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Background: High-throughput sequence (HTS) data exhibit position-specific nucleotide biases that obscure the
intended signal and reduce the effectiveness of these data for downstream analyses. These biases are particularly
evident in HTS assays for identifying regulatory regions in DNA (DNase-seq, ChIP-seq, FAIRE-seq, ATAC-seq). Biases
may result from many experiment-specific factors, including selectivity of DNA restriction enzymes and fragmentation
method, as well as sequencing technology-specific factors, such as choice of adapters/primers and sample

amplification methods.

Results: We present a novel method to detect and correct position-specific nucleotide biases in HTS short read data.
Our method calculates read-specific weights based on aligned reads to correct the over- or underrepresentation of
position-specific nucleotide subsequences, both within and adjacent to the aligned read, relative to a baseline
calculated in assay-specific enriched regions. Using HTS data from a variety of ChIP-seq, DNase-seq, FAIRE-seq, and
ATAC-seq experiments, we show that our weight-adjusted reads reduce the position-specific nucleotide imbalance
across reads and improve the utility of these data for downstream analyses, including identification and
characterization of open chromatin peaks and transcription-factor binding sites.

Conclusions: A general-purpose method to characterize and correct position-specific nucleotide sequence biases
fills the need to recognize and deal with, in a systematic manner, binding-site preference for the growing number of
HTS-based epigenetic assays. As the breadth and impact of these biases are better understood, the availability of a

standard toolkit to correct them will be important.
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Background

High-throughput short-read sequencing (HTS) has
enabled the genome-wide identification of functional
regulatory regions including transcription factor binding
sites and epigenomic features such as histone tail mod-
ifications and regions of open chromatin. HTS-based
assays such as ChIP-seq, DNase-seq, FAIRE-seq, and
ATAC-seq generate millions of reads per experiment that
then are used to identify regions of interest. However,
a combination of biases in these HTS protocols often
results in a deviation from the background frequency of
nucleotides present at each position in HTS reads, which
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we call nucleotide-specific bias. As the routine use of
HTS is already widespread and increasing, it is especially
important to fully understand any biases associated with
HTS protocols and take these biases into account when
analyzing the resulting data [1].

There are several steps involved in preparing pools of
DNA for HTS, each of which may introduce nucleotide-
specific bias. All short-read HTS protocols require some
form of DNA fragmentation into smaller DNA molecules
to facilitate high-throughput sequencing. In many of these
assays, including ChIP-seq and FAIRE-seq, this is accom-
plished by sonication. There is evidence that sonication
breaks DNA strands between nucleotides preferentially
based on their binding affinity [2]. Most assays also use
adapter-mediated polymerase chain reaction (PCR) to
amplify DNA before sequencing. The adapters used in this
step must be ligated to the ends of DNA fragments to
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enable PCR amplification. Although these adapters are lig-
ated to blunt-end DNA, slight nucleotide-specific ligation
preferences may create noticeable biases in the amplified
DNA and resulting sequence data [3].

In addition, there are a variety of assay-specific steps
that may introduce nucleotide biases. In DNase-seq [4],
the DNase I restriction enzyme preferentially digests
DNA in nucleosome-depleted regions of chromatin.
Ideally, DNase I cleaves DNA randomly within this open
chromatin, but it has been shown [5, 6] that DNase I
exhibits significant nucleotide-specific cleavage biases.
Likewise, other selective assays including chromatin
immunoprecipitation  (ChIP), formaldehyde-assisted
isolation of regulatory elements (FAIRE) [7], and assay
for transposase-accessible chromatin (ATAC) [8] include
assay-specific steps that may introduce nucleotide-
specific biases. It is difficult to pinpoint exactly which
of these contribute to nucleotide-specific biases within
a given assay since the read sequence is available only
upon completion of all steps. Therefore, it is preferable
to identify the pattern of nucleotide-specific bias without
attributing it to a particular source and assign weights to
reads that implicitly correct for all observed biases.

Much of the previous work on correcting biases in
HTS data has focused on RNA-seq [3, 9-11]. Sequencing
biases in RNA-seq data prevent the accurate estimation
of relative transcript abundances. These methods focus
on correcting relative transcript abundances as a whole,
based on the effect of bias within exons. As such, these
methods are unsuitable for adjusting biases on a read-by-
read basis and do not perform as well in a genomic DNA
context as opposed to RNA.

Recently, methods have been proposed for correct-
ing nucleotide-specific biases in DNase-seq data. The
accurate estimation of cut frequencies in DNase-seq is
particularly important in the identification of “footprints’,
which correspond to evidence of transcription-factor
binding characterized by local dips in digestion within
larger DNase peaks [12]. These methods focus on cor-
recting only bias introduced by the nucleotide-specific
preferences in DNase I binding and cutting. [13] use
deproteinized “naked” DNA to identify a signature of
cleavage bias independent of chromatin structure. This
approach requires extensive sequencing to estimate these
well and is highly sensitive to experimental conditions
and lab or batch effects under which both the regular
DNase-seq and “naked” DNase-seq is performed. Addi-
tionally, this and other methods [6, 14] only characterize
DNase-seq bias within a small window (2-6 bp) surround-
ing the DNase I binding site and fail to account for biases
at other locations in the read and biases due to other
factors. It should be noted that existing bias correction
methods and the method we propose do not correct
sequencing errors in reads, and “correct” for biases by
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reweighting reads or loci, not by changing nucleotides in
the read.

Similarly, methods have been published to address
sequence bias in ChIP-seq data by taking into account
the contribution of GC content, chromatin structure, and
other factors [15]. However, this approach accounts only
for a specific subset of biases and requires a prohibitive
collection of DNase-seq data, mappability and GC mea-
sures, and two ChIP-seq controls.

We introduce a method that corrects nucleotide-
specific bias in HTS from a variety of DNA-based
sequencing assays. Our method computes an accurate
baseline nucleotide distribution within the same sample
data without the need for extra sequencing and corrects
biases that are based on nucleotide composition within
and surrounding HTS reads, regardless of the source of
bias. We calculate read weights that adjust the distribu-
tion of position-specific nucleotide frequencies within the
read to match the expected nucleotide frequency based
on a random sampling of reads within the target region(s).
We demonstrate that this adjustment improves the per-
formance of each of the evaluated protocols for detecting
genomic features, including open chromatin regions and
transcription-factor binding footprints.

Methods

Sequence reads from a variety of HTS assays, includ-
ing DNase-seq, ChIP-seq, FAIRE-seq, and ATAC-seq
show distinct position-specific nucleotide biases that dif-
fer across assays (Fig. 1). The observable nucleotide bias
may result from a number of inseparable sources of bias
specific to a particular assay or to a HTS protocol, includ-
ing sonication, digestion by selective restriction enzymes,
and adapter-mediated PCR. The final read sequence from
these experiments reflects a summation of these factors
that cannot be easily disentangled, if at all. Some of these
biases are shared across assays, for instance from the use
of a common fragmentation technique or HTS technol-
ogy. The degree, position, and nucleotide distribution of
biases vary widely across assay-type (Fig. 1).

To characterize the biases within and differences
between experiments, we computed the frequency of
every k-mer in each non-overlapping k nucleotide window
as described in “Computing nucleotide bias” section. We
used the full set of (fy_yer> 1 + ik), where fi_ e is the rela-
tive frequency of a k-mer at an offset i x k from the aligned
read location r, as our feature space to perform princi-
pal component analysis (PCA). Figure 2 shows the PCA
across several ENCODE experiments. The first two com-
ponents, describing more than 92% of the variation, show
clustering by assay type (Fig. 2a) and the lab/investigators
(Fig. 2b) who performed the experiments, indicating that
we are seeing true biases based on the experimental pro-
tocol used. Additionally, we do not observe any noticeable
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Fig. 1 Read-relative position-specific nucleotide frequencies before and after bias correction. Dotted lines show significant position-specific
nucleotide bias, most evident immediately surrounding the read start site (0). The solid lines show the nucleotide frequencies after bias correction.
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clustering by cell type (Fig. 2c) or transcription factor
(Fig. 2d) (among ChIP-seq experiments), which would
both be evidence that we are mistaking true biological sig-
nal for bias. We characterize and correct biases within
each read, and also consider nucleotides upstream and
downstream of the read in the reference genome to take
into account the larger sequence context. This is neces-
sary due to biases seen in sonication, DNase I digestion,
and other steps that break DNA, which are dependent on
the full sequence surrounding the break site.

We observed the greatest cumulative bias in DNase-
seq and ATAC-seq (Fig. 1). The bias we observed across
DNase-seq experiments mirrored that described previ-
ously [6, 13, 14]. Most notably, we saw the greatest
nucleotide variance across a hexamer at the 5" end of
the read, indicative of DNase-I binding preference (see
Fig. 1a. ATAC-seq also has a large, recently characterized

[16], assay-specific bias. Figure 1d illustrates a symmet-
rical nucleotide bias centered between nucleotides 4 and
5. The Tn5 transposon used in ATAC-seq was previ-
ously observed [17] to selectively integrate at a 9bp short
direct repeat (SDR). We observe this symmetrical Tn5
binding preference in the aggregate ATAC-seq read pro-
file. The most over-represented motif we found to be
GGTTT/AAACC, consistent with the SDR predicted by
[17], GTTT(T/A)AAAC (see Fig. 1d.

Our bias correction method is applied independently for
each replicate or sequencing run, since each may have its
own unique biases. Briefly, we compute the frequency of
k-mers (motifs of length k) starting at each position rel-
ative to the start of the aligned reads, including genomic
positions upstream and downstream of the reads. For
brevity, we call the sliding k-mer windows at each rela-
tive position “tiles”, where every aligned read has a specific
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Fig. 2 Principal component (PC) analysis of 5-mer frequencies shows clear distinctions between DNase-seq, ChiIP-seq, FAIRE-seq, and ATAC-seq (a).
Secondarily, clustering is evident by the lab which ran the experiment (b) (ENCODE production groups, see http://genome.uwencode.org/ENCODE/
contributors.html; HAIB: HudsonAlpha, DUKE: Duke University, SYDH: Stanford/Yale/UCDavis/Harvard, UTA: University of Texas Austin, STANFORD:
Stanford University, UW: University of Washington Seattle, UNC: University of North Carolina Chapel Hill). No clustering is observed by cell type (c) or
by transcription factor (in ChIP-seq experiments) (d)

k-mer at the same “tile” relative to their respective aligned
start position. Next, we compute expected baseline k-
mer frequencies by sampling randomly from within all
reads and a 50-bp margin around each read. This base-
line exhibits no significant position-specific nucleotide
variance while capturing the expected average nucleotide
content of the sequenced feature(s), such as average GC
content, in genomic regions being targeted in a particu-
lar assay. From this set of tiles, we identify those that are
significantly biased - where variance is above the 95% con-
fidence threshold of the baseline variance. The pairwise
covariance between k-mer frequencies of all biased tiles is
computed. The frequencies of correlated tiles are averaged
together; then all independently varying tile groups are
compounded to produce an overall read weight. To adjust
these weights to reflect the local likelihood of observing a
read at a particular locus, we normalize the overall weight
by the average weight of simulated reads at every locus
within a 20 bp window surrounding the observed read site.

Our method is open source and freely available at http://
github.com/txje/sequence-bias-adjustment.

Samples and data

We ran and evaluated our method using whole-genome
DNase-seq, ChIP-seq, FAIRE-seq, and ATAC-seq. To
observe effects of biases in sample, preparation, and
protocol, we used data from GM12878, K562, and
H1-hESC cell lines and from several different labs and
institutions. Sequence data from several open chro-
matin and transcription factor binding assays were
selected from the Encyclopedia of DNA Elements
(ENCODE) project [18], including DNase-seq, ChIP-seq,
and FAIRE-seq from GM12878, H1-hESC, and K562.
ATAC-seq data from GM12878 (GSE47753) [8] was
also downloaded from GEO. To assess the effect of bias
correction on uniformly digested whole-genome DNA,
we used DNase-seq data from deproteinized “naked”
K562 DNA (GSM1496625). All of these data were
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previously aligned to the GRCh37/hg19 human reference
genome.

Computing nucleotide bias

We first detect the extent of nucleotide-specific biases
within and surrounding all aligned reads, R. Nucleotide-
specific bias is quantified by the variance in relative fre-
quency of each nucleotide at a particular locus relative
to the 5’ end of a read, . We confirmed that nucleotide
bias observed in aligned sequences was not a result of
bias in the alignment protocol by comparing intra-read
nucleotide content for all reads with the nucleotide con-
tent on the reference genome where reads align. These
showed identical patterns of bias, indicating that no strong
nucleotide bias is introduced during alignment. Through-
out, we used the nucleotide sequence of the reference
genome, S, to take into account bias outside the read
boundaries.

We calculate the bias signature by computing the fre-
quency ( fktmer) of k-mers across each read. For each offset
from —20 to n + 20 relative to the read’s alignment start
position, A(r), in S, where 7 is the read length, we count
the occurrences of each unique k-mer across all reads.
Each count is then divided by the total number of reads to
give the relative frequency of that k-mer; these frequen-
cies represent the global bias signature for a single experi-
ment (Eq. 1). We chose a value of k to balance the number
of reads/power and correction accuracy. Throughout this
paper, we used k = 5, although values from 4-6 were
evaluated and made little difference. If the method were
applied to data with very low coverage, a lower value of
k could be chosen to improve the power to estimate each
k-mer frequency. Likewise, a larger value of k could be
used to improve the correction accuracy if sufficient data
exists to compute confident k-mer frequency estimates.
To increase k by 1, four times as many reads are required
to reach the same sampling power.

5 L, if SiA(r)+,A ) +t+kmer|] = kmer
0, otherwise

t reRr
ﬁ(mer = |R| (1)

Computing baseline nucleotide frequencies

Baseline k-mer frequencies are sampled randomly from
the reference sequence relative to the density of aligned
reads. For each observed read, a number of “pseudo-
reads” are sampled randomly in the region of —25 to n+25
relative to the read start position, where # is the read
length. The sampling is uniform within the given win-
dow, but the number of samples taken is equal to the
total number of aligned reads in the window. This has
the effect of sampling the baseline exponentially relative
to the read density, amplifying the contribution of higher
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coverage regions and helping to reduce the effect of iso-
lated and erroneous reads. Each of the baseline sampled
“pseudo-reads” is used to accumulate k-mer frequencies
as described in the previous section and in Eq. 2, where x
is a random variable from X ~ U(—25,n + 25).

1, ifS[A(V)+x,A(r)+x+\kmer\] = kmer
ie[or’ eRA(N-25<AG")<A(r)+n+25]] | 0, otherwise
| €R,A(r)—25<A(r") <A(r)+n+25|

R

reRr
bimer =

2)

Computing read weights

To compute read weights from bias and baseline k-mer
frequencies is nontrivial, largely because bias is not uni-
form across reads and bias values are not independent
between k-mer windows, or “tiles” We often observe high
covariance between correction weights for both adjacent
(abutting but non-overlapping) and non-adjacent k-mer
tiles, thus they cannot simply be compounded to get an
accurate whole-read weight. We use several steps to deter-
mine which tiles represent significant bias and whether
tiles are covariant or independent.

For each k-mer tile, we determine if it is signifi-
cantly biased among all reads by comparing the average
nucleotide variance to the variance observed in the base-
line. Average nucleotide variance (anv) is calculated by
computing the relative frequency of each nucleotide at
each position in the k-mer tile (this is illustrated in Fig. 1),
then computing the variance of each nucleotide across the
k-mer tile and averaging them.

Al

3 ft+i_/€[0'k]
i€[0,k] “ k

anvy = (3)

This produces, in visual terms, a measure of the “flat-
ness” of nucleotide frequencies across the k-mer tile. If
the average nucleotide variance is more than two stan-
dard deviations (95% confidence threshold) outside the
variance in the baseline, we mark a tile as significantly
biased. The identified biased tiles vary between assay
types, although there is concordance between replicates
and experiments using the same protocol (Fig. 2). As we
noted previously, regions with significant bias are most
often found surrounding the 5 and 3’ ends of a read
(Fig. 1).

To compute the covariance between a pair of biased
tiles A and B, we enumerate the frequency of the k-mer
at tile A and the k-mer at tile B for every read. We com-
pute the coefficient of covariance between the tile A and
tile B k-mer frequency vectors. The level of covariance is
computed this way between every pair of biased tiles that
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we found in the previous step. We similarly compute an
expected covariance measure between two equivalently
spaced tiles in the baseline region.

We can combine these values into a matrix of covariance
between all tiles. Additional file 1: Figure S1 illustrates
a heat map of an example covariance matrix between
non-overlapping tiles in DNase-seq data. This example
indicates relatively high correlation between adjacent tiles
surrounding the beginning of the read (tiles -1 and 0).
These tiles straddle the DNase I binding site and are
likely highly correlated because they reflect two halves of
the preferred DNase I binding motif. We perform greedy
nearest-neighbor clustering of biased tiles, joining tiles
into covariance groups if their average pairwise covariance
is significantly above the expected covariance computed
from the baseline. We expect that the resulting clusters
contain k-mer tiles that are dominated by bias from the
same source, driving their correlation.

To compute the total weight for any sequence, we com-
pute the adjustment value for each tile as the ratio between
the frequency of the tile’s k-mer in the baseline and the
observed frequency of the k-mer at the tile position, ¢ is
the index of the tile within the sequence, and i is the start
position of the sequence in S (Eq. 4).

Wi

bs,. ..
t OOt itttk (@)

— st
fS[iﬂ,HHk]

Per-tile weights are then aggregated according to the
covariance groups. Tile weights within each group are
averaged to best approximate the correction value from
the source driving that group. Then whole-read weights
are computed as the product of the weights from all
groups, where tileGroups are the groups of tiles with
significant pairwise covariance (Eq. 5):

> W
t € tiles
—_— 5
[1 |tiles| ®)

tiles € tileGroups

sequence Weight; =

The bias-corrected weight of a read is given in Eq. 6.
To remove weight biases incurred due to the immediate
genomic context of a read (ex. GC content), that is not
consistent across the entire dataset, each read’s weight
is normalized by the average weight of all read-length
sequences within 10 bp of the observed read.

sequence Weight

readWeight, =
gh r > sequenceWeight )4
je(=10,~1)U(1,10)

20

Footprint and peak detection

We used protein interaction quantification (PIQ) [19]
to predict transcription-factor binding sites. PIQ uses
known binding motifs to explicitly identify the read pileup
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profile, “footprint’;, associated with a transcription fac-
tor. Transcription factors CTCE, EP300, MAFK, RAD21,
REST, and SP1 were analyzed. Motifs identified as a part
of ENCODE [20] were input into FIMO (MEME suite
[21]) with the following parameters: “—max-strand —max-
stored-scores 1000000 —no-qvalue” to identify candidate
binding sites in the hgl9 reference genome. The out-
put FIMO motif site predictions were then converted
into BED format coordinates with the p-value and PWM
score retained and blacklist filtered to remove sites in
unalignable and repetitive regions. Sites were then fil-
tered independently for each factor to remove those with
a higher-confidence motif from a different transcription
factor within 20 bp of the motif site. This filtered set of
putative binding sites was used as input to PIQ, which out-
put footprint confidence scores for each candidate site.
To validate binding site predictions, positive sites are gen-
erated by overlapping all candidate sites with ENCODE
ChIP-seq peak calls for the factor in question. These sites
are further reduced by only allowing 1 motif site per peak.
The site closest to the peak maximum is chosen. Negative
sites must not overlap a peak call and have no ChIP-seq
signal enrichment over baseline. PIQ scores and positive
and negative groups are used to compute ROC curves and
AUC values (Additional file 2: Table S1).

We identified open chromatin peaks in DNase-seq,
ATAC-seq, FAIRE-seq, and ChIP-seq peaks using F-seq
[4]. For each experimental dataset, we merged the BAM
files for all independently bias-corrected replicates, then
F-seq was run with the default parameters, outputting
peaks in BED format. To run F-seq on our bias-corrected
read data, we made simple modification to allow F-seq
to parse and incorporate the included weight data into
its model. Bias-corrected weights output by our method
are included as a floating-point value using the optional
tag “XW” in SAM/BAM format. Our fork of F-seq that
includes this functionality to read the weight tag and
incorporate floating-point weights is open source and can
be found at http://github.com/txje/F-seq. We used this
modified F-seq to predict peaks from our bias-corrected
read data, using the default parameters.

Results and discussion

To assess the impact of the weight corrections and to
demonstrate generality across multiple assays, we cal-
culated individual read weights for DNase-seq, FAIRE-
seq, ATAC-seq, and ChIP-seq data from multiple human
cell lines (GM12878, H1-hESC, and K562) generated
within multiple laboratories as part of the ENCODE
project [18] and in independent studies. We confirmed
that our bias correction reduced the nucleotide vari-
ance in aggregate across all reads (Fig. 1 and Table 1).
Adjusting k-mer frequencies to match the observed back-
ground frequency had the desired effect of driving the
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Table 1 Average nucleotide variance before and after correction

DNase-seq FAIRE-seq ChIP-seq ATAC-seq
Raw data 0.022 0.006 0.005 0.023
Bias corrected 0.009 0.005 0.003 0.008

Variance before correction is especially high in DNase-seq and ATAC-seq as a result
of DNase | and Tn5 binding preference, respectively

read-relative nucleotide frequencies toward the back-
ground level (Table 1). Encouragingly, this correction does
not affect the global trends such as GC content, which, for
instance, is known to be higher in transcriptionally active
regions than in the genome at large. Preserving these
assay-specific trends while eliminating bias at individual
loci is an encouraging sign that we are not eliminating the
signal with the bias.

DNase-seq, FAIRE-seq, and ATAC-seq are commonly
used to measure chromatin accessibility where transcrip-
tion factors bind. These assays can be used to identify
evidence of transcription factor binding [22, 23]. Bind-
ing sites often show a distinctly shaped depression, or
footprint, in the distribution of read cut sites, evidence
of an actively bound transcription factor impeding
DNase I restriction or transposase insertion. Properties
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of different transcription factors influence the depth
and shape of the footprint, particularly occupancy time
[14]. However, footprints of high-occupancy factors
such as CTCF provide an excellent case to study the
effect of nucleotide-specific bias and our bias correction
method on local features. We plotted the total DNase-
seq read coverage surrounding predicted open CTCF
binding sites before and after bias correction. Figure 3
illustrates the aggregate footprint profiles for GM12878
and deproteinized “naked” DNA from K562 samples. In
the naked DNA, since all proteins influencing DNase
I activity have been removed, we see only the effect
of nucleotide-specific bias, driven largely by DNase I
binding preference convolved with the CTCF binding
motif. After bias correction, this signature is completely
removed, restoring the uniform coverage we expect from
deproteinized DNA. In GM12878, we see the peak with
footprint depression in both original and bias corrected
data. However, after bias correction, spurious peaks in the
footprint profile are greatly reduced. The remaining spike
is thought to be a reflection of the actual bound domain
resulting from a gap in bound CTCEF zinc fingers [24]. We
show an example of a single DNase hypersensitive region
with several TF binding sites in Fig. 4. This illustrates the
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Fig. 3 Aggregate stacked nucleotide pileups are shown across all reads within 250bp of known CTCF binding sites. DNase-seq data from GM12878
before and after bias correction are shown in (a) and (b), respectively. € and d show the cut profile on deproteinized “naked” K562 DNA before and
after bias correction. In both cases, correction of nucleotide-specific bias removed spurious bias-driven spikes, smoothing the CTCF footprint (b) and
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clarification of the footprint shape at individual binding
sites after bias correction and is particularly evident
where the read density is high. An example of bias correc-
tion of ChIP-seq and DNase-seq reads in a superenhancer
region is shown in Additional file 3: Figure S2.

We assessed the utility of bias correction to improve
footprint identification by using protein interaction
quantification (PIQ) [25] to predict transcription-factor
binding sites in original and bias-adjusted GM12878
DNase-seq data. We found that PIQ better reflects
the changes made by our bias correction because,
unlike other footprinting methods, it explicitly models
TF-specific footprint shape at a fine resolution. After
correcting nucleotide-specific bias in these data, we were
able to identify transcription factor binding sites (verified
by ChIP-seq) with greater sensitivity and specificity than
uncorrected data (Additional file 2: Table S1). Since PIQ
explicitly models protein interactions with binding motifs,
we saw different effects based on which motif occurred
at a given site, with the greatest improvement at the most
commonly bound motifs. Another confounding factor
included the presence of proximal high-quality motifs
for other transcription factors. Bias correction generally
increases the total number of identifiable footprints,
which, in many cases, causes false positives where motifs
for multiple transcription factors occur close together. To
avoid this, we considered only sites where the target fac-
tor has the most confident motif among common factors
nearby. Of the factors we considered, only SP1 showed
a decrease in specificity after bias correction. SP1 often
acts as a recruiter for cofactors in promoter regions and is
therefore very often coincident with other binding sites,
which may cause an increase in false positives against
the already very high sensitivity of PIQ for detecting SP1
binding sites (Additional file 2: Table S1).

To observe the effect of bias correction on open chro-
matin inference as a whole, we compared the covariance

between DNase-seq, FAIRE-seq, ATAC-seq, and CTCF
ChIP-seq from GM12878 cells under the same condition,
but prepared and sequenced in different labs. Table 2
gives the coefficient of covariance between sequencing
read depth across these experiments before and after bias
correction. As expected, after correcting HTS- and assay-
specific nucleotide bias, we observe consistent correlation
among these experiments. Additionally, we called peaks
using F-seq [4], which has been modified to use our read
weights. Pairwise correlations were computed between
the 50,000 highest scoring peaks from each data set (to
reduce the effect of dramatically different read density
across assays), also shown in Table 2. In five of six pairwise
comparisons, the correlation between high-scoring peaks
increases after bias correction using our method. The lone
outlier, correlation between DNase-seq and FAIRE-seq
peaks, may be confounded by the dramatically differ-
ent read density and signal-to-noise ratios for these two
assays.

Table 2 We computed the pairwise covariance between read
densities in 250 bp windows and among weights of overlapping
open chromatin peaks (using F-seq) before and after bias
correction

Read density Peak weight

Raw Corrected Raw Corrected
DNase vs. ChIP 0.2967 03112 03784 04138
DNase vs. FAIRE 03157 03105 0.6300 0.6029
DNase vs. ATAC 0.5268 0.5387 0.6620 0.6623
ChIP vs. FAIRE 0.1563 0.1589 0.2072 02214
ChiP vs. ATAC 02137 02182 0.2982 03138
FAIRE vs. ATAC 0.2700 02731 04637 04757

Correlations are shown between DNase-seq, FAIRE-seq, ATAC-seq, and ChlIP-seq for
a generic promoter, CTCF. Since these assays all target or are enriched in regions of
open chromatin, we see convergence of these signals after correction
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Conclusion

We have shown that aggregate nucleotide-specific biases
in high-throughput sequencing reads are greatly reduced
by using our bias correction model. Reads are assigned
weights to better represent their likelihood of occurrence
in the absence of biases, regardless of the source of the
bias. When our method is applied to epigenetic assays
including DNase-seq, FAIRE-seq, ATAC-seq, and ChIP-
seq, true open chromatin and transcriptionally active
domains are more accurately identified.

Unlike previous methods focusing only on correction
of DNase I restriction bias, our method is applicable to a
wide range of HTS assays and conditions which may vary
between lab, protocol specifics (including read length),
cell type, and experimental condition. Existing methods
to correct DNase-seq data apply read corrections based
only on small motifs of 2-6 bp, often do not consider
nucleotide biases outside the read boundaries, and/or
require full sequencing of deproteinized “naked” DNA to
identify DNase I and experimental biases [6, 13, 14]. Our
proposed method corrects all bias within and surrounding
reads, and without expensive additional sequencing.

While correlation between nucleotide-frequency-
adjusted DNase-seq, ChIP-seq, FAIRE-seq, and ATAC-
seq illustrates the generality of our method, there are
several factors that may confound these correlations.
Notably, many potentially bias-inducing steps during their
respective HTS protocols are shared, particularly adapter
ligation. We observe evidence of significant shared biases
in the observed position-specific nucleotide frequencies,
illustrated by the correlation between bias signatures
under various experimental conditions (Fig. 2). Principal
components analysis shows shared biases are correlated
with assay type and lab/location, and may indicate other
parameters, such as HTS technology-specific adapters.
The same end-amplification adapters with similar binding
preferences are often used for these assays. Thus, before
correction, reads have similar biases, so the expected
coincidence among reads between these protocols is
overestimated. After nucleotide-specific adjustments
using our method, bias-driven reads have been reduced,
while their representation of true chromatin structure
should have improved.

In most cases, popular peak-detection and variant
detection methods can be trivially extended to use
floating-point read weights. However, since we introduce
new information about these HTS data with our bias-
adjusted weights, these weights are not taken into account
by default. In cases where this modification is not trivial,
the weight data can be implicitly represented as vari-
able integer copies of individual reads, thus increasing the
amount of data that must be processed, but allowing this
information to be used by existing analysis tools without
modification.
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Additional files

Additional file 1: Figure S1. GM12878 DNase-seq 5-mer tile covariance
matrix. The pairwise correlation is shown between bias values of 5-mer tiles
in a 160bp window surrounding the 5’ end of aligned reads. The block
structure between tiles 0 and 3 indicates correlation between adjacent
k-mer frequencies within DNase-seq reads. (PDF 203 kb)

Additional file 2: Table S1. Area under curve (AUC) values for the ROC
curves representing sensitivity and specificity of footprint detection for
several transcription factors. AUC values at increasing false positive rates
(FPR) are computed independently for each motif before and after
correction. For all factors except SP1, bias correction improved our ability
to accurately predict footprints using protein interaction quantification
(PIQ), especially at low to moderate FPR. SP1 motifs often appear in
promoters and coincide with binding sites for other factors, which may
explain it'’s high AUC and the increase in false positives caused by other
detectable footprints after correction. (PDF 250 kb)

Additional file 3: Figure S2. ChIP-seq and DNase-seq coverage in a super
enhancer region (Hnisz D, Abraham BJ, Lee Tl, et al. Transcriptional
super-enhancers connected to cell identity and disease. Cell.
2013;155(4):10.1016/j.cell.2013.09.053). This region is also in a DNase
hypersensitivity region. We show both the ChIP-seq and DNase-seq signal
before (A) and after (B) bias correction. In general, for regions with very
high ChIP or DNase coverage like this and other “super enhancers”, bias
correction doesn't dramatically change the profile since peak and valley
profiles are very robust. (PDF 327 kb)
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