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A metabolomic analytical approach 
permits identification of urinary biomarkers 
for Plasmodium falciparum infection: a case–
control study
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Abstract 

Background:  Currently available diagnostic techniques of Plasmodium falciparum infection are not optimal for non-
invasive, population-based screening for malaria. It was hypothesized that a mass spectrometry-based metabolomics 
approach could identify urinary biomarkers of falciparum malaria.

Methods:  The study used a case–control design, with cases consisting of 21 adults in central Ethiopia with a diag-
nosis of P. falciparum infection confirmed with microscopy, and 25 controls of adults with negative blood smears for 
malaria matched on age and sex. Urinary samples were collected from these individuals during presentation at the 
clinic, and a second sample was collected from both cases and controls 4 weeks later, after the cases had received 
anti-malarial medication. The urine samples were screened for small molecule urinary biomarkers, using mass 
spectrometry-based metabolomics analyses followed by multivariate analysis using principal component analysis and 
orthogonal partial least square-discriminant analysis. The chemical identity of statistically significant malaria biomark-
ers was confirmed using tandem mass spectrometry.

Results:  The urinary metabolic profiles of cases with P. falciparum infection were distinct from healthy controls. After 
treatment with anti-malarial medication, the metabolomic profile of cases resembled that of healthy controls. Signifi-
cantly altered levels of 29 urinary metabolites were found. Elevated levels of urinary pipecolic acid, taurine, N-acetyl-
spermidine, N-acetylputrescine and 1,3-diacetylpropane were identified as potential biomarkers of falciparum malaria.

Conclusion:  The urinary biomarkers of malaria identified have potential for the development of non-invasive and 
rapid diagnostic test of P. falciparum infection.
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Background
Malaria is endemic in 104 tropical and subtropical coun-
tries, and the most common cause of death from malaria 
in Africa is due to infection with Plasmodium falciparum 
[1]. The World Health Organization (WHO) estimated 
that 3.3 billion people were at risk of being infected with 

malaria in 2013 [2]. Malaria is a curable disease if diag-
nosed early, but drug resistance has drastically increased 
in recent years especially for P. falciparum infections [3]. 
Although microscopy is considered to be the “gold stand-
ard” for the diagnosis of malaria, the method is invasive, 
time-consuming, and requires expert skills. Rapid diag-
nostic tests (RDTs) [4, 5] have facilitated early diagnosis 
of malaria, but still require blood samples that may delay 
presentation, particularly in areas with high prevalence of 
Human Immunodeficiency Virus (HIV) infection [6, 7].
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There are no studies of the use of metabolomics to 
identify urinary biomarkers for P. falciparum infection. 
As urine samples are readily available and do not require 
venepuncture, they have potential as a non-invasive 
approach for the early diagnosis of P. falciparum infec-
tion. A case–control study design was used to identify 
novel urinary biomarkers for P. falciparum infection 
using metabolomic methodology, and to explore if these 
biomarkers return to normal after treatment with anti-
malarial medication.

Methods
Study population
The study used a case–control design. Cases were adults 
diagnosed with P. falciparum infection using blood-
film microscopy at Adama Malaria Control Laboratory 
Centre in East Shewa Zone of Oromia Regional State in 
Ethiopia, from September to November 2013. Urine sam-
ples were collected from all cases at baseline (PF1) and 
again 4  weeks after they had received treatment with 
anti-malarial medication (PF2). Controls were healthy 
sex-matched adults who were a similar age to cases and 
had negative blood films for malaria parasites. Urine 
samples were also collected from controls at baseline 
(C1) and again after 4  weeks (C2). All participants pro-
vided informed consent. Ethical approval for the study 
was obtained from the Ethiopian Ministry of Science 
and Technology, the Institutional Review Board of the 
College of Health Sciences, Addis Ababa University and 
University of Nottingham Ethics Committees. Collect-
ing samples on 20 cases and 20 controls would give 80% 
power to detect a one standard deviation difference in 
biomarkers between cases infected with malaria and con-
valescent samples/healthy controls.

Urine sample collection, transport and storage
All urine samples were collected in urinary collection ves-
sels without the use of preservatives and kept at −20 °C. 
After transport to UK, samples were aliquoted into cryo-
tubes (6 × 1.0 mL) and stored in a −80 °C freezer. Simple 
urinalysis was performed to check for unwanted contam-
inated by haemolysis in the study samples using reagent 
strips (SureScreen Diagnostics, Derby, UK).

Metabolomic analysis of samples
The urine samples were analysed in 60 µL aliquots using 
ultra-high performance liquid chromatography cou-
pled to high resolution mass spectrometry (UHPLC-
HRMS) using the protocol detailed in Additional file  1. 
All samples were analysed in a single analytical run with 
inclusion of pooled quality control (QC) samples. The 
chemical identity of selected urinary metabolites was 
confirmed by fragmentation analysis using ion-trap mass 

spectrometry and comparison with authentic standards 
(Additional file 1).

Data analysis and metabolite identification
The raw data from UHPLC-HRMS analysis were acquired 
and visualized with Xcalibur v2.1 software (Thermo Sci-
entific, USA). The performance of the analytical method 
was validated by monitoring a representative set of 60 
urine metabolites in the pooled quality control sample for 
retention time shifts, mass accuracy and relative standard 
deviations (RSD %) of peak areas. For the metabolomics 
analysis, datasets from malaria patients and healthy con-
trols were pre-processed using Progenesis QI software 
(Nonlinear Dynamics, Newcastle, UK) for peak picking, 
peak alignments, normalization and peak deconvolution. 
In addition, the quality of the datasets obtained from the 
LC–MS analysis was assessed against acceptance criteria 
in a standardized metabolomics approach [8].

The initial analysis compared urinary biomarker levels 
between cases with P. falciparum infection and healthy 
controls, and subsequent analysis explored the impact 
of anti-malarial treatment and clinical recovery on the 
candidate biomarkers identified. Multivariate data analy-
sis using principal component analysis (PCA) and par-
tial least square-discriminant analysis (OPLS-DA) were 
used to investigate possible metabolic changes between 
all classes in the study using Simca P +14 (MKS, Umeå, 
Sweden). The resultant OPLS-DA models were validated 
using cross-validation, permutation test and prediction 
method based on randomly selected training (50%) and 
test sets (50%) of samples. The specificity and selectivity 
of the prediction models were tested using area under the 
ROC (receiver operating characteristic) curve (AUC).

Tentative identification of urinary biomarkers of malaria
Metabolites responsible for the classification between fal-
ciparum malaria patients (PF1) and healthy controls (C1) 
were selected according to the variable importance for 
the projection (VIP) values from the OPLS-DA models. 
Metabolites with VIP score more than 1.0 were chosen 
and an ArcSinh transformation was applied to restore 
normality. The selected metabolite intensities across 
malaria patients’ and healthy controls’ samples were sub-
jected to the Student’s t test and the generated p values 
were adjusted using false discovery rate to account for 
the multiple comparison problem. Top metabolites that 
differed significantly (q ≤  0.05) between case and con-
trol groups were selected and tentative identification of 
malaria biomarkers was achieved by interrogating the 
Urine Metabolome Database, (http://www.urinemetab-
olome.ca), using accurate mass measurements within 
5  ppm mass error. Confirmation of identity of some 
biomarkers was performed by means of fragmentation 

http://www.urinemetabolome.ca
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analysis using ion-trap MS and comparison with authen-
tic standards.

Results
21 individuals with P. falciparum infection demon-
strated on microscopic examination of blood films and 25 
healthy adults with blood films negative for malaria para-
sites provided urinary samples for analysis. The mean 
age of the cases was 30.7  years [standard deviation (sd) 
10.3, range 17–50] and 17 (81%) were male. The mean 
age for the controls was 32.1 years (sd 10.6, range 19–54) 
and 20 (80%) were male. The validation of the LC–MS 
performance for metabolomics analysis is presented 
in Additional file  1, and demonstrated that a consistent 
and stable metabolomics analysis was achieved for the 
malaria urine samples. PCA analysis of the entire data set 
showed consistent clustering of QC samples (Additional 
file 2: Figure S1).

Cross‑sectional urinary metabolomics analysis of malaria 
cases and healthy controls
Typical LC–MS base peak chromatograms obtained from 
urine samples of malaria patients and healthy controls 
are shown in Fig.  1. Adequate chromatographic separa-
tion was attained with most of metabolite peaks eluted 
within 9  min. The metabolites observed in the chro-
matograms mainly comprised a range of organic acids, 
amino acids and pyrimidine nucleosides. The metabo-
lomics datasets generated a large number of analytical 
variables (Table 1) which were subjected to multivariate 
data analysis to classify the urinary metabolites contrib-
uting to the separation of the clinical groups in the study. 
OPLS-DA analysis showed separation and clustering of 
malaria samples (PF1) from the rest of the groups with no 
clear differences in urine metabolic profiles between the 
samples from the two control groups (C1 and C2) with 
the convalescent samples from the treated cases collected 
after 4  weeks (PF2) (Fig.  2). The clustering of malaria 
samples after 4  weeks (PF2) within the control groups 
region in the models indicates no significant differences 
between those samples.

Subsequent OPLS-DA models were obtained from 
malaria patients (PF1) and healthy controls (C1) data-
sets only, total separation between the two groups were 
observed (Fig.  2). The OPLS-DA model was evaluated 
using cross-validation. The R2Y and Q2 values were 
R2Y = 0.993 and Q2 = 0.583 (Table 1). A successive per-
mutation test was carried out for the OPLS-DA model to 
test if the good predictive ability of the model was due to 
data overfitting. The Q2-intercept values of the regression 
lines of the Y-permuted Q2 values were less than the Q2 
values of the tested OPLS-DA models, and intercepted 
at −0.268, indicating a reliable predictive power of the 

generated model which was not due to data overfitting 
(Table  1). In addition, rigorous testing of the classifica-
tion performance of the OPLS-DA model was performed 
using prediction models. The predictive accuracy, sensi-
tivity and specificity of the OPLS-DA model was 78, 80 
and 77% (Table  1), indicating a reliable and comparable 
predictive power of the model. The robustness of the gen-
erated OPLS-DA model was further validated using an 
unbiased approach, the area under the ROC curve (AUC) 
[9]. The OPLS-DA models gave comparable results to 
those obtained using training/test sets with AUC of 
0.83, indicating that the predictability of the models was 
robust and valid.

A list of urinary metabolites which make a major con-
tribution to the predictive OPLS-DA model between 
malaria patients and healthy controls is shown in Table 2. 
The fold change between malaria patients and controls 
is indicated, together with the false discovery rate (FDR) 
and an indication of the level of structural confirmation 
of each metabolite. Examples of confirmation of metab-
olites structures by LC–MS/MS are given in Additional 
file 2: Figures S2 and S3. A further ROC curve based on 
eight main biomarkers including 1,3 diacetyl propane, 
2-octanedioic acid, N-prolyl histidine, taurine, N-acetyl-
putrescine, N-acetylasparagine, N-acetylspermidine and 
N-acetylglutamine was generated. The predictive accu-
racy, sensitivity and specificity of these biomarkers were 
91, 91 and 91%, respectively, with AUC of 0.92 (Table 1), 
indicating that these biomarkers have the potential to 
serve as urinary biomarkers of malaria.

Discussion
This is the first study to use a metabolomics approach to 
identify urinary biomarkers for P. falciparum infection in 
humans. The analysis clearly identified a number of can-
didate biomarkers that are elevated in individuals with 
active infection confirmed by blood-smear microscopy. 
Levels of these molecules decrease after treatment with 
anti-malarial medication, suggesting that these molecules 
are biomarkers of active infection.

The strengths of these data include the prospective 
testing of the hypothesis that a metabolomics approach 
can identify biomarkers for P. falciparum infection in 
humans. A case–control study design was used, with pro-
spective data collection in cases after they were treated 
and had recovered from the original infection, and also 
in controls. This allowed the candidate molecules iden-
tified in the cross-sectional study to be tested for their 
response to treatment, and hence reduced the possibility 
of false-positive outcomes as a consequence of multiple 
hypotheses testing that is a concern with this type of sta-
tistical analysis. However, these observations are prelimi-
nary and require confirmation in other datasets, before 
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Fig. 1  UHPLC-HRMS base peak chromatograms (BPC) obtained from malaria and control urine samples. BPC of a malaria patients (ESI+), b healthy 
controls (ESI+), c malaria patients (ESI−) and d healthy controls (ESI−) analysed using a HILIC column. Amino acids such as l-alanine, l-tryptophan, 
tyrosine and phenylalanine were eluted within the retention time range of 5–6.5 min, whereas, organic acids such as 4-aminohippuric acid, 
homovanillic acid, lactic acid, uric acid and 2-hydroxyisobutyric acid were detected within a wider retention time window (0.5–5 min). Some urinary 
pyrimidine nucleosides such as cytidine and uridine were eluted within 2.5 min
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we can be confident that these associations are causal and 
these molecules are clinically useful biomarkers for infec-
tion with P. falciparum infection.

The increased level of succinic acid, taurine, alanine 
and pipecolic acid in malaria patients was consistent with 
previously reported studies [10–14], but the altered level 
of metabolites such as 1,3-diacetylpropane, N-acetylsper-
midine and N-acetylputrescine in the urine of malaria 
patients compared to healthy controls was observed for 
the first time, suggesting that these may be urinary bio-
markers of malaria. In P. falciparum infection, there is a 
constant dynamic metabolic interplay between the host 
and the parasite during the course of infection that may 
perturb the biochemical profiles of both the parasite and 
the host. The parasite invasion induces a constellation 
of responses by the host which are collectively known 
as “active-phase responses” [15]. This phase is charac-
terized by metabolic, immunological, neuro-endocrine 
and behavioural alterations to the host [16]. Hence, the 
altered level of metabolites observed in malaria patients 
compared to healthy controls might be a direct signal 
of parasite activity (parasite-specific metabolites) or be 

the consequence of the host response to the effect of the 
parasite on different organs during the acute phase of 
infection. Moreover, during the course of infection the 
parasite releases certain metabolites which induce the 
host metabolic response, so metabolites of parasite-spe-
cific molecules may accumulate in different body fluids. 
The metabolites directly related to the parasite are good 
biomarker candidates of the infection; however, their 
altered levels in different body fluids depends on the level 
of parasitaemia and the severity of the disease and they 
might not be detected in the early stages of the disease 
[17].

An increased level of alanine was observed in malaria 
patients compared to healthy controls, suggesting that 
lactic acid was converted to alanine, suggesting evi-
dence of enhanced glycolysis pathway activity during 
the course of infection, consistent with recent observa-
tions [17]. However, alanine is also an essential precur-
sor for gluconeogenesis in the liver and an elevated level 
may also be an indication of impaired hepatic gluconeo-
genesis or perturbed amino acid metabolism as a result 
of hepatic dysfunction in malaria. The level of succinate, 
a human and a parasite tricarboxylic acid (TCA) cycle 
intermediate, was significantly elevated in the urine of 
malaria patients compared to healthy controls, indicat-
ing enhanced metabolic TCA cycle activity by the para-
site during the course of infection. The increased level of 
succinate in malaria patients may also indicate increased 
TCA cycle activity by the host to meet the increased 
energy demand caused by the infection, indicating per-
turbed energy metabolism in malaria. The increased level 
of succinate in Plasmodium infection was consistent with 
previous in vitro studies [18, 19]. Recently, Sengupta et al. 
reported an altered level of succinate in the urine of P. 
vivax infected patients [10, 11]. This result was consistent 
with the above finding, suggesting succinate is a potential 
urinary biomarker of malaria infection.

Abnormally high levels of pipecolic acid, trimethyl-
l-lysine (methylated derivative of lysine), alanine, l-thre-
onine, N-acetylglutamine (metabolite of glutamine) and 
N-acetylasparagine (metabolite of asparagine) were 
observed in the urine of malaria patients but not healthy 
controls. This finding was consistent with previously 
reported studies, in which abnormal levels of amino 
acids and amino acid metabolites were found in the urine 
and plasma of patients infected with P. falciparum [17]. 
A high level of taurine (a sulphur amino acid) was also 
observed in the urine of malaria patients compared to 
healthy controls. Taurine is known to play an important 
role in the liver for detoxification of ammonia in individ-
uals infected with malaria [20], suggesting that it may be 
up-regulated in the liver as a response to the increased 
body demand for ammonia elimination.

Table 1  Multivariate analysis and  validation of  OPLS-DA 
models of malaria patients and healthy controls

a  The model is considered valid when the regression line of the permuted Q2 
values intercept at, or below zero
b  AUC: Area under receiver operating characteristic curve, which is the total 
area under the curve of sensitivity “true positive rate (TPR)” vs 1-specificity “false 
positive rate (FPR)”, ideal model gives AUC = 1
c  Selected set of biomarkers were 1,3 diacetyl propane, 2-octanedioic 
acid, N-prolyl histidine, taurine, N-acetylputrescine, N-acetylasparagine, 
N-acetylspermidine and N-acetylglutamine

Description LC-MS

Peak detected

 ESI+ 6278

 ESI− 3466

 ESI+ and ESI− 9744

Cross-validation

 R2Y 0.993

 Q2 0.583

Permutation test

 Intercepta −0.268

External validation: classification (training/test models)

 Sensitivity (%) (true positive rate (TPR) = TP/(TP + FP) 80%

 Specificity (%) (true negative rate (TNR) = TN/(TN + FN) 77%

 Accuracy (%) = (TP + TN)/(TP + FP + TN + FN) 78%

 ROC curve (AUC)b (TPR vs FPR) 0.83

Classification based on a selected set of biomarkersc

 Sensitivity (%) 91%

 Specificity (%) 91%

 Accuracy (%) 91%

 ROC curve for individual set of metabolites 0.92
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The increased excretion of urea in cases with P. falci-
parum infection is consistent with the observation that 
acute kidney injury occurs during malaria infection [21] 
and has also been reported elsewhere [17]. Significantly 
higher levels of acetylated polyamines such as 1,3-dia-
cetylpropane, N-acetylspermidine and N-acetylputres-
cine were also found in the urine of malaria patients 
compared to healthy controls. This is the first time 
that altered levels of acetylated polyamines have been 
detected in the urine of malaria patients, and may pro-
vide potential surrogate biomarkers of malaria. The 
altered levels of 1,3-diacetylpropane, N-acetylspermidine 
and N-acetylputrescine in the urine of malaria patients 

suggest that excess putrescine and spermidine have been 
continuously detoxified by the body before excretion as 
a response to their excessive production by the para-
site. Teng et al. [19] reported significantly elevated levels 
of putrescine and spermidine in Plasmodium-infected 
erythrocytes compared to non-infected ones.

Conclusion
A metabolomics analysis of urine samples from a case–
control study was used to identify possible diagnostic uri-
nary biomarkers of P. falciparum infection. This approach 
identified a number of candidate molecules that are 
associated with the presence of and recovery from P. 

(a) All groups

(b) PF1 versus C1

Fig. 2  OPLS-DA score plots obtained from urinary metabolomic analysis of malaria patients and controls. a OPLS-DA model was built using control 
samples (C1; baseline, green circles, n = 25), (C2; follow-up, yellow circles, n = 22), malaria samples: baseline (PF1; red circles, n = 21) and after antima-
larial treatment (PF2; light brown circles, n = 20) and pooled QC (dark blue squares), b presents OPLS-DA model generated from C1 and PF1 samples
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falciparum infection in human. This approach has the 
potential to lead to a non-invasive urinary diagnostic test 
for P. falciparum infection.
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