( ) ( )

1

1

2

2

1 2

=

=

=
+

∑
a

(41)

Furthermore, the R-backward computation can be car-
ried out as follows

R
E
wq

Hq

Hq
R Hq( )

( )

( )
( )

∂
∂

=
− −

+

2 2 1

2 1 2
(42)

By following the above-mentioned R-back-propagation
procedures, R E

wq
( )∂

∂ can be estimated, which is equiva-
lent to computing the second derivative ∇∇Ew [14].
Detailed description of application of R-propagation
algorithm is available in [Additional file 1: Supplemental
Methods]. The source code of BayesPI2 is public avail-
able http://folk.uio.no/junbaiw/bayesPI2.

Multiple regularization constants a
For simplicity, we assumed that there is only one class
of weights in BayesPI [1]. For example, the weights are
modeled as coming from a single Gaussian prior (e.g.
equation (3)). However, in a real study, weights may fall
into multiple distinct groups [4]. Therefore, it is desir-
able to divide the weights into several classes c, with
independent regularization constants ac. In the new ver-
sion of BayesPI, there are five types of assignment of
weight decay rate a to each of the three weight priors
(e.g. Gaussian, Laplace, and Cauchy). The term aEw in

equation (1) is replaced by a c w
c

c
E∑ , in which c is the

number of classes to the regularization constants a: 1) if
c equals 1, then all the weights have the same regulari-
zation constant a; 2) if c equals 2, then we can divide
the weights into two groups, namely the weights in the
hidden layer and the weights in the output layer; 3) if c
equals 3, then it suggests that there are two distinct
weight classes in the hidden layer (e.g. weights from the
motif energy matrix and weight from the chemical
potential), but only a single weight class in the output
layer [1]); 4) if c equals 4, then it suggests that there are
two independent weight classes in both the hidden layer
and output layer; 5) if c is greater than 5, then it sug-
gests that each binding position of the motif energy
matrix has its own regularization constant ac as well as
the chemical potential, and that the two weights in the
output layer have their own regularization constants,
respectively (e.g. if TF motif length equals 8, then the
regularization constant a has 11 classes).

Motif similarity score and Microarray datasets
To access the quality of the predicted motif binding
sites, we used a published method (motif similarity
score [15]) to estimate the similarity between the pre-
dicted motif energy matrices and the corresponding
consensus sequences from the SGD database [16].
Detailed description of these calculations can be found
in the previous publication [1]. Synthetic ChIP-chip
datasets and real ChIP-chip experiments for nine yeast
transcription factors were adopted from the earlier
works [1,7]. ChIP-Seq datasets for three human TFs
(STAT1, NRSF, and CTCF) were obtained from Jothi
et al. [9]. More information about the preprocessing of
both ChIP-chip and ChIP-Seq datasets are available in
[1].

Additional material

Additional file 1: Supplementary information to the paper. Here we
provide detailed description of derivation of hyperparameters update
functions for three different priors (e.g. Gaussian, Cauchy, and Laplace),
the implementation of R-propagation algorithm, and the full information
of 33 papers that were obtained from PubMed on May 28th, 2010 by
searching the keywords (e.g. Chip, Bayesian).

Acknowledgements
Junbai Wang is supported by the Norwegian Cancer Society, the cluster
facilities of the University of Oslo and the NOTUR project.

Authors’ contributions
JW conceived and designed the study, implemented program, performed
data analysis and drafted manuscript.

Competing interests
The author declares that they have no competing interests.

Wang BMC Bioinformatics 2010, 11:412
http://www.biomedcentral.com/1471-2105/11/412

Page 9 of 10

http://folk.uio.no/junbaiw/bayesPI2
http://www.biomedcentral.com/content/supplementary/1471-2105-11-412-S1.PDF


Received: 5 December 2009 Accepted: 4 August 2010
Published: 4 August 2010

References
1. Wang J: BayesPI - a new model to study protein-DNA interactions: a

case study of condition-specific protein binding parameters for Yeast
transcription factors. BMC bioinformatics 2009, 10:345.

2. Neal RM: Bayesian Learning for Neural Networks. PhD thesis University of
Toronto 1994.

3. Williams PM: Bayesian Regularization and Pruning Using a Laplace Prior.
Neural Computation 1995, 7(1):117-143.

4. Mackay D: Bayesian Methods for Adaptive Models. PhD thesis California
Institute of Technology 1991.

5. Mackay DJC: Comparison of Approximate Methods for Handling
Hyperparameters. Neural Computation 1999, 11(5):1035-1068.

6. Chen CY, Tsai HK, Hsu CM, May Chen MJ, Hung HG, Huang GT, Li WH:
Discovering gapped binding sites of yeast transcription factors. Proc Natl
Acad Sci USA 2008, 105(7):2527-2532.

7. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW,
Hannett NM, Tagne JB, Reynolds DB, Yoo J, et al: Transcriptional regulatory
code of a eukaryotic genome. Nature 2004, 431(7004):99-104.

8. Foat BC, Morozov AV, Bussemaker HJ: Statistical mechanical modeling of
genome-wide transcription factor occupancy data by MatrixREDUCE.
Bioinformatics 2006, 22(14):e141-149.

9. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K: Genome-wide identification
of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids
Res 2008, 36(16):5221-5231.

10. Schones DE, Zhao K: Genome-wide approaches to studying chromatin
modifications. Nature reviews 2008, 9(3):179-191.

11. Buck MJ, Lieb JD: ChIP-chip: considerations for the design, analysis, and
application of genome-wide chromatin immunoprecipitation
experiments. Genomics 2004, 83(3):349-360.

12. Qi Y, Rolfe A, MacIsaac KD, Gerber GK, Pokholok D, Zeitlinger J, Danford T,
Dowell RD, Fraenkel E, Jaakkola TS, et al: High-resolution computational
models of genome binding events. Nature biotechnology 2006,
24(8):963-970.

13. Wilkinson DJ: Bayesian methods in bioinformatics and computational
systems biology. Briefings in bioinformatics 2007, 8(2):109-116.

14. Pearlmutter BA: Fast exact multiplication by the Hessian. Neural
Computation 1994, 6(1).

15. Tsai HK, Huang GT, Chou MY, Lu HH, Li WH: Method for identifying
transcription factor binding sites in yeast. Bioinformatics 2006,
22(14):1675-1681.

16. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G,
Roe T, Schroeder M, et al: SGD: Saccharomyces Genome Database. Nucleic
Acids Res 1998, 26(1):73-79.

17. Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G,
Hamilton B, Ruis H, Schuller C: Nuclear localization of the C2H2 zinc
finger protein Msn2p is regulated by stress and protein kinase A
activity. Genes Dev 1998, 12(4):586-597.

18. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB: Yap1
and Skn7 control two specialized oxidative stress response regulons in
yeast. J Biol Chem 1999, 274(23):16040-16046.

19. Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS,
Johnston LH: The Skn7 response regulator of Saccharomyces cerevisiae
interacts with Hsf1 in vivo and is required for the induction of heat
shock genes by oxidative stress. Mol Biol Cell 2000, 11(7):2335-2347.

20. Deckert J, Perini R, Balasubramanian B, Zitomer RS: Multiple elements and
auto-repression regulate Rox1, a repressor of hypoxic genes in
Saccharomyces cerevisiae. Genetics 1995, 139(3):1149-1158.

21. Mai B, Breeden L: Xbp1, a stress-induced transcriptional repressor of the
Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol 1997,
17(11):6491-6501.

doi:10.1186/1471-2105-11-412
Cite this article as: Wang: The effect of prior assumptions over the
weights in BayesPI with application to study protein-DNA interactions
from ChIP-based high-throughput data. BMC Bioinformatics 2010 11:412.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wang BMC Bioinformatics 2010, 11:412
http://www.biomedcentral.com/1471-2105/11/412

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/19857274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18272477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15343339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15343339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16873464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16873464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18684996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18684996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14986705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14986705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14986705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16900145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16900145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16644789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16644789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9399804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9472026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9472026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9472026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10347154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10347154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10347154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10888672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10888672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10888672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7768429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7768429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7768429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9343412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9343412?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Performance comparisons from simulated ChIP-chip datasets
	Performance comparisons from real ChIP-chip datasets
	Performance comparisons from human ChIP-Seq datasets

	Discussion
	Conclusions
	Methods
	Computational modeling of protein-DNA interactions in BayesPI
	Bayesian choice of &alpha; and &beta; through the evidence approximation
	Evidence approximation
	Gaussian prior
	Laplace prior
	Cauchy prior
	Application of R-propagation algorithm

	Multiple regularization constants &alpha;
	Motif similarity score and Microarray datasets

	Acknowledgements
	Authors' contributions
	Competing interests
	References

