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Abstract

Background: RNA and microarray quality assessment form an integral part of gene expression analysis and,
although methods such as the RNA integrity number (RIN) algorithm reliably asses RNA integrity, the relevance of
RNA integrity in gene expression analysis as well as analysis methods to accommodate the possible effects of
degradation requires further investigation. We investigated the relationship between RNA integrity and array quality
on the commonly used Affymetrix Gene 1.0 ST array platform using reliable within-array and between-array quality
assessment measures. The possibility of a transcript specific bias in the apparent effect of RNA degradation on the
measured gene expression signal was evaluated after either excluding quality-flagged arrays or compensation for
RNA degradation at different steps in the analysis.

Results: Using probe-level and inter-array quality metrics to assess 34 Gene 1.0 ST array datasets derived from
historical, paired tumour and normal primary colorectal cancer samples, 7 arrays (20.6%), with a mean sample RIN of
3.2 (SD = 0.42), were flagged during array quality assessment while 10 arrays from samples with RINs < 7 passed
quality assessment, including one sample with a RIN < 3. We detected a transcript length bias in RNA degradation
in only 5.8% of annotated transcript clusters (p-value 0.05, FC ≥ |2|), with longer and shorter than average
transcripts under- and overrepresented in quality-flagged samples respectively. Applying compensatory measures
for RNA degradation performed at least as well as excluding quality-flagged arrays, as judged by hierarchical
clustering, gene expression analysis and Ingenuity Pathway Analysis; importantly, use of these compensatory
measures had the significant benefit of enabling lower quality array data from irreplaceable clinical samples to be
retained in downstream analyses.

Conclusions: Here, we demonstrate an effective array-quality assessment strategy, which will allow the user to
recognize lower quality arrays that can be included in the analysis once appropriate measures are applied to
account for known or unknown sources of variation, such as array quality- and batch- effects, by implementing
ComBat or Surrogate Variable Analysis. This approach of quality control and analysis will be especially useful for
clinical samples with variable and low RNA qualities, with RIN scores ≥ 2.
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Background
RNA degradation is a common concern in gene expres-
sion analysis, especially for clinical samples where RNA
degradation may occur before sample collection [1]. A
wealth of archival material, either snap frozen or formalin
fixed and paraffin embedded (FFPE), could potentially be
used for gene expression analysis, given an appropriate
method to evaluate and account for the effect of RNA
degradation on the quality of downstream gene expression
data. Methods such as the RNA integrity number (RIN)
algorithm reliably assesses RNA integrity by extracting
features from the RNA electropherogram. The RIN algo-
rithm was developed using learning tools to identify
regions (features) indicative of RNA integrity in the elec-
tropherogram, which are then used to compile the RNA
integrity number on a scale of 1 to 10. However, the rele-
vance of RNA integrity in gene expression analysis, espe-
cially when there is large variability between samples,
requires further investigation and validation on a platform
specific basis. The impact of RNA integrity on gene ex-
pression analysis has been investigated on both qRT-PCR
and certain microarray platforms [2-7]. Opitz et al investi-
gated the impact of RNA degradation on Agilent 44 k
gene expression profiling by subjecting RNA from clinical
biopsies to temperature-induced RNA degradation and
comparing gene expression to the original, intact samples.
Notably, less than 1% of genes were affected, even after
substantial RNA degradation, where control and test sam-
ples had RINs of 9 and 5 respectively. The affected tran-
scripts were relatively shorter, had lower GC content, or
had probes relatively closer to the 5' region of the gene
compared to more robust genes [6]. Although the process
of RNA degradation is not fully understood, both exo-
nuclease and endonuclease activity is likely to play an im-
portant role [6]. Classical oligo-dT based cDNA synthesis,
which starts at the poly-A tail, will most certainly be com-
promised by exonuclease activity. In contrast random
priming does not rely on full length mRNA and therefore
is in theory at least partially relieved from the affects of
RNA degradation [6-9].
When using semi-degraded RNA for gene expression

studies, reliable measures of array quality provide valuable
information that can be used to guide downstream ana-
lysis. Microarray data quality may be defined in terms of
accuracy (systematic bias between the true and measured
value), precision (the uncertainty in replicated measures),
specificity (the selective power of the measurement to
respond only to the specific targets) and sensitivity (the
expression range potentially covered by the measurement)
[10]. Any attempt to utilise array quality results to guide
downstream analysis should ideally take into account the
possible effects of RNA degradation on sensitivity, specifi-
city and accuracy. In previous work, Binder et al proposed
a single-array preprocessing method that allows correction
for systematic biases such as RNA degradation by utilising
information on the 3'/5'-amplification bias and the sample-
specific calling rate [10]. Lassmann et al proposed using a
data adjustment method to allow comparative analysis of
microarray datasets derived from fresh frozen vs. FFPE
samples by centering the log intensities of each probe set
independently to a mean of zero in both groups [8]. Chow
et al evaluated the suitability of different quality control
and preprocessing strategies for use with partially degraded
RNA samples on the Illumina DASL-based gene expres-
sion assay using mean inter-array correlation and multi-
variate distance matrix regression (MDMR) as a measure
of success [11]. Unfortunately none of these studies are
directly applicable to one of the most commonly used
human transcriptomic microarray platforms, namely Affy-
metrix Gene 1.0 ST arrays, either because they do not use
a random priming approach or because the design of the
microarray platform differs substantially from Gene 1.0 ST
arrays. We therefore identified two alternative approaches
that might be used as compensatory methods: Firstly,
Johnson et al developed an empirical Bayes algorithm,
ComBat, to directly adjust for non-biological experimental
variation. As the name implies, this method is most often
used to adjust for batch effects i.e. when microarrays are
processed on different dates [12]. Secondly, Leek et al
developed a method called Surrogate Variable Analysis
(SVA), which examines the contribution of sources ofsignal
due to unknown (surrogate) variables in high-dimensional
data sets, which may confound the biological signal of
interest [13]. The surrogate variables are constructed dir-
ectly from the gene expression data where groups of genes
that are affected by each source of variation are identified,
factors are then estimated for each array which can be
included in a linear model to adjust for unknown sources
of noise e.g. RNA- or array-quality.
Here, we investigate the relationship between RNA integ-

rity and array quality on Affymetrix Gene 1.0 ST arrays for
34 paired colorectal tumour and adjacent normal biopsies
of highly variable RNA integrity. We assume that at a cer-
tain point on the RIN scale, RNA will be degraded to the
extent where fragments are too small to analyse reliably
and for the purpose of this analysis we arbitrarily select a
RIN cutoff of 2. We describe the within- and between-array
quality control measures and analysis methods that we
found most relevant for gene expression analysis of samples
with highly variable RINs on Affymetrix Gene 1.0 ST arrays.
We then investigate the possibility of a transcript-length
dependency in RNA degradation. Finally, we apply array
quality information to either exclude quality-flagged arrays,
to directly adjust the data using the ComBat algorithm, or
to account for unknown sources of variation (such as RNA
integrity or array quality) in the model fitting process using
SVA. The data discussed, have been submitted to ArrayEx-
press, with accession number E-MEXP-3715.
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Results
Array quality
We assessed array quality using within- and between-
array measures – the former to assess raw data quality
(Figure 1a & 1b), and the latter to assess the quality of
an array relative to a large publically available collection
of high quality Gene 1.0 ST arrays (Figure 1c). Raw array
quality was investigated at the probe level by calculating
the difference between the means of perfect match- and
background-probes for each array as well as the coeffi-
cient of variation (CV) across all probes for each array.
Preprocessed data quality was assessed using the global
normalised, unscaled standard error (GNUSE) [14]. See
Methods section for details.
The 34 RNA samples used in this study had a mean

RIN of 6.3 and a standard deviation of 2.0. Samples that
failed all three measures of quality had RINs between 2
and 3.3 as summarised in Table 1. Samples were ranked
by GNUSE median and we found a good concordance in
terms of ranking between the different quality control
metrics. Samples that failed at least two out of the three
quality measures were flagged for downstream analysis,
resulting in 7 out of 34 samples being flagged (mean
RIN = 3.2; SD = 0.42). Interestingly, for one sample with
a RIN of 2.6, array quality was not compromised, jud-
ged by our quality measures. The possibility of a RIN-
independent RNA quality factor, such as chemical purity,
was investigated by performing a two-tailed Student’s t-test,
comparing A260/230 ratios between quality-flagged and
quality-passed sample groups but no significant association
was found (p-value = 0.14).

Transcript-dependent effects of RNA degradation on
accuracy
To investigate a possible probe-positional intensity bias
related to RNA integrity, we plotted the mean probe
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Figure 1 Array quality metrics. a) Raw coefficient of variation across all p
is calculated as 2SD from the mean of CVs for arrays with RINs > 6. b) Raw
unscaled errors (GNUSE) across probes for each array. Samples that were fla
intensity from the 5'- to 3' end of the sequence using
4644/32321 (14.4%) of transcript clusters for Gene 1.0
ST arrays and 54130/54675 (99%) of probesets for
HGU133-plus2 arrays. The number of probes per set
varies for GeneST arrays, so we selected the largest
group (N = 4664), which had exactly 25 probes/set.
Interestingly, from the 4644 transcript clusters displayed
in Figure 2, Gene ST 1.0 arrays, do not display the same
probe-positional intensity bias typically seen in oligo-dT
based arrays such as the HGU133-plus2 arrays.
We next investigated which genes were most affected

in our quality-flagged category and identified 1994 out
of 21943 annotated transcript clusters (with 1172
uniquely identified genes) that were significantly diffe-
rent (fold change ≥ |2|, adjusted p-value ≤ 0.05) between
the two quality categories previously discussed. Of the
1172 uniquely identified genes, 1032 and 140 showed
decreased or increased intensity in the quality-flagged
category respectively (Figure 3a). To investigate tran-
script characteristics in the genes most affected, we com-
pared transcript lengths (taken as the median cDNA
length for each gene) between the different groups. Com-
pared to the unaffected genes, median cDNA lengths of
genes that showed increased intensity were significantly
shorter (p-value < 2.2 e − 16) while those with decreased
intensity significantly longer (p-value = 2.9 e − 9) with
regards to quality, judged using the Mann Whitney test
(Figure 3b).

Quality dependent methods of data adjustment and
analysis
After assigning samples to two categories according to
array quality measures, we next assessed the performance
of the five preprocessing and analysis methods. Broadly
speaking, the data was either directly adjusted for quality
effects using ComBat, or quality-flagged samples were
mples
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Table 1 Array quality assessment summary

Sample ID RIN RNA 260/230 ratio GNUSE probe-level CV PM-BG Array weight

44N 3 2.41 fail (1) fail (3) fail (1) 0.22 (1)

33T 2.8 2.08 fail (2) fail (5) fail (2) 0.28 (2)

60N 3.2 2.03 fail (3) fail (1) fail (3) 0.42 (3)

63T 3 2.2 fail (4) fail (4) pass 0.59 (6)

10T 3.2 2.18 fail (5) fail (2) fail (4) 0.60 (7)

56T 3.3 1.87 fail (6) fail (10) fail (5) 0.42 (4)

41T 4.2 2.21 fail (7) fail (9) pass 0.78 (8)

13N 4.6 2.24 pass fail (7) pass 0.82 (9)

15T 4.8 2.15 pass fail (8) pass 1.07 (15)

4N 2.6 1.62 pass pass pass 0.44 (5)

18N 7.1 1.66 pass pass pass 0.83 (10)

8T 8.5 2.16 pass pass pass 0.85 (11)

56N 6.5 1.94 pass pass pass 0.95 (12)

20T 7.4 1.6 pass pass pass 1.02 (13)

44T 6.9 1.72 pass pass pass 1.03 (14)

11T 8.6 2.16 pass pass pass 1.07 (16)

60T 6.4 1.64 pass pass pass 1.09 (17)

14T 6.4 1.76 pass pass pass 1.09 (18)

13T 8.3 2 pass pass pass 1.11 (19)

23T 7 2.17 pass pass pass 1.18 (20)

8N 7.1 2.22 pass pass pass 1.25 (21)

18T 7.4 1.85 pass pass pass 1.26 (22)

33N 8.1 1.82 pass pass pass 1.45 (23)

34T 8 2.25 pass pass pass 1.49 (24)

11N 6.8 1.94 pass pass pass 1.50 (25)

20N 7.3 2.11 pass pass pass 1.50 (26)

63N 7.5 2.13 pass pass pass 1.61 (27)

23N 8.4 2.02 pass pass pass 1.61 (28)

34N 8.3 2.21 pass pass pass 1.61 (29)

14N 8.1 2.36 pass pass pass 1.74 (30)

41N 5.4 2.07 pass pass pass 1.76 (31)

10N 7.3 1.78 pass pass pass 1.78 (32)

15N 6.9 2.16 pass pass pass 1.90 (33)

4T 8.4 2.25 pass pass pass 2.14 (34

Array performance is ranked for each measure with 1 considered the worst quality. Samples highlighted in bold were flagged for downstream analysis.
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excluded from the analysis, or possible quality effects were
addressed by including known or unknown sources of
non-biological variance in the linear model fit to assess
differential expression.
The five methods of data preprocessing and analysis,

further detailed in the Methods section, were: 1) Estimat-
ing array quality weights which were then included in the
linear model fit; 2) Excluding quality-flagged arrays from
the analysis; 3) Applying a batch correction algorithm,
ComBat, [12] to directly adjust the data according to qua-
lity, where arrays were divided into two categories accor-
ding to the array quality assessment; 4) “Quality” and
“batch” were included as a factors in the linear model
together with disease status; 5) Possible unknown sources
of non-biological variance, such as quality, was estimated
by SVA, with the output incorporated into the linear
model fit [13].
To assess the effect of using ComBat for direct data

adjustment, hierarchical clustering using Euclidian dis-
tance was performed before and after direct adjustment
(Figure 4). We chose to use Euclidian distance based on
research by Gibbons et al who demonstrated that, for log-
transformed expression data, using Euclidian distance is
more appropriate than Pearson’s correlation coefficients
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Figure 2 Mean probe intensity by probe position. Each line represents an array for a) Gene 1.0 ST arrays: transcript clusters with exactly 25
probes (N = 4644) and b) HGU133-plus2 arrays previously analysed with a subset of the cohort: probesets with exactly 11 probes per probeset.
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[15]. Before adjustment, samples that were flagged during
quality assessment cluster closely together, irrespective of
the disease status of the samples. After adjustment, the
maximum distance between samples is greatly reduced,
and quality-flagged samples no longer cluster together.
Also, samples segregate more clearly by disease status
after adjustment. Furthermore, applying ComBat clearly
has a stabilising effect on the transcript clusters most
affected by RNA quality (Figure 5b & 5c).
SVA identified two surrogate variables that were subse-

quently used in downstream analysis. Plotting the estimates
of these surrogate variables for each sample revealed a pat-
tern whereby samples were clearly grouped by batch and
quality (Figure 6). Importantly, SVA identified these two
variables without supervision.
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Figure 3 Characteristics of genes most affected by RNA degradation.
a) Fold change distribution of annotated transcript clusters comparing sam
uniquely identified genes. Expression signal significantly increased (Up) or d
a Mann-Whitney test. Adjusted p-value ≤ 0.01, |fold change| > 2.
To evaluate the performance of each method, we first
compared the number of differentially expressed genes
detected between tumour and normal samples at a strin-
gent p-value of 0.01. For our analysis, we did not use a fold
change cutoff since we feel that artificial fold change cut-
offs, which exclude subtle changes in the expression of
many genes, may result in the loss of valuable biological
information, or worse, affect the interpretation of the data
– this is particularly true for applications such as network/
pathway analysis [16].
SVA and ComBat detected 2137 and 1945 genes

(p-value ≤ 0.01), respectively. The top four methods
had 1117 differentially expressed genes in common
(Figure 7). At the commonly used p-value- and fold
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Combat, ArrayWeights and excluding arrays, pro-
duced 447, 475, 461 and 521 differentially expressed
genes respectively, suggesting similar performance
under these criteria. We next assessed the relevance
of these differentially expressed genes in colorectal
cancer using Ingenuity Pathway Analysis where, sta-
tistically significant over-representation of our listed
genes in a given process such as “colorectal tumour”
or “infection of embryonic cell lines” is scored by
p-value.
We considered the top 10 functions for each method

(Table 2) from which it was clear that the 615 and 423 addi-
tional genes identified as differentially expressed by SVA
and ComBat, compared to that obtained when excluding
quality-flagged arrays, were certainly relevant to colorectal
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Figure 5 Boxplots of frma expression. a) All transcript clusters. b) Genes
Samples that were flagged during quality assessment are highlighted in re
cancer. Using IPA, we considered the top 10 upstream reg-
ulators (highest absolute activation z-scores) when compa-
ring tumour vs. normal samples, to further investigate the
utility of SVA or ComBat as suitable analysis methods when
including low-RIN samples (Table 3). We found conside-
rable overlap in the identity and direction of activation of
these upstream regulators between the methods compared.

qRT-PCR validation of select genes
In order to ascertain whether or not data obtained by
microarray analysis with low-RIN samples were comparable
to the results obtained using the method designed by Anto-
nov et al for qPCR analysis of low-RIN samples, we selected
two genes, dipeptidase 1 (DPEP1) and claudin 1 (CLDN1),
for qRT-PCR validation. Given that our microarray data
amples
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Table 2 P-values for evidence for overrepresentation in the functions listed for each method

Functions A B C D E

Cancer 7.72E-29 NA 8.15E-24 NA 3.38E-23

cancer NA 2.58E-25 NA 2.70E-26 NA

carcinoma 8.64E-37 2.52E-33 1.87E-34 2.87E-32 5.56E-30

colon cancer 1.30E-26 1.19E-36 1.10E-26 1.99E-21 3.29E-21

colon tumor 1.10E-26 4.31E-37 3.65E-27 1.80E-21 7.28E-22

colorectal cancer 2.27E-26 4.74E-29 2.43E-26 1.11E-21 1.98E-23

colorectal tumor 2.28E-26 6.80E-29 2.97E-26 4.67E-22 1.72E-23

digestive organ tumor 2.68E-31 6.82E-32 1.24E-28 7.27E-27 2.72E-29

epithelial tumor 2.16E-38 NA 2.27E-35 NA 1.11E-30

gastrointestinal tract cancer 2.35E-25 2.42E-28 4.00E-24 3.19E-21 5.31E-22

intestinal cancer 2.02E-26 5.77E-29 2.58E-26 1.03E-21 1.55E-23

neoplasia NA 1.63E-24 NA 1.10E-25 NA

solid tumor 3.31E-35 8.07E-32 6.80E-33 4.65E-31 3.88E-29

tumorigenesis NA 1.55E-26 NA 3.31E-28 NA

uterine serous papillary cancer 3.46E-21 1.71E-20 8.61E-25 1.26E-22 1.14E-15

A - excluding quality-flagged arrays from the analysis. B - applying SVA to batch corrected data. C - ComBat used to correct for batch and quality. D - Array
weights included in the linear model. E - including batch and quality as factors in the linear model.
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analysis suggests ~95% of genes are unaffected by RNA
integrity, we wished to compare microarray and qPCR data
for genes that were apparently unaffected by RNA integrity;
DPEP1 and CLDN1 were found to be significantly differen-
tially expressed in our microarray data by all of the five
methods used and, in addition, there is strong literature evi-
dence for their differential expression between tumour and
normal samples. From reference genes previously cited as
suitable for colorectal cancer studies, we selected those
most stably expressed in our cohort using the Normfinder
algorithm (UBC, B2M, ATP5E) [17-21]. We found good
correlations, for both CLDN1 (Adjusted R2 = 0.81) and
DPEP1 (Adjusted R2 = 0.83), between qRT-PCR- and
microarray-based fold change values (Figure 8), irrespective
of RIN score.

Discussion
RNA is extremely vulnerable to degradation and as such
has the potential to introduce a systematic bias in gene
expression measures. Reliable measures of sample and
data quality are therefore essential to evaluate the effects
of RNA integrity on accuracy, sensitivity and specificity
of gene expression results. From previous studies as well
as our own, it is now clear that the level of acceptable
RNA degradation within an experiment depends largely
on the experimental design, platform and application.
Multiple studies have demonstrated an improvement in
microarray and qRT-PCR performance by using random
priming when RNA integrity is in doubt. Here we
observed a direct association between RINs and array
quality in the majority of cases. To gauge the con-
sequences of using these arrays in downstream analysis,
we compared quality-flagged to quality-passed arrays
and found a relatively small subset of genes, 1172/20019,
to be significantly affected (p-value 0.05, FC ≥ |2|) in our
samples on the Gene 1.0 ST platform. It is of course
possible that the exact identity and proportion of the
affected genes may differ between studies on Gene 1.0
ST arrays but, based on our data, we suggest that the
overall proportion of affected genes is unlikely to be sig-
nificantly different to that observed here. Depending on
the application, this may or may not have an effect on
the study outcome. However, the most common micro-
array applications such as finding differentially expressed
genes between two conditions, pathway analysis, and
clustering do not rely on interrogating specific genes
and appear to be largely robust to the effects of RNA
degradation on this platform (Table 2).
Using within- and between-array quality measures, we

investigated the relationship between RNA integrity and
array quality on Affymetrix Gene 1.0 ST arrays. We found
a combination of within- and between-array quality mea-
sures useful to rank samples by array quality. However,
the single most useful array quality measure appears to be
GNUSE, since it provides a more general measure of array
quality relative to a large set of publically available arrays.
We found that 86% of samples with RINs ≤ 3.3 were
flagged by at least two of our quality control measures.
One sample with RIN score < 3 passed all three quality
measures, although it did have relatively low array quality
weight. Furthermore, 10 out of 17 samples with RIN
scores ≤ 7 passed at least 2 out of 3 quality measures, sug-
gesting that the widely used RIN cutoff of 7 is too strin-
gent for Gene 1.0 ST arrays.
We then examined the genes most affected by RNA

degradation and demonstrated a relationship between



Table 3 Top 10 IPA-derived upstream regulators, by absolute activation z-score

A

Upstream Regulator Log Ratio Molecule Type Predicted Activation State Activation z-score p-value of overlap

TP53 transcription regulator Inhibited −4.88 1.05E-16

CDKN1A −0.469 kinase Inhibited −3.274 4.20E-10

TRAF2 enzyme Activated 2.804 3.06E-06

CCNK other Activated 2.905 3.83E-04

TNF cytokine Activated 2.935 7.69E-04

IL1B cytokine Activated 2.952 1.76E-01

TP63 transcription regulator Activated 3.181 8.37E-10

TREM1 other Activated 3.352 3.69E-05

FOXM1 1.37 transcription regulator Activated 4.28 3.71E-17

Mek group Activated 4.336 2.38E-07

B

Upstream Regulator Log Ratio Molecule Type Predicted Activation State Activation z-score p-value of overlap

TP53 0.622 transcription regulator Inhibited −5.749 6.48E-12

TGM2 enzyme Inhibited −4.243 3.64E-02

CDKN1A −0.485 kinase Inhibited −3.548 1.85E-10

KDM5B transcription regulator Inhibited −3.126 3.31E-08

NFkB (complex) complex Activated 3.034 3.59E-03

TREM1 other Activated 3.073 2.18E-05

TP63 transcription regulator Activated 3.63 6.25E-06

IL1B cytokine Activated 3.686 4.13E-01

FOXM1 1.29 transcription regulator Activated 3.925 5.82E-11

Mek group Activated 4.771 7.08E-08

C

Upstream Regulator Log Ratio Molecule Type Predicted Activation State Activation z-score p-value of overlap

TP53 transcription regulator Inhibited −5.126 1.30E-13

CDKN1A −0.496 kinase Inhibited −3.534 5.99E-10

TGM2 enzyme Inhibited −3.402 4.25E-02

miR-483-3p mature microRNA Inhibited −3.153 6.49E-03

EGFR kinase Activated 3.104 4.43E-03

IL1B cytokine Activated 3.281 1.73E-01

TP63 transcription regulator Activated 3.524 1.48E-09

TREM1 other Activated 3.845 5.74E-06

FOXM1 1.398 transcription regulator Activated 4.386 4.18E-16

Mek group Activated 4.654 9.72E-08

A - excluding quality-flagged arrays from the analysis. B - applying SVA to batch corrected data. C - ComBat used to correct for batch and quality.
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accuracy and length of the original transcript, with both
longer than average, and very short transcripts being
under- and overrepresented in quality-flagged samples
respectively. This is in contrast to the findings by Opitz
et al who found that short transcripts were more vulner-
able to the perceived effects of degradation, whereas
long transcripts were more stable relative to the average
length transcript [6]. Interestingly, of the genes that were
overrepresented in quality-flagged samples, 70% were
small non-protein coding RNAs, including 94 small nu-
cleolar RNAs, and 4 microRNAs, consistent with reports
that microRNAs are more robust to RNA degradation
compared to mRNA [22], perhaps because they are more
thermodynamically stable than mRNAs.
Without excluding any genes, we then compared the

orthogonal approaches of either excluding quality-flagged
arrays or compensating for RNA degradation at different
steps in the analysis. Sample clustering showed that when
using ComBat adjustment, quality-flagged samples no
longer clustered together. Furthermore, samples tend to
segregate more clearly by disease status following adjust-
ment, which suggests that the algorithm is not introducing
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Figure 8 DPEP1 and CLDN1 tumour vs. normal fold change (FC) results for qRT-PCR and microarray results. Samples that were flagged
during quality assessment are highlighted in red.
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artifacts. It is worth noting that patients 13, 4 and 18 were
diagnosed with a hereditary form of CRC (HNPCC) – it is
therefore not surprising that the ‘normal’ samples from
these patients form a separate cluster.
Irrespective of sample/array quality, applying compen-

satory measures for RNA degradation performed at least
as well as excluding arrays that were flagged during
quality assessment, as judged by gene expression analysis
and IPA. At a p-value of 0.01, SVA and Combat detected
the highest number of differentially expressed genes
between tumour and normal samples and the top four
methods applied here had 1117 differentially expressed
genes in common. To evaluate the biological plausibility
of the genes deemed significantly differentially expressed
between tumour and normal samples, we harnessed the
results from IPA to show that, in terms of the top sco-
ring biological functions and upstream regulators, there
is considerable overlap in the identity and direction of
biological activation when comparing analysis methods
that either excluded or included quality-flagged arrays.
These results suggest that our analysis strategies are bio-
logically sound and not biased by non-biological variance.
The relevance of each method will depend on the

downstream application and the proportion of quality-
flagged arrays: If a small percentage of arrays are flagged,
there might not be much benefit in including them for
downstream analysis. However, if a large proportion of
the arrays are affected by RNA quality – which is likely
to often be the case where the RNA is derived from irre-
placeable historical clinical samples – the ability to re-
tain all arrays and to account for these effects in the
analysis will be valuable. Here, ComBat may be useful if
direct data adjustment is required, e.g. for sample/gene
clustering. On the other hand, for analysis of differential
expression, especially when the source of non-biological
variance is not immediately apparent, SVA may be most
useful since it does not require supervision; notably, in
our hands SVA was able to identify two surrogate va-
riables which closely corresponded to “batch” and “qua-
lity” factors, judged by the grouping of samples. To
establish whether the measures used here to compensate
for quality-effects are superior to excluding these arrays
from the analysis will require a controlled study with
known true- and false-positives where the discriminatory
power of each method can be objectively investigated.
However, the significant overlap observed between the
differentially expressed genes identified by the different
approaches used here, combined with the considerable
overlaps in both biological function and upstream regula-
tors identified by pathway analysis of the resultant data,
argues against a simple expansion of false positives when
lower quality array data is included in the analyses. The
quality assessment and data analysis methods discussed
here should in principle be as useful for Affymetrix Exon
ST array analysis as well.
Conclusions
In conclusion, array quality measures can be used to set
quality thresholds, to provide valuable information that
can be used to improve the linear model of differential ex-
pression, or to correct expression signal prior to assessing
differential expression. We suggest that accounting for
known or unknown sources of variation, such as variable
RNA integrity and batch, by implementing ComBat or
Surrogate Variable Analysis for analysis of differential gene
expression enables robust analysis of microarray datasets
derived from variable and low quality RNA, thereby
extending the range of clinical samples that are suitable
for microarray analysis.
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Methods
Sample collection and storage
Paired colorectal patient samples (diseased tumour tissue
and adjacent healthy gut epithelial tissue) were collected
during surgical resection of previously untreated patients
at the Groote Schuur Hospital, Cape Town, South Africa.
The samples were frozen immediately in liquid nitrogen
and stored at -80°C. Ethical consent was obtained (UCT
HREC REF 416/2005) and each patient provided written
informed consent to donate samples from the tissues left
over after surgical resection to subsequent molecular
studies.
Sample preparation and quality control
Frozen samples were transitioned to RNAWlater-ICE
(Ambion), an RNA stabilisation solution, using dry ice
to prevent thawing of the tissue at any stage. RNA was
extracted using a Dounce homogenizer and the AllPrep
DNA/RNA/Protein kit (Qiagen) including DNAse treat-
ment. RNAseZap (Ambion) was used to eliminate
RNAse from the work surface, pipettes and glassware.
RNA integrity assessment was conducted on an Agilent
Bioanalyser 2100.
Quantitative real-time PCR
From a biological perspective, we used the stability of
expression of housekeeping genes to investigate the
effect of RNA integrity on array- and qRT-PCR perform-
ance. Gene candidates were selected from those previ-
ously been specifically identified as good reference genes
for colorectal cancer [17-21]. Expression stabilities were
ranked using the Normfinder algorithm [23] and three
genes were selected for use as reference genes. All pri-
mers except those for b2m [24] were designed using
Primer-BLAST - sequences are shown in Table 4. Ex-
periments were performed in triplicate on a Roche
LightCyclerW 480 Real-Time PCR System in 96-well for-
mat. Efficiency was determined for each primer pair
using a two-fold dilution series across five points for five
patient samples of varying RNA integrity. For each pa-
tient, tumour vs. normal fold change was determined
based on the method of Antonov et al whereby the Ct of
the test gene is normalised by the geometric mean of
Table 4 Primers used for qRT-PCR analysis

Test genes Forward primers (5' - 3')

dpep1 GACAACTGGCTGGTGGACA

cldn1 GCTGTCATTGGGGGTGCGAT

Reference genes

ubc GGTCGCAGTTCTTGTTTGTGG

b2m TGCTGTCTCCATGTTTGATGTATCT

atp5e CTGGACTCAGCTACATCCGA
multiple control genes [9]. Since our efficiencies were
quite low in some cases, we adapted the Antonov et al
method to include primer efficiency as shown in the
equation below:

eΔCt tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΔCt ið Þi � eΔCt iþ1ð Þ

iþ1 . . .� eΔCt iþnð Þ
iþn

nþ1

q

where t represents the test gene, e represents efficiency
and i represents the control gene(s).

Microarray analysis: Affymetrix HuGene 1.0 ST expression
arrays
Thirty-four samples with A260/230 ratios of at least 1.6,
RINs of at least 2 and no sign of genomic DNA contami-
nation, were selected for microarray analysis. The samples
were amplified from 200ng of total RNA in accordance
with the AmbionW WT Expression assay kit and fragmen-
ted and end labeled in accordance with the AffymetrixW

GeneChipW WT Terminal Labeling protocol. The prepared
targets were hybridized overnight to Affymetrix Human
Gene 1.0 ST arrays. Following hybridization, the arrays
were washed and stained using the GeneChip Fluidics Sta-
tion 450 and scanned using the GeneChipW Scanner 3000
7G. Arrays were processed in two batches - batch one had
10 arrays, and batch two 24. Individual patient pairs were
not split across batches.

Microarray quality assessment and data analysis
Standard Affymetrix quality control was conducted
using Expression ConsoleW Software: The quality of
cDNA preparation and array hybridisation was assessed
using appropriate spike-in controls at each stage.
Raw array quality was investigated at the probe level by

1) the difference between the mean of the perfect match
probes and the mean of the background probes for each
array as well as 2) the coefficient of variation (CV) across
all probes for each array. A threshold for the CV across
probes was set as two standard deviations from the mean
CV, where the mean was calculated from arrays with RINs
> 6. The data was preprocessed in R using the Bioconduc-
tor packages frma [25], oligo [26], and the ComBat algo-
rithm for batch correction [12]. Preprocessed data quality
Reverse primers (5' - 3') Product (bp)

ACCACACGCTGCCCAAA 74

GGCAACTAAAATAGCCAGACCTGC 54

CACGAAGATCTGCATTGTCAAG 59

TCTCTGCTCCCCACCTCTAAGT 86

GCATCTCTCACTGCTTTTGCAC 55
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was assessed using the global normalised, unscaled stan-
dard error (GNUSE) [14]. The SE estimates are norma-
lized such that for each probe set, the median standard
error across all arrays is equal to 1. Since most genes are
not expected to be differentially expressed, boxplots for
each array should be centered around 1. Samples with a
median GNUSE of greater than 1.25 were flagged for
downstream analysis. This threshold is fairly arbitrary and
has not been validated for the Gene 1.0 ST platform but
roughly equates to having a precision that is on average
25% worse than the average Gene 1.0 ST array [14].
Five comparative methods for analysis of differential

expression were individually applied to the preprocessed
data: 1) The arrayWeights function in the Bioconductor
package limma [27] was used to estimate array quality
weights which were then included in the linear model fit;
2) Arrays that were flagged in array quality assessment
were excluded from the analysis; 3) The ComBat algo-
rithm [12] for batch correction was applied to directly
adjust the data according to quality, where arrays were
divided into two categories according to the array quality
assessment; 4) “Quality” and “batch” were included as a
factors in the linear model together with disease status; 5)
Surrogate variable analysis was applied to frma-processed
data without any direct adjustment, the output from SVA
being incorporated into the linear model fit [13].
To rank genes by evidence for differential expression, the

eBayes function in limma was applied to compute mode-
rated t-statistics, moderated F-statistic, and log-odds of dif-
ferential expression by empirical Bayes shrinkage of the
standard errors towards a common value [27]. Next, using
the topTable function in limma, p-values were adjusted for
multiple hypothesis testing using the Benjamini and
Hochberg method [28]. Transcript clusters were annotated
in R using the Bioconductor package hugene10sttran-
scriptcluster.db (Affymetrix Human Gene 1.0-ST Array
Transcriptcluster Revision 8 annotation data, assembled
using data from public repositories).
The subset of genes differentially affected by RNA qual-

ity was similarly obtained, now using array quality for
grouping, instead of disease status. Genes with adjusted
p-values ≤ 0.05 and FCs ≥ |2| were included in the analysis.
Transcript length was obtained for all annotated transcript
clusters using the Bioconductor package goseq [29]. Hier-
archical clustering with average linkage and Euclidian
distance as distance measure was performed in R using the
hclust function.
For Ingenuity Pathway Analysis, genes that were found to

be significantly differentially expressed for each method
(adjusted p-value ≤ 0.01), were used as input for IPAs “Core
Analysis”. Here, statistically significant over-representation
of our listed genes in a given process such as “colorectal
tumour” or “infection of embryonic cell lines” is scored by
p-value, using the right-tailed Fisher’s Exact Test. In the
case of upstream regulators, the predicted activation state
and activation z-score is based on the direction of fold
change values for genes in the input dataset for which an
experimentally observed causal relationship has been estab-
lished. Performance was assessed using the top 10 func-
tions in terms of p-values for each method while taking
into account the relevance of the function to colorectal
cancer.
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