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Abstract 

Background:  It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson 
disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the 
blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immuno‑
sorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. 
The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and 
dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) 
alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association 
between magnetic nanoparticles and α-synuclein molecules.

Results:  According to the experimental α-synuclein concentration dependent IMR signal, the low-detection 
limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for 
PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 
0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower 
than that of PD patients.

Conclusions:  The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID 
magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminat‑
ing patients with PD or PDD.
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Background
Parkinson disease (PD) is the second most common neu-
rodegenerative disease after Alzheimer’s disease. More 
than 1 % of people older than 65 years old are suffering 
from PD [1]. About 10 million people worldwide are liv-
ing with PD. The direct and indirect healthcare cost for 

one PD patient is estimated to be US 100,000 per year [2]. 
Many countries, especially the US, Canada, Europe and 
Australia, are worrying about unsustainable increases in 
the costs of healthcare. Lots of resources and effort have 
been put into developing the diagnosis, treatments and 
vaccine for PD.

The clinical criteria for diagnosing PD are the observa-
tions of movement disorders such as bradykinesia, cogwheel 
rigidity, resting tremor and postural instability. Although 
these clinical features are popularly used, there are several 
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fatal issues for diagnosing PD. For example, other movement 
disorders (e.g. multiple system atrophy, corticobasal degen-
eration, or progressive supranuclear palsy) might overlap 
with the clinical symptoms of PD and decrease the accuracy 
of diagnosing PD [3]. In addition, it has been reported the 
clinical symptoms are present after degeneration of over 
50 % of dopaminergic neurons in the basal ganglia, particu-
larly in the substantia nigra [4]. The early-stage diagnosis of 
PD is very difficult, using observations of clinical movement 
disorders. Analysis of the genetic sequence seems a better 
method for early-stage diagnosis of PD [5–7]. Nevertheless, 
only 10 % of PD patients are hereditary. Ninety percent of 
PD patients are sporadic.

Development of cognitive impairment and demen-
tia, referred as Parkinson disease dementia (PDD), is 
common in PD [8]. The prediction of development of 
dementia in PD is challenging and of significant impact 
in the field. Researchers are now trying to achieve bio-
molecular diagnosis for differentiating PD from PDD. 
α-synuclein is the most recognized biomarker for PD or 
PDD [9, 10]. As α-synuclein molecules are phosphoryl-
ated, phosphor-α-synuclein molecules easily aggregate 
with one another to form Lewy body in the dopaminergic 
neurons [11, 12]. Dopaminergic neurons with Lewy bod-
ies become degenerative and lose the ability to express 
dopamine. Neural cells in the motor cortex of the brain 
are damaged due to the lack of dopamine and movement 
disorders are stimulated.

Numerous discoveries show the concentration of 
α-synuclein in the cerebrospinal fluid (CSF) is reduced 
because of the formation of Lewy bodies for PD or 
PDD patients as compared to healthy subjects [13–16]. 
However, the reported results for the variations in the 
concentration of α-synuclein in blood are not consist-
ent [17–20]. The main reason for the inconsistent assay 
results for plasma α-synuclein is the poor low-detection 
limit of assays. According to these reports [13–20], the 
enzyme-linked immunosorbent assay (ELISA) is cur-
rently used for assaying α-synuclein in either CSF or 
plasma. α-synuclein is expressed and is abundant in the 
brain and spinal cord, but occurs in very low amounts 
in the peripheral blood system. ELISA is not able to pre-
cisely detect the proteins at ultra-low concentrations, 
such as α-synuclein in plasma. Thus, CSF instead of 
plasma is better for the assay of α-synuclein in the bio-
molecular diagnosis of PD or PDD using ELISA.

CSF is usually collected via lumbar puncher, which is 
high-risk and uncomfortable. The early-stage diagnosis 
by assaying α-synuclein in CSF is not widely accepted 
by the general population. Alternatively, blood is much 
easier to obtain in clinics. To do this, a high-sensitivity 
detection technology is required to achieve the assay of 
ultra-low α-synuclein in plasma.

Authors have developed an immunoassay technology, 
so-called immunomagnetic reduction (IMR), for quanti-
tatively detecting bio-molecules at ultra-low concentra-
tions, e.g. 1–10 pg/ml or lower [21, 22]. The main reason 
contributed to the ultra-high sensitivity of IMR is the uti-
lization of antibody-functionalized magnetic nanoparti-
cles. These magnetic nanoparticles are well dispersed in 
reagent and can catch target bio-molecules everywhere 
in a tested sample. Besides, due to the nano-scaled sizes 
of particles, the total binding area is extremely large. 
Hence, antibodies immobilized on the surfaces of mag-
netic nanoparticles are highly efficiently able to associ-
ate with target bio-molecules and result in an ultra-high 
sensitive immunoassay using IMR. It has been demon-
strated IMR can be applied to assay ultra-low concen-
tration β-amyloids and tau protein in human plasma 
[23–25]. A clear discrimination between healthy sub-
jects and patients with mild cognition impairment due 
to Alzheimer’s disease was evidenced by assaying plasma 
β-amyloids and tau protein [26]. These results motivated 
us to investigate the feasibility of assaying ultra-low con-
centration α-synuclein in human plasma to achieve a bio-
molecular diagnosis of PD or PDD, or to differentiate PD 
from PDD according to the plasma α-synuclein concen-
tration. In this work, the reagent for assaying α-synuclein 
by utilizing IMR is prepared. The characterizations of the 
reagent and assaying α-synuclein are explored. For com-
parison, the assay characteristics for α-synuclein using 
ELISA are examined. Finally, the preliminary results for 
discriminating PD patients, PDD patients and healthy 
subjects by assaying plasma α-synuclein are reported. 
Although the cross sectional study done in this work can-
not address the prediction of the development of PDD 
in PD, the results might point to the potential use of this 
method of measuring plasma α-synuclein in differentiat-
ing PD from PDD.

Results and discussion
The mean value of the hydrodynamic diameters for the 
antibody-functionalized magnetic Fe3O4 nanoparticles 
was found to be 55.5  nm and the standard deviation of 
particle hydrodynamic diameters was 12.7 nm. By using 
scanning electronic microscope, the mean value of the 
diameters for the antibody-functionalized magnetic 
Fe3O4 nanoparticles was obtained as ~40 nm. The reagent 
is superparamagnetic with the saturated magnetization 
of 0.3 emu/g. According to a previously published paper 
[27], the numbers of antibody-functionalized nanopar-
ticles in 1-ml reagent with 0.3  emu/g are around 1013. 
The total surface area of antibody-functionalized mag-
netic nanoparticles in 1-ml reagent is around 1000 cm2. 
In experiment, 80-μl reagent is used. The total surface 
area of antibody-functionalized magnetic nanoparticles 
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in 80-μl reagent for each assay is around 80  cm2. As 
compared with a 96-well ELISA plate, the binding area 
between antibody and target bio-molecules for each well 
is 0.45  cm2. Thus, the binding area with IMR is almost 
180 times larger than that of ELISA.

The bio-activity of the immobilized antibodies on mag-
netic nanoparticles is investigated by measuring the IMR 
signals due to the association between α-synuclein and 
antibodies on magnetic nanoparticles. The time depend-
ent ac magnetic susceptibility χac of reagent after mixing 
the reagent and the tested solution is recorded, as shown 
in Fig.  1 Two tested samples are prepared: one is pure 
PBS solution, the other is 3.1-fg/ml α-synuclein solution. 
The dashed line in Fig. 1 denotes the time dependent ac 
magnetic susceptibility χac of the mixture of reagent and 
PBS solution. Clearly, temporal χac with the dashed line 
almost remains unchanged. However, as to the solid line 
corresponding to the mixture of reagent and 3.1-fg/ml 
α-synuclein solution, the temporal χac descends in 45 min 
and then reaches a lower level. A significant reduction in 
the ac magnetic susceptibility χac of the reagent due to 
the association between α-synuclein and the antibodies 
on the magnetic nanoparticles is observed.

To quantify the reduction in the ac magnetic suscepti-
bility χac of the reagent, the initial/final χac before/after the 
association between α-synuclein and antibodies on mag-
netic nanoparticles is calculated according to the temporal 
χac shown in Fig. 1. As addressed in previously published 
papers [22, 28], the confidence intervals for the determi-
nation of reduction in ac magnetic susceptibility χac of the 
reagent are that within the first and the last 40–50 min of 
the time dependent ac magnetic susceptibility χac shown 
in Fig. 1. In this study, the data of ac magnetic susceptibil-
ity χac of the reagent within the first and the last 45 min 
are used for determining the reduction in χac.

In Fig. 1, the p value for the ac magnetic susceptibility 
χac between the intervals of the first and the last 45 min is 
found to be 0.046 for PBS solution. A slight reduction in 
the ac magnetic susceptibility χac of reagent mixed with 
PBS is observed. As to 3.1-fg/ml α-synuclein solution, the 
p-value for the ac magnetic susceptibility χac between the 
intervals of the first and the last 45  min is found to be 
0.007. A clear reduction in the time dependent ac mag-
netic susceptibility χac of reagent after being mixed with 
α-synuclein solution is evidenced.

The initial χac is referred to as χac,o, which is the aver-
age value of χac’s within the first 45  min. The final χac 
is referred to as χac,φ, which is the average value of χac’s 
within the last 45  min. The reduction in the ac mag-
netic susceptibility χac of the reagent, e.g. IMR signal, is 
obtained via 

(1)IMR (%)=
(

χac,o − χac,ϕ

)

/χac,o× 100%

Via Eq.  (1), the IMR signals for the dashed line and the 
solid line in Fig. 1 are calculated to be 1.56 and 2.13 %, 
respectively. The results shown in Fig.  1 reveal a back-
ground level for the IMR assay. Such a background level 
is mainly attributed to the electronic noises of the assay 
system. According to the duplicate measurements, the 
IMR signals for the PBS solution are 1.56 and 1.65  %. 
Thus, the background level of the IMR signal is 1.61  % 
with a standard deviation of 0.06 %.

The IMR signal as a function of the concentration 
of α-synuclein, i.e. IMR (%)  −  φα-syn curve, is plot-
ted in Fig.  2. As the concentration of α-synuclein φα-syn 
increases from 3 × 10−4 pg/ml (=0.3 fg/ml), the IMR sig-
nal increases. The φα-syn dependent IMR (%) was found to 
follow the logistic function expressed as

where A, B, φo and γ are fitting parameters. By fitting the 
data point in Fig. 2 to Eq.  (2), the fitting parameters are 
obtained as A = 1.94, B = 3.95, φo = 49.7 and γ = 0.26. 
The fitting curve is plotted with the solid line in Fig.  2. 
The corresponding coefficient of determination R2 is 
0.998. The fact R2 is very close to 1 implies φα-syn depend-
ent IMR (%) is truly governed by the logistic function.

The parameter A in Eq. (2) is the value of IMR (%) as φα-

syn extrapolates to zero. Usually, value A is a little higher 
than the background level. For example, A is 1.94  % 
and the background level here is 1.61  %. The difference 

(2)
IMR(%) =

A− B

1+

(

ϕα−syn

ϕo

)γ + B
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Fig. 1  Bio-activity test for the antibody immobilized on magnetic 
Fe3O4 nanoparticles using immunomagnetic reduction
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between A and the background level is predominantly 
due to the noises caused by the dynamic equilibrium in 
the association between the protein molecules and the 
antibody-functional magnetic nanoparticles. However, 
A is not used as the low-detection limit. Convention-
ally, the low-detection limit is defined as the concentra-
tion showing an IMR signal higher than A by three times 
as the standard deviation of IMR signals for a low-con-
centration test, i.e. 3-σ criterion. In this experiment, the 
standard deviation of low-concentration tests is 0.028 %. 
Thus, the low-detection limit is the concentration having 
an IMR signal of 2.02  %. Via Eq.  (2), the low-detection 
limit for assaying α-synuclein is found to be 0.3 fg/ml.

The α-synuclein concentration dependent optical 
absorbance density at 450 nm, O.D. 450 nm, using ELISA 
is plotted by cross symbols in Fig.  2. The experimental 
data are fitted to the logistic function 

The fitting parameters are found to be 0.189, 5.070, 
13566.08 and 1.44 for A′, B′, φo

′ and γ′ in Eq.  (3). The 
logistic function of Eq.  (3) is plotted by the dashed line 
in Fig.  2. The coefficient of determination R2 between 
the cross symbols and the dashed line is 0.999. By utiliz-
ing the 3-σ criterion, the low-detection limit of assaying 
α-synuclein using ELISA is 79.04 pg/ml. It is obvious IMR 
is more sensitive than ELISA by a factor of 250,000 for 
assaying α-synuclein. As mentioned, the detecting sensi-
tivity of IMR is higher than ELISA by a factor of 200 by 
taking the reacting surface into account. Additional fac-
tor of 1250 might be due to the ultra-low-noise magnetic 

(3)O.D. 450 nm =
A

′

+ B
′

1+

(

ϕα−syn

ϕ
′

o

)

γ
′

+ B
′

sensor, i.e. high-Tc superconducting quantum interfer-
ence device (SQUID) magnetometer. High-Tc SQUID 
magnetometer shows a noise level of 50 fT/Hz1/2, which 
is lower than the magnetic signal generated by a single 
magnetic nanoparticle by three orders of magnitude. This 
implies that the reduction in ac magnetic signal resulted 
from a single magnetic nanoparticle due to the associat-
ing with target bio-molecule can be sensed by high-Tc 
SQUID magnetometer. Hence, the ultra-low-noise high-
Tc SQUID magnetometer is extremely sensitive to the 
reduction in ac magnetic signal of reagent and shows 
ultra-high sensitivity in assaying bio-molecules.

In addition to the low-detection limit, the dynamic 
range of assaying α-synuclein using IMR is an impor-
tant characteristics. To examine the dynamic range, the 
experimental IMR signals in Fig. 2 are converted to con-
centrations of α-synuclein via Eq. (2). The converted con-
centrations of α-synuclein are denoted by φα-syn,IMR. The 
correlation between φα-syn,IMR and φα-syn is examined, as 
shown in Fig. 3. In Fig. 3, the linearity between φα-syn,IMR 
and φα-syn can be obtained. According to the regulation 
issued by US Food and Drug Administration (FDA), 
the slope of the linearity in Fig. 3 must be between 0.90 
and 1.10. In Fig.  3, if the φα-syn,IMR’s for the α-synuclein 
concentration φα-syn’s from 0.31  fg/ml to 31  ng/ml are 
used, the slope of the φα-syn,IMR-φα-syn curve is 0.77 and 
the coefficient of determination R2 is 0.991, as plotted 
by the dotted line in Fig. 3. The slope of the dotted line 
in Fig. 3 does not meet the requirement of the US FDA. 
The concentration range of α-synuclein for investigating 
the assay dynamic range should be narrowed. Hence, the 
highest φα-syn,IMR in Fig. 3, i.e. with φα-syn being 31 ng/ml, 
is ignored. The linear curve between φα-syn,IMR and φα-syn 
within the range from 0.31 to 3.1 ng/ml is plotted by the 
dashed line in Fig. 3. The slope of the dashed line is 1.48 
and the coefficient of determination R2 is 0.999. The slope 
of the dashed line is much higher than the requirement 
of the US FDA. It seems the second highest φα-syn,IMR in 
Fig. 3 should also be ignored. The linear curve between 
φα-syn,IMR and φα-syn within the range from 0.31  fg/ml to 
310 pg/ml is plotted by the solid line in Fig. 3. The slope 
of the solid line is 0.93 and the coefficient of determina-
tion R2 is 0.999. Notably, the slope of the solid line meets 
the requirement of the US FDA. Thus, the dynamic range 
of α-synuclein concentration for IMR assay is from 0.3 fg/
ml to 310 pg/ml.

The data shown in Fig.  2 prove the IMR assay is 
extremely sensitive and might possibly detect α-synuclein 
in human plasma. Plasma samples contributed by nine 
healthy persons, nine PD patients and fourteen PDD 
patients were collected for prior study on the discrimi-
nation between healthy subjects, PD patients and PDD 
patients by using IMR. The demographic information of 
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the collected 33 subjects is listed in Table 1. The detected 
concentrations φα-syn,IMR of α-synuclein in human plasma 
are shown in Fig.  4. The plasma φα-syn,IMR’s for PDD 
patients range from 0.1 to 100  pg/ml, while the plasma 
φα-syn,IMR’s for healthy subjects are much lower than 
0.1 pg/ml. The plasma φα-syn,IMR’s for PD patients distrib-
ute between those of healthy subjects and PDD patients. 
The p value in terms of plasma φα-syn,IMR between healthy 
subjects and PD patients was found to be 0.005, which 
reveals the fact that PD patients show higher concentra-
tions for plasma α-synuclein as compared to healthy sub-
jects. In Fig. 4, a clear discrimination in plasma φα-syn,IMR 
between PD patients and PDD patients was observed 
(p  <  0.001). According to the results in Fig.  4, the con-
centration plasma α-synuclein keeps raising as a healthy 
subject suffering from PD and progressing to PDD. It is 
worthy noting that the age is matched between healthy 
subjects and PD patients (p  >  0.05), as well as between 
PD patients and PDD patients (p > 0.05). 

Previous studies have shown that α-synuclein would 
be released from neurons by exocytosis into body fluids, 
including CSF and plasma, which contributes to cell-to-
cell transmission of α-synuclein pathology in the brain 
[29]. Numerous studies have focused on checking lev-
els of either total or oligomeric α-synuclein in plasma 
samples from patients with PD compared with healthy 
controls but the results are conflicting [30]. Since phos-
phorylated and fibrillar α-synuclein are the main patho-
logical forms of the protein, one recent study observed 
that plasma level of phospho-α-synuclein was higher in 

early-stage PD samples without dementia than controls 
[31]. These observations suggest the feasibility and poten-
tiality of plasma level of α-synuclein (either total, oligo-
meric or phosphorylated form) could partly reflect the 
α-synuclein pathology in the brains of PD patients. Fur-
thermore, cortical Lewy body/neuritic pathology is more 
extensive in PDD than in PD without dementia, which 
implies the α-synuclein burden in plasma is more severe 
in PDD than in PD. Our results supported this hypoth-
esis that plasma level of α-synuclein is significantly 
higher in PDD than in PD with normal cognition, which 
level is slightly higher than healthy controls. As amyloid 
β plaques and tau neurofibrillary tangles, the hallmark 
pathologies of Alzheimer’s dementia, are also observed 
and correlate with cognitive status in patients with PDD 
[29], future studies incorporating assessing phospho-α-
synuclein, amyloid β protein, total and phospho-tau in 
plasma levels of PDD are needed to better understanding 
the pathophysiology of PDD.

In plasma samples, heterophilic antibody is a major 
confounder and interferes the assaying results by sand-
wich ELISA method [32]. Heterophilic antibody (HA) is 
defined as one of the common interference materials for 
immunoassay according to the guidance of Clinical and 
Laboratory Standards Institute (CLSI-EP-A2: Interfer-
ence Testing of Clinical Chemistry) [33]. IMR method 
showed low-interference and high-specificity effects in 
comparison with ELISA through previous researches 
[34–36]. The selection mechanism is based on centrifu-
gation force contributed from oscillating magnetic nan-
oparticles in reagent. The details have been discussed 
in previous research [37]. In fact, not only HA but also 
naturally existed biomolecules of frequently used drug 
in plasma are prevented from associating with magnetic 
nanoparticles via the selection mechanism [36]. This 
features IMR a high-specificity methodology for clinical 
analysis of plasma biomarkers of Parkison’s disease.

Clinically, patients first are diagnosed with PD and in 
later stages of the disease may develop dementia and thus 
get the diagnosis of PDD; Hence, biomarkers that can 
predict or diagnose early stages of progression to PDD 
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Table 1  Demographic characteristics of the subjects

PD Parkinson disease; PDD Parkinson disease dementia; MMSE mini-mental state 
examination; SD standard deviation

Group Healthy 
subjects

PD with normal 
cognition

PDD 
patients

Numbers 9 9 14

Female/Male 4/5 4/5 7/7

Age (years) 38–73 38–85 60–81

MMSE (mean ± SD) 29.0 ± 1.1 28.7 ± 1.2 18.7 ± 6.3

Disease duration (years) – 9.3 ± 6.7 10.1 ± 5.3
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in PD subject would indeed be of clinical significance. 
According to the results in Fig. 4, the plasma α-synuclein 
in PDD patients show clearly higher level than that in PD 
patients (p < 0.001). This implies that plasma α-synuclein 
is promisingly used as a clinical parameter monitoring 
the progression to PDD in PD patients.

Conclusions
By immobilizing antibodies against α-synuclein onto 
magnetic nanoparticles, the reagent for assaying 
α-synuclein is developed. Through utilizing immu-
nomagnetic reduction (IMR) with aid of high-Tc 
SQUID magnetometer, the dynamic range of assay-
ing α-synuclein is from 0.3  fg/ml to 310  pg/ml. The 
ultra-sensitivity SQUID-based IMR is applied to assay 
human plasma α-synuclein. The preliminary results 
show a clear difference in the concentrations of plasma 
α-synuclein between healthy subjects, PD patients and 
PDD patients. This method seems promising to apply 
IMR to diagnosis of PD and PDD by assaying plasma 
α-synuclein.

Method
The reagent for assaying α-synuclein consists of mag-
netic Fe3O4 nanoparticles (MF-DEX-0060, MagQu) 
functionalized monoclonal antibodies (sc-12767, Santa 
Crusz Biotech.) against α-synuclein. The detailed pro-
cesses for immobilizing antibodies onto magnetic Fe3O4 
nanoparticles are discussed in References [38, 39]. The 
antibody-functionalized magnetic Fe3O4 nanoparti-
cles are dispersed in pH-7.2 phosphate-buffered saline 
(PBS) solution. The distribution of particle diameters is 

analyzed by dynamic laser scattering (Nanotrac-150, 
Microtrac). The magnetic concentration of reagent 
is measured using a vibrating sample magnetometer 
(HysterMag, MagQu). The bio-activity of the antibod-
ies on the magnetic nanoparticles is examined by an 
IMR analyzer (XacPro-S, MagQu). The IMR analyzer is 
an ac magnetosusceptometer equipped with a high-Tc 
superconducting-quantum-interference-device (SQUID) 
magnetometer as a magnetic sensor. The details of the 
ac magnetosusceptometer are described in References 
[23, 40]. To establish the relationship between the IMR 
signal and the concentration of α-synuclein, α-synuclein 
(ab51189, Abcam) spiked in PBS solutions is prepared. 
For each measurement of the IMR signal, 80-μl reagent is 
mixed with 40-μl α-synuclein solution, followed by detec-
tion of the IMR signal using an IMR analyzer (XacPro-
S, MagQu). Duplicate measurements are performed for 
IMR signals with each concentration of α-synuclein solu-
tion. In addition to the measurements of the IMR signals, 
a commercial ELISA kit (KHB0061, Novex) is applied 
to find the α-synuclein concentration dependent optical 
absorbance unit.

Volunteers participating in this study were given a med-
ical checklist of major systemic diseases, operations and 
hospitalizations. Volunteers reporting uncontrolled med-
ical conditions including heart failure, recent myocardial 
infarction (in the past 6 months), malignancy (in the past 
2  years), or poorly controlled diabetes (HbA1C  >  8.5) 
were excluded. Volunteers also received physical exami-
nations. Eight healthy subjects and six patients with PD 
were enrolled in this study. The study was approved by 
the ethics committee and institute review board of the 
university hospital.

Participants were asked to provide a 10-ml non-fast-
ing venous blood sample (K3 EDTA, lavender-top tube). 
Each sample was assigned a registry number following 
the sampling sequence; hence, colleagues in the labora-
tory were blind to the clinical status and the demographic 
data of the subjects. The blood samples were centrifuged 
(2500g for 15 min) within 1 h of collection and the plasma 
was aliquoted into cryotubes and stored at −80  °C for 
less than three months until being thawed for measure-
ment via IMR. 80-μl of reagent was mixed with 40-μl of 
plasma for the measurement of α-synuclein concentra-
tion via IMR. Duplicate measurements were performed 
for each plasma sample.

Nine human plasma samples from healthy subjects 
aged from 38 to 73 years, 9 human plasma samples from 
PD patients (38–85  years old) and 14 human plasma 
samples from patients with PDD (60–81 years old) were 
used for the α-synuclein assay using IMR. PD and PDD 
patients were identified using clinical symptoms. It is 
worthy noting that PD patients are cognitively normal. 
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Fig. 4  Detected plasma α-synuclein concentrations using IMR for 
healthy subjects, PD patients and PDD patients
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All of the enrolled patients provided informed con-
sent before undergoing the procedure and this study 
was approved by National Taiwan University Hospital 
Research Ethics Committee.
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