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Abstract

Background: Plant–parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants.
Often, these nematodes can lay hundreds of eggs, each capable of surviving without a host for as long as 12 years.
When it comes to wreaking havoc on agricultural yield, few nematodes can compare to the soybean cyst nematode
(SCN). Quantifying soybean (Glycinemax) transcription factor binding sites (TFBSs) during a late–stage SCN resistant
and susceptible reaction can shed light onto the systematic interplay between host and pathogen, thereby
elucidating underlying cis–regulatory mechanisms.

Results: We sequenced the soybean root transcriptome at 6 and 8 days upon independent inoculation with a
virulent and avirulent SCN population. Genes such as β–1,4 glucanase, chalcone synthase, superoxide dismutase and
various heat shock proteins (HSPs) exhibited reaction–specific expression profiles. Several likely defense–response
genes candidates were also identified which are believed to confer SCN resistance. To explore magnitude of TFBS
representation during SCN pathogenesis, a multivariate statistical software identified 46 over–represented TFBSs
which capture soybean regulatory dynamics across both reactions.

Conclusions: Our results reveal a set of soybean TFBSs which are over–represented solely throughout a resistant
and susceptible SCN reaction. This set furthers our understanding of soybean cis–regulatory dynamics by providing
reaction–specific levels of over–representation at 6 and 8 days after inoculation (dai) with SCN.
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Background
Obligate parasites, such as plant–parasitic nematodes
(PPNs), are infamously known for their ability to sup-
press host defense mechanisms and cripple yield of many
agricultural crops. Such devastation is tightly orchestrated
by nematode effector proteins that commandeer host–
plant metabolic machinery. One of the most destructive
PPNs to soybean yield is the soybean cyst nematode
(SCN;Heterodera glycines). Worldwide, approximately 1.5
billion dollars in soybean yield is lost annually due to
SCN infestations [1,2]. In SCN susceptible soybeans, this
devastation begins when the female juvenile–stage 2 (J2)
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nematode penetrates the host root. J2 effector proteins
are injected into the root, dissolving plant cell walls and
driving formation of a metabolically–active, multinucle-
ated feeding site known as a syncytium [3]. Newly–molted
J3 males and females feed from this nutrient–rich syn-
cytium, subsequently molt into J4 larvae and copulate [4].
After approximately 30 days post–copulation, a hardened
sac of SCN eggs known as a cyst becomes visible to the
naked–eye. In the resistant reaction however, cysts are not
visible since J2 nematodes can neither form a nutrient–
rich syncytium nor copulate. Thus, J2 nematodes starve to
death.
With next–generation sequencing (NGS) now becoming

a central assay in transcriptomics, entire transcriptomes
can now be sequenced at unprecedented resolution.
Fueled by the economic impact of SCN infestations,
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numerous studies have utilized NGS assays to sequence
and quantify the soybean transcriptome [5-8].
In this study, we extend such works by conducting

transcriptomic and regulatory analyses on soybean roots
(Peking cv.) inoculated with SCN. We sequence the soy-
bean root transcriptome and contrast resistant and sus-
ceptible SCN reactions at 6 and 8 days after inoculation
(dai). Our findings reveal likely defense–response gene
candidates and a potential regulatory “signature” that cap-
tures TFBS over–representation throughout both resis-
tant and susceptible reactions.

Results and discussion
Illumina sequencing and read alignment
cDNA libraries from soybean roots were generated after
independently inoculating roots for both 6 and 8 dai in
two SCN populations, NH1-RHg (confers resistant reac-
tion in Peking; Race 3) and TN8 (confers susceptible reac-
tion in Peking; Race 14). A baseline control cDNA library
was also created from roots uninoculated with SCN. RNA
was prepared using the Illumina TruSeq sample prepa-
ration kit. Single–end RNA–sequencing (RNA–Seq) was
performed on the Illumina GAIIx, producing a total of
30 million reads 80 bp in length. Across all sequenced
libraries, quality assessment subtracted between 10%—
19% of reads for being either a contaminent sequence
or of low quality (Table 1). Using the BWA aligner [9],
quality reads were mapped against the soybean tran-
scriptome build version 1.1 [10]. Reads aligning to mul-
tiple transcripts were identified and assigned to the
transcript with the highest quality score. In total, 59%
to 69% of quality–assessed reads mapped to the soybean
transcriptome.

Soybean transcript abundance and profiling during SCN
pathogenesis
Differential expression tests were performed using the R
package DESeq [11]. Soybean transcripts were function-
ally annotated using both Gene Ontology (GO) [12] and
PFAM [13]. Both fold change and log2 fold change of

expression profiles (as RPKM) were computed between
experimental and uninoculated samples. To render a
soybean transcript differentially expressed (DE), the tran-
script had to have a log2 fold change greater than or
equal to ±1.0 and have atleast 5 mapped reads across all
replicates. A total of 12,377 soybean transcripts were iden-
tified to be DE in at least one of the samples (Additional
file 1). To disseminate the plant–pathogen defense–
response landscape, a subset of 181 DE transcripts were
mined and classified given their GO and PFAM functional
annotations (Table 2, Additional file 2). Interestingly, vir-
tually all of these annotation classifications exhibited
induced expression profiles exclusive to the resistant reac-
tion. For instance, all 12 transcripts of β–1,4–glucanase
(β–1,4–G) were generally induced throughout the resis-
tant but suppressed in the susceptible reaction. Numer-
ous studies reveal how a pathogenic nematode can
commandeer not only β–1,4–glucanase but other cel-
lulases to drive formation of a nematode feeding site
[14-16]. Both Tucker et al. [16] and Ibrahim et al. [14]
quantified this destructive commandeering capabil-
ity by quantifying the soybean transcriptome using
high–throughout microarrays. This latter study, though
examining soybean–root knot nematode interplay, reveals
cell–wall modeling, defense response, and metabolism, to
be the most impacted host pathways following pathogenic
nematode infection. Critical genes encoding isoflavonoid
and flavonoid biosynthesis such as chalcone synthase
(ChS), chalcone reductase (ChR), and chalcone isomerase
(ChI) also exhibited similar induced expression profiles.
Glutathione S-transferase (GST) genes were also induced
in the resistant reaction. GST is a class of enzymes
involved in reactions leading to xenobiotic degradation
[17], and has been shown to be induced during an SCN
resistant reaction [18-20].
Transcripts of genes encoding two lipoxygenase (LOX)

gene family members, arachidonate 8-lipoxygenase (A–8
LOX; EC: 1.13.11.40) and linoleate 13S-lipoxygenase
(L–13S LOX (LOX2); EC: 1.13.11.12) were also induced
throughout both 6 dai and 8 dai resistant reactions. The
role A–8 LOX plays during a nematode reaction has yet

Table 1 Soybean–SCN pathogenesis RNA–Seq summary

SCN population Time point SRA Reads Filtered Aligns to soybean

Uninoculated Control SRR849499 2,141,303 401,913 (19%) 1,201,664 (69%)

Race3
6 dai SRR847313 8,069,844 1,130,372 (14%) 4,640,251 (67%)

8 dai SRR848922 7,319,342 745,019 (10%) 4,135,793 (63%)

Race14
6 dai SRR848921 9,160,690 1,624,774 (18%) 4,486,182 (59%)

8 dai SRR849498 4,078,344 637,475 (15%) 2,193,208 (63%)

Total – – 30,769,523 4,539,553 (14%) 16,657,098 (63%)

Summary of reads generated throughout a Race 3 and Race 14 SCN inoculation. Low quality reads were subtracted from the total read–set. Remaining reads were
then mapped to the soybean transcriptome.
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Table 2 Various genes perceived during defense response
are expressed during SCN inoculation

Median log2 RPKM

Race 3 Race 14

Function n 6 dai 8 dai 6 dai 8 dai

β–1,4–G 12 1.14 0.85 0.27 0

4CL 26 0.46 0.69 -1.03 -0.27

A–8 LOX 18 0 1.03 -1.77 -0.59

ChR 5 1.07 1.01 0 -0.53

ChI 6 1.33 0.63 -0.37 -0.62

ChS 15 1.18 1.39 -0.76 -0.73

GST 21 1.15 1.14 -1.02 0

GLY I 5 1.41 1.11 -1.49 -1.39

L–13S LOX 17 0.91 1.40 -1.76 -0.81

PCS 4 0.74 1.49 -1.29 -0.41

PR5 15 1.66 0.54 -1.38 -0.53

PR10 15 1.31 1.12 -1.16 -1.23

PDI 9 1.08 1.60 -0.89 -1.08

RnDR 5 1.39 0 0 0

SOD 8 1.12 0.60 -0.58 0

Numerous genes are involved in defense–response. DE transcripts were binned
based on GO or PFAM annotated function, yielding bins of differing size, n.

to be elucidated, however lipoxygenases in–general are
consistently induced throughout a resistant SCN reaction
[21-24]. This raises speculation that A–8 LOX may be
perceived during SCN pathogenesis.
Ribonucleoside-diphosphate reductase (RnDR; EC: 1.17.4.1)

and protein disulfide-isomerase (PDI; EC: 5.3.4.1) were
induced in the resistant reaction. Both RnDR and PDI
are thioredoxins, a family of reductases known to play
defense–response roles upon perception of a pathogen
[25-27]. Little is known about the role RnDR plays in SCN
pathogenesis, however an earlier microarray study exam-
ined abaxial and adaxial soybean embryo expression pro-
files upon exposure to auxin 2,4-dichlorophenoxyacetic
acid (2,4–D). Microarray results revealed differentially
expressed levels of RnDR 21 days after auxin inocu-
lation [28]. PDI on the other hand, is a well–studied
thioreductase expressed during plant defense [29,30],
especially in soybean roots undergoing a resistant SCN
reaction [31].
Pathogenesis–Related (PR) transcripts, namely PR5 and

PR10, were induced in the resistant reaction. PR genes
were expressed not just during SCN nematode patho-
genesis [32-38] but also throughout abiotic stress [39],
phytohormone signaling [40] and drought [41].
Glyoxalase I (GLY I; lactoylglutathione lyase, EC:

4.4.1.5) was also induced throughout the resistant reac-
tion. GLY I has been shown to exhibit an induced

expression profile in pumpkin seeds exposed to numerous
abiotic stresses [42]. Lastly, little is known about the role
phytochelatin synthetase (PCS) plays throughout SCN
pathogenesis, however PCS has been shown in a prior
study to be induced during aphid herbivory [43].
Following quantification of the SCN–inoculated soy-

bean root transcriptome, our analyses support earlier
works by Klink et al. ([44,45]), Kandoth et al. ([20]), and
Li et al. ([33]). We build–on such studies by identifying a
small subset of potentially novel defense–response candi-
date genes as well as a biologically–sound proximal reg-
ulatory landscape that captures host–SCN pathogenesis
interplay.

Gene Ontology enrichment in resistant and susceptible
reactions
To identify statistically significant Gene Ontology (GO)
annotations, the top 750 induced and 750 suppressed
genes across for all SCN samples each independently
underwent GO Process enrichment using the AgriGO
server [46]. Numerous GO Processes were statisti-
cally significant across resistant and susceptible reac-
tions (Table 3). GO Process p–values were adjusted
using Bonferroni False Discovery Rate (FDR) and all GO
Processes with adjusted p–values less than 0.05 were
selected.
The top 30 most statistically significant GO Processes

within induced genes were identified (Table 4). Pro-
cesses such as “defense response”, “syncytium formation”,
“response to other organism”, “response to oxidative
stress”, and “response to stress”, were revealed to be
statistically significant mainly in the resistant reaction
when compared to the susceptible. Processes associated
with organelle modification and intracellular organization
also exhibited similar reaction–specific significance. This
race–exclusivity exposes the crucial role basal operations
play during pathogen perception.
Similarly, the top 30 most statistically significant GO

Processes within suppressed genes were also identi-
fied (Table 5). Contrasting GO Processes in suppressed
genes to that of induced genes reveals an entirely dif-
ferent catalog of annotations. For instance, 20 of the

Table 3 Abundance of enriched Gene Ontology
annotations

Race 3 Race 14

6 dai 8 dai 6 dai 8 dai

Count
Induced 53 48 25 19

Suppressed 73 104 113 86

Enriched GO annotations throughout each inoculation. Per inoculation,
the top–750 induced and top–750 suppressed DE transcripts were identified
and enriched GO annotations were identified. Only enrichments with a
Bonferroni–corrected p–value less than 0.05 were selected. Counts represent
both GO Process and GO Function.
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Table 4 GO Process enrichment of induced soybean genes

−log10FDR

Term Description Race 3 Race 14

GO:0042545 Cell wall modification 10.49 0

GO:0042547 Cell wall modification during
multidimensional cell growth

10.52 4.25

GO:0044085 Cellular component biogenesis 3.20 0

GO:0034622 Cellular macromolecular complex
assembly

4.25 0

GO:0046916 Cellular transition metal ion
homeostasis

0 4.52

GO:0031497 Chromatin assembly 11.74 0

GO:0006333 Chromatin assembly or
disassembly

10.18 0

GO:0006325 Chromatin organization 7.18 0

GO:0051276 Chromosome organization 6.11 0

GO:0006952 Defense response 6.69 1.45

GO:0006323 DNA packaging 11.55 0

GO:0065003 Macromolecular complex
assembly

3.92 0

GO:0051704 Multi-organism process 3.69 0

GO:0009825 Multidimensional cell growth 6.08 1.79

GO:0006334 Nucleosome assembly 12.92 0

GO:0034728 Nucleosome organization 11.85 0

GO:0006996 Organelle organization 3.48 0

GO:0010117 Photoprotection 4.56 0

GO:0009828 Plant-type cell wall loosening 8.40 2.56

GO:0009827 Plant-type cell wall modification 8.56 0

GO:0009831 Plant-type cell wall modification
during multidimensional cell
growth

6.38 2.02

GO:0009664 Plant-type cell wall organization 6.25 0

GO:0065004 Protein-DNA complex assembly 12.40 0

GO:0009725 Response to hormone stimulus 2.50 5.95

GO:0051707 Response to other organism 5.21 1.88

GO:0006979 Response to oxidative stress 10.66 0

GO:0006950 Response to stress 5.35 0

GO:0006949 Syncytium formation 7.45 2.43

GO:0055076 Transition metal ion homeostasis 0 4.52

GO:0006414 Translational elongation 5.16 0

GO Process enrichment from the top 750 induced transcripts. Numerous GO
Processes associated with cell–wall modification, intracellular organization and
defense response exhibit increased enrichment during the resistant reaction.

30 GO Processes in suppressed genes are statistically
significant across both resistant and susceptible reac-
tions. This indicates that nematode effectors are gener-
ally operable in a race–independent manner and capable
of effortlessly suppressing a majority of crucial basal
processes.

Table 5 GO Process enrichment of suppressed soybean
genes

−log10FDR

Term Description Race 3 Race 14

GO:0006066 Alcohol metabolic process 0 2.52

GO:0016051 Carbohydrate biosynthetic
process

4.56 7.92

GO:0044262 Cellular carbohydrate metabolic
process

0 2.17

GO:0043094 Cellular metabolic compound
salvage

2.88 5.53

GO:0006091 Generation of precursor
metabolites and energy

83.18 87.31

GO:0006544 Glycine metabolic process 2.20 0

GO:0006096 Glycolysis 1.48 3.95

GO:0018130 Heterocycle biosynthetic process 6.42 4.20

GO:0019318 Hexose metabolic process 1.79 5.33

GO:0042743 Hydrogen peroxide metabolic
process

2.66 0

GO:0006555 Methionine metabolic process 2.12 0

GO:0006740 NADPH regeneration 0 2.37

GO:0006733 Oxidoreduction coenzyme
metabolic process

0 2.92

GO:0009853 Photorespiration 6.48 9.04

GO:0015979 Photosynthesis 215.70 211.61

GO:0009765 Photosynthesis, light harvesting 81.37 68.25

GO:0009768 Photosynthesis, light harvesting
in photosystem I

52.95 39.57

GO:0019684 Photosynthesis, light reaction 132.78 130.48

GO:0009767 Photosynthetic electron transport
chain

43.33 47.11

GO:0009773 Photosynthetic electron transport
in photosystem I

23.73 28.55

GO:0042549 Photosystem II stabilization 4.76 9.29

GO:0046148 Pigment biosynthetic process 8.81 11.14

GO:0042440 Pigment metabolic process 14.26 17.96

GO:0018298 Protein-chromophore linkage 51.69 42.96

GO:0043467 Regulation of generation of
precursor metabolites and energy

1.88 4.38

GO:0042542 Response to hydrogen peroxide 0 5.20

GO:0010035 Response to inorganic substance 0 6.25

GO:0009416 Response to light stimulus 11.30 13.85

GO:0009314 Response to radiation 10.71 13.19

GO:0000302 Response to reactive oxygen
species

0 3.73

GO Process enrichment from the top 750 suppressed transcripts. Almost all GO
Processes were suppressed in a race–independent manner. The suppressive
cocktail of SCN effectors are revealed in the down–regulation of processes
associated with photosynthesis, metabolism and biosynthesis.
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The most suppressed GO Processes were “photosynthe-
sis”, “photosynthesis, light harvesting”, “photosynthesis,
light reaction”, and “generation of precursor metabo-
lites and energy”. Interestingly, it has been shown in
prior studies that PPNs can suppress photosynthesis in
tomato plants by disrupting cytokinin and gibberellin
signaling [47,48]. Aside from photosynthetic processes,
those associated with metabolism and biosynthesis were
highly suppressed across both reactions. This suggests
that both resistant and susceptible SCN populations share
a common goal of crippling basal metabolic machin-
ery and suppressing the host machinery responsible for
photosynthesis.

Derivation of over–represented TFBSs
The 1,000 most induced and 1,000 most suppressed
genes were identified for each sample and the promoter
sequence 2 kb upstream from each genes transcrip-
tion start site was retrieved and appended to a FASTA
file (Additional file 3). To quantify abundance of cis–
regulatory TFBSs within promoter sequences, we used a
collection of 68 plant Position Weight Matrices (PWMs)
from AthaMap [49] and JASPAR [50]. PWMs are multi–
dimensional matrices frequently used to model regulatory
elements, namely TFBSs. Each cell in a PWM represents
a weight as to the likelihood a particular base at a specific
index is a regulatory element. Thus, mapping PWMs onto
promoter sequences and statistically quantifying its abun-
dance reveals insight into the magnitude of TFBS over–
representation. To efficiently execute such mapping, we
had developed a multivariate statistical software named

Marina [51]. Marina maps TFBS models such as PWMs
onto promoter sequences and infers magnitude of TFBS
over–representation using 7 knowledge–discovery met-
rics. The Iterative Proportional Fitting (IPF) algorithm
[52] normalizes output produced from each of the 7 met-
rics, enabling unanimous agreement across the metrics as
to the magnitude of TFBS over–representation. IPF scores
range from 1 to N wherebyN is the total number of over–
represented TFBSs. Scores in the range of 1 represent
over–represented TFBSs while scores in the range of N
represent highly under–represented TFBSs.
For all SCN samples, Marinamapped all 68 plant PWMs

onto promoter sequences of both induced and suppressed
genes. In total, 46 TFBSs were over–represented in atleast
one of the four samples (Figure 1). To reveal which TFBSs
exhibited variations in their IPF scores, we computed the
percent change of IPF scores across both Race 3 and
Race 14 timepoints. The difference in Race 3 and Race 14
percent change was derived and partitioned into 2 bins:
TFBSs with a Race 3 and Race 14 IPF score percent dif-
ference of at least 50% (Figure 1a), and TFBSs with a Race
3 and Race 14 IPF score percent difference under 50%
(Figure 1b). Thus, such computation allows for identifi-
cation of which TFBSs vary greatly not with respect to
6 dai or 8 dai, but with respect to Race 3 and Race 14
inoculations.
There were 29 TFBSs over–represented across all four

samples (Additional file 4). If a TFBS was not over–
represented in a specific sample, that TFBS was assigned
an score of N + 1 so as to serve as a proxy for being highly
under–represented.

Figure 1 A heatmap of Marina IPF scores. Across the four SCN samples, over–represented TFBSs were identified given promoter sequences from
the 1,000 most induced and 1,000 most suppressed genes. In total, 46 TFBSs were over–represented in one of the inoculations and 29 TFBSs
were over–represented across all inoculations. IPF scores range from 1 to N whereby 1 represents over–represented TFBSs and N represents
under–represented TFBSs. (a) Enriched TFBSs within Race 3 and Race 14 reactions with IPF scores having percent difference of at least 50%.
(b) Enriched TFBSs within Race 3 and Race 14 reactions with IPF scores having percent difference less than 50%.
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Many TFBSs are over/under–represented in both resistant
and susceptible reactions
Contrasting TFBS IPF scores across samples reveals that
30 of the 46 TFBSs either increase or decrease in IPF
score regardless of the reaction (Figure 1). For instance,
the TFBS for STF1 exhibits a relatively modest increase
in its IPF score across both reactions. Interestingly,
STF1 IPF score increases from 11th to 1st from 6 dai
to 8 dai respectively in the resistant reaction. Besides
the role STF1 plays in plant development [53], little is
known of the role this transcription factor plays in plant
defense.
IPF score for the HAHB4 TFBS greatly increased in

the resistant reaction and susceptible reaction. A prior
study found HAHB4 to contribute to jasmonic acid and
ethylene signaling crosstalk [54]. Similarly, TFBSs for
DOF2 and DOF3 exhibited relatively weak increases in
IPF scores across resistant and susceptible samples. DOF
transcripts have not been explicitly quantified as–far as
their gene expression during SCN pathogenesis, how-
ever such proteins have been detected during auxin sig-
naling [55]. In contrast to DOF2 and DOF3, the TFBS
for TEIL had a near–50% jump in IPF scores across
both reactions. Being the tobacco homolog of ethylene
insensitive (EIN3), TEIL gene products have been shown
to bind directly to the promoter sequence of PR1a,
a central contributor in plant defense dynamics [56].
Interestingly, across both resistant and susceptible reac-
tions, TEIL scores appear to be relatively equal to one
another.
The A. thaliana MYB77 homolog, AtMYB77, exhibits

a mild change in IPF score across both resistant and
susceptible reactions. Across both reactions, AtMYB77
IPF scores were generally under–represented at 6 dai
but become slightly over–represented at 8 dai. An ear-
lier study revealed interaction between MYB77 and auxin
response factor 7 (ARF7) [57], further accentuating the
role AtMYB77 could play in host–pathogen interplay
[58]. The OsCBT TFBS exhibited pronounced IPF scores
across all four treatments. In both the resistant and sus-
ceptible reaction, OsCBT was highly over–represented
only at 6 dai. It was shown that OsCBT mutants con-
ferred increased pathogen resistance upon inoculation
with Magnaporthe grisea, revealing that OsCBT sup-
presses defense response [59].

Several TFBSs are over–represented in a race–dependent
manner
The remaining 16 TFBSs were over–represented in one
reaction compared to the other. Such TFBSs can expose
novel insight into TFBSs over–representation patterns
respective to a specific reaction.
ZAP1, a WRKY1 TFBS [60], appears to be highly

over–represented during the resistant reaction but slightly

under–represented in the susceptible reaction. Being a
WRKY TFBS, it comes as no surprise that enrichment of
this TFBS in the resistant reaction captures the need to
host a significant, systematic plant defense response. Sim-
ilarly, PIF3–1 and PIF3–2 were both under–represented
during the susceptible reaction however slightly over–
represented in the resistant reaction. It has been shown
that PIF plays roles in phytochrome signaling [61]. Due
to its photomorphogenic regulatory capabilities, Since
photosynthetic processes are heavily suppressed within
resistant and susceptible reactions (Table 5), such sup-
pression explains why PIF3–1 and PIF3–2 have such
severely under–represented IPF scores. Indeed SCN
pathogenesis does not only disrupt the photosynthetic
machinery but also the plants ability to execute sound
phytochrome signaling.

Conclusions
We used RNA–Seq to sequence soybean whole–root
(Peking cv.) at both 6 and 8 dai upon inoculation with a
resistant (NH1–RHg; Race 3) and susceptible (TN8; Race
14) population. Contrasting TFBSs over–represented in
promoter sequences of DE soybean genes across 6 and
8 dai time points exposed underlying transcriptomic and
cis–regulatory dynamics within the soybean root during
pathogenesis. In–total, over 30 million reads from soy-
bean whole–root was sequenced and differential expres-
sion analysis revealed 181 transcripts to be statistically
and biologically significant during defense–response. Sev-
eral viable defense–response gene candidates joined these
ranks, including glyoxalase I, arachidonate–8 lipoxy-
genase, phytochelatin synthetase, and ribonucleoside-
diphosphate reductase.
46 TFBSs were rendered over/under–represented

across all resistant and susceptible samples. Interestingly,
30 of these TFBSs were either over or under–represented
across both reactions. Thus, our results reveal presence
of a biologically–sound regulatory “signature” that identi-
fies reaction–specific soybean regulatory patterns during
both resistant and susceptible SCN reactions.

Methods
Plant procurement and SCN inoculation
Glycine max cv. Peking seeds were surface–sterilized
by treating the seeds with 10% bleach (0.6% sodium
hypochlorite) for ten minutes, followed by several washes
with distilled water. Seeds were planted in sterile sand in
20 × 20 cm flats. Eight days later, seedlings were gen-
tly lifted out of the sand and rinsed clean. Five seedlings
for each time point were placed on moistened germina-
tion paper in 8 × 12 × 3.5 cm plastic trays. The SCN
populations NH1–RHg and TN8, were independently
harvested from stock plants [62]. Females were crushed
with a rubber stopper and eggs were washed through a
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250 micron screen and collected on a 25 micron screen.
Eggs were rinsed into a small covered tray and left to
hatch for three days. J2 stage nematodes were further
purified by passing them through a 30 micron cloth into
deionized, distilled water and gently centrifuged at 250
relative centrifugal force (RCF) for one minute to con-
centrate to 2,000 J2/ml. Roots from four plants were
inoculated with one ml of inoculum. Roots were cov-
ered with a second piece of moistened germination paper
and the trays were placed in a larger tray with 0.5 cm
water below to add humidity and wrapped in a semi-
clear plastic bag for the duration of the time points.
Three uninoculated control plants were also placed trays
and collected separately. Per plant, four plant roots, fol-
lowing 6 and 8 days after inoculation (dai), were har-
vested and immediately frozen in liquid nitrogen and
ground to a fine powder in a mortar and pestle and
stored in microfuge tubes at –80°C until RNA extrac-
tion. The fifth root was stained for visualization of
nematode infection with acid fuchsin [63]. RNA was
extracted at 6 dai and 8 dai by phenol/chloroform and
lithium chloride precipitation [64]. RNA was treated
with DNase to remove any genomic DNA remain-
ing in the samples. RNA integrity was checked by
visualizing the intact 18S and 28S ribosomal bands
on an agarose gel and concentrations were measured
on a Nanodrop spectrophotometer (Thermo Scientific;
Waltham, MA).

RNA extraction and cDNA isolation
cDNA libraries were prepared using the TruSeq RNAPrep
Kit according to the manufacturer instruction (Illumina).
Briefly, mRNAwas purified from four micrograms of total
RNA diluted in fifty microliters of nuclease–free ultra
pure water using magnetic beads. Resulting mRNA was
fragmented at 94°C for eight minutes. Seventeen micro-
liters of fragmented mRNA was used as template for
cDNA synthesis performed by a Superscript II Reverse
Transcriptase. Second–strand synthesis was immediately
performed and fifty microliters of double stranded DNA
was transferred to a new tube and submitted to end repair
followed by adenylation of 3’ ends. Once adenylation
of 3’ reached completion, adapters containing different
indexes were ligated to each library. DNA fragments hav-
ing adapter molecules on both ends were amplified and
enriched. Quantification and quality control were per-
formed by loading one microliter of cDNA libraries on
an Agilent DNA–1000 chip and running it on an Agilent
Technologies 2100 Bioanalyzer.

Deep–sequencing and transcriptome quantification
For both NH1–RHg (Race 3) and TN8 (Race 14) reac-
tions, cDNA libraries were sequenced from 8 day old

soybean whole–root independently inoculated with SCN
at 6 dai and 8 dai. Two biological replicates were
sequenced for each inoculation and timepoint. Single–
end RNA–sequencing was performed on the Illumina
GAIIx at the United States Department of Agriculture
(USDA), Beltsville, MD. An uninoculated whole–root
single–replicate control was also sequenced using the
same sequencing protocol. To remove low quality reads
across all sequencing runs, custom bash scripts filtered all
reads should its 3’ tail have a quality score of less than
22. To remove contaminent reads, sequences were sub-
tracted if they mapped atleast once to both the Ensembl
human genome (Hg19) or the JCVI Microbial Resource
[65]. Remaining sequences were mapped to the soybean
transcriptome (build 1.1) using BWA [9]. Across all SCN
inoculated samples, transcript counts underwent normal-
ization and variance estimation using the DESeq R pack-
age. To infer magnitude of differential expression, RPKM
was computed for all inoculated and uninoculated sam-
ples and log2

(
RPKMinoculated
RPKMuninoculated

)
was subsequently derived.

All transcripts with a log2 RPKM less than 1 and fewer
than 5 mapped reads were rendered not differentially
expressed.

Functional annotation & Gene Ontology (GO) enrichment
Functional annotation comprised of homology–based
analysis of all sequences in the Phytozome soybean
transcriptome. Of these 73,320 soybean transcriptome
sequences, 7,810 sequences were subtracted for being
either a scaffold or duplicate sequence. BLASTX [66]
aligned the remaining 65,510 query sequences onto all
UniProt plant proteins [67]. The top–scoring UniProt
function annotation was assigned to the query if it did
not contain ambiguous keywords, namely “Hypothetical”,
“Uncharacterized” or “Unknown”.
For all samples, soybean Phytozome accessions for

the top 750 induced and top 750 suppressed tran-
scripts were identified. Gene Ontology (GO) enrich-
ment on each accession–set was performed using the
AgriGO web–server [46]. AgriGO settings were modi-
fied to quantify GO annotations using the hypergeometric
distribution and Bonferroni p–value false–discovery rate
(FDR) correction. To measure GO Process statistical
significance in both resistant and susceptible reactions,
the −log10FDR per GO Process was summed across
both 6 and 8 dai time points. Subsequently, the top
30 most statistically significant GO Processes from the
top 750 induced and suppressed transcript sets were
identified.

Availability of supporting data
All RNA–Seq FASTQ raw data is available from NCBI
SRA. Please refer to Table 1 for such accessions.
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Additional files

Additional file 1: Differentially expressed transcripts across all
inoculations. A table of 12,377 transcripts that are DE across all four SCN
inoculations.

Additional file 2: Differentially expressed transcripts annotated to be
involved in plant defense. A set of 181 transcripts collectively annotated
by GO and PFAM annotations to contribute to plant defense.

Additional file 3: TFBSs over–represented across all inoculations. A
collection of 46 TFBSs over–represented in atleast one inoculation.

Additional file 4: Promoter sequences of induced and suppressed
transcripts. FASTA sequences representing promoter sequences of
induced and suppressed transcripts following 6 dai and 8 dai with SCN
virulent and avirulent populations.
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