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Abstract

Background: Extrahepatic cholestasis sensitizes the liver to ischemia/reperfusion (I/R) injury during surgery for perihilar
cholangiocarcinoma. It is associated with pre-existent sterile inflammation, microvascular perfusion defects, and
impaired energy status. Statins have been shown to protect against I/R injury in normal and steatotic mouse livers.
Therefore, the hepatoprotective properties of atorvastatin were evaluated in a rat model of cholestatic I/R injury.

Methods: Male Wistar rats were subjected to 70% hepatic ischemia (during 30 min) at 7 days after bile duct ligation.
Rats were randomized to atorvastatin treatment or vehicle-control in three test arms: (1) oral treatment with 5 mg/kg
during 7 days after bile duct ligation; (2) intravenous treatment with 2.5, 5, or 7.5 mg/kg at 24 h before ischemia; and
(3) intravenous treatment with 5 mg/kg at 30 min before ischemia. Hepatocellular damage was assessed by plasma

alanine aminotransferase (ALT) and histological necrosis.

Results: I/R induced severe hepatocellular injury in the cholestatic rat livers (~10-fold increase in ALT at 6 h after I/R
and ~30% necrotic areas at 24 h after I/R). Both oral and intravenous atorvastatin treatment decreased ALT levels
before ischemia. Intravenous atorvastatin treatment at 5 mg/kg at 24 h before ischemia was the only regimen that
reduced ALT levels at 6 h after reperfusion, but not at 24 h after reperfusion. None of the tested regimens were able to

reduce histological necrosis at 24 h after reperfusion.

Conclusion: Pre-treatment with atorvastatin did not protect cholestatic livers from hepatocellular damage after I/R.
Clinical studies investigating the role of statins in the protection against hepatic I/R injury should not include
cholestatic patients with perihilar cholangiocarcinoma. These patients require (pharmacological) interventions that
specifically target the cholestasis-associated hepatopathology.

Background
Liver surgery in patients with perihilar cholangiocarci-
noma is associated with a high rate of postoperative liver
failure and related mortality (between 5 to 18%) because
these tumors obstruct bile flow preoperatively [1-4]. The
resultant cholestasis afflicts patients’ systemic and liver
condition. One effect that especially sensitizes patients to
postoperative liver failure is the increased susceptibility of
cholestatic livers to ischemia/reperfusion (I/R) injury.
Hepatic I/R injury results from the temporary deprivation
of blood supply to the liver, which is used to prevent
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excessive peri-operative blood loss. Reoxygenation of the
liver after resection causes overproduction of reactive
oxygen and nitrogen species (ROS and RNS, respectively)
[5]. and subsequently induces mainly necrotic cell death
[6]. Dying and dead hepatocytes release numerous en-
dogenous molecules that act as damage-associated molecu-
lar patterns (DAMPs), which attract neutrophils that afflict
liver microvasculature and activate Kupffer cells to produce
more ROS. These processes altogether increase intrahepatic
oxidative stress, and cause (micro)vascular constriction and
inflammation [7]. Cholestasis exacerbates hepatic I/R injury
due to the pre-existent hepatopathology [8]. The accumula-
tion of hydrophobic bile acids in cell and organelle (mito-
chondrial) membranes leads to increased mitochondrial
ROS/RNS production, sterile inflammation, and cell death
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[9-11]. In addition, it is characterized by microvascular
perfusion defects [12]. Together, cholestasis leads to an
impaired energy status and overall metabolic dysfunction
that is vulnerable to I/R [8].

Stains are normally used in the prevention of cardiovascu-
lar disease because of their lipid-lowering properties. but
also have pleiotropic effects [13]. These drugs have been
shown to reduce markers of liver injury in animal models of
cholestasis [14-16]. Although these effects remain to be
confirmed in clinical studies, statins seem to reduce bile acid
production and increase cholesterol transport back to
plasma; both regulated by nuclear receptors [17, 18]. More-
over, statins have previously been reported to protect against
I/R injury in normal and steatotic mouse livers. The sup-
posed underlying mechanisms of statin protection include
antioxidant, [19], vasoprotective, [20—25] anti-inflammatory,
[20, 26] and anti-thrombotic effects [20, 21, 27, 28]. In that
respect, the dual hepatoprotective properties of statins, as
outlined in Fig. 1, may prove especially helpful against I/R
injury in the context of cholestatic hepatopathology.

The aim of this study was to determine whether pre-
operative atorvastatin (ATV) treatment could pharmaco-
logically reduce injury before and after I/R in cholestatic
livers. This was tested in a bile duct ligation rat model of
obstructive cholestasis, which is representative of patients
requiring liver surgery for perihilar cholangiocarcinoma.

Methods

Animals

Specific pathogen-free male Wistar rats (N =115, Harlan
Laboratories, Horst, the Netherlands) weighing between
250-270 g were acclimated for 1 week in a temperature-
controlled room with 12-h dark/light cycles and ad
libitum access to water and standard chow.
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Anesthesia

For surgical procedures, rats were anesthetized with 3—-5%
isoflurane (Oq:air ratio of 1:1, 2 L/min, Forene, Abbott
Laboratories, Queensborough, UK) and analgesic care was
provided by subcutaneous administration of bupre-
norphine (0.03 mg/kg, Temgesic, Schering-Plough,
Kenilworth, NJ). Maintenance anesthesia comprised 2—
2.5% isoflurane (Oq:air ratio of 1:1, 1 L/min).

Surgical procedures

Standard bile duct ligation (BDL) was used to induce
cholestasis. The liver was exteriorized after a midline
laparotomy, and the common bile duct was ligated twice
and dissected between the ligatures. Seven days after
BDL, rats underwent a re-laparotomy and the liver was
again exteriorized. A non-traumatic vascular sling was
then placed around the afferent vessels (arterial and por-
tal vessels) to the median and left lateral lobes to induce
+70% hepatic ischemia for 30 min [8].

Atorvastatin preparation

For oral administration, ATV (Pfizer, New York, NY)
was dissolved in sterile 0.9% NaCl solution (B. Braun
Melsungen, Melsungen, Germany) at a 1.0 mg/mL con-
centration. For intravenous (i.v.) administration, atorva-
statin (PZ0001, Sigma-Aldrich, St. Louis, MO) was
dissolved in dimethyl sulfoxide (DMSO) at a 10.0 mg/
mL stock concentration. Systemically dosed ATV was
administered via the tail vein.

Experimental design

Rats were randomized to ATV treatment or vehicle-
control in three test arms according to Fig. 2.
Randomization consisted of drawing folded sheets of
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Fig. 1 Pathophysiological mechanisms in hepatocytes and sinusoidal endothelial cells (SEC) as a result of ischemia/reperfusion and cholestasis in
the context of the pharmacodynamics of atorvastatin (ATV). The sites where ATV has been demonstrated to intervene are indicated and serve as
a basis for this study. Abbreviations: ROS, reactive oxygen species; DAMPs, damage-associated molecular patterns; TLR-4, Toll-like receptor-4;
NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; TXA,, thromboxane A2; ET-1, endothelin-1; NO, nitric oxide; eNOS,
endothelial nitric oxide synthase; SEC, sinusoidal endothelial cell
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Fig. 2 Experimental setup consisting of 3 test arms. The first test arm entailed oral or intravenous (i.v.) administration of atorvastatin (ATV) without
subjecting the animals to ischemia/reperfusion (I/R) to determine the effect of ATV on the pathology of cholestasis. This test arm also served to
demonstrate that ATV is targeted to the liver following oral or i.v. administration. Test arms 2 and 3 encompassed i.v. administration of ATV
followed by I/R. The gray segment delineates the period of bile duct ligation (BDL), the blue segment indicates the ischemic phase, and the red
segment designates the reperfusion time frame. The times in in every segments at which procedures were performed are indicated with black
vertical lines, protracted in gray throughout the figure. The legend at the top explains the significance of the symbols, the numbers in
parentheses refer to the group size

J

paper with written treatment assignment out of a closed
bag for each animal.

Testarm 1

In the first test arm, the effects of orally and i.v. adminis-
tered ATV were investigated in the context of cholestatic
liver injury before ischemia. ATV (or its vehicle control)
was administered per gavage once daily during 7 d after
BDL at a dose of 5.0 mg/kg body weight. For i.v. admin-
istration, the ATV 10.0-mg/mL stock concentration was
diluted with NaCl to a concentration of 1.0 mg/mL, cor-
responding to an ATV dose of 5.0 mg/kg body weight.
Blood samples were collected before ischemia but ani-
mals were not sacrificed at this stage, because some of
the animals in test arm 1 subsequently underwent I/R
and continued the experiment as part of test arm 2.

Test arm 2

In the second test arm, the effect of a single i.v. dose of
ATV administered 24 h before ischemia induction was in-
vestigated. First, a dose finding study was used to deter-
mine the most optimal dosing regimen based on ALT
levels at 6 h after reperfusion (groups 1, 2, and 4 according
to Fig. 2). For this purpose, ATV in DMSO (10.0 mg/mL)
was diluted with NaCl to a concentration of 0.5, 1.0, or
1.5 mg/mL, corresponding to administered doses ATV of

2.5, 5.0, or 7.5 mg/kg body weight. Secondly, the most op-
timal dosing regimen was tested in expanded groups, and
animals in these expanded groups were sacrificed at 6 and
24 h after reperfusion.

Test arm 3

In the third test arm, the effect of a single iv. dose of
ATV administered 30 min before ischemia induction
was investigated in terms of I/R-induced liver injury at 6
and 24 h reperfusion.

Group sizes

All groups were started with a minimum size of n=5-7
animals. In test arm 1, group sizes were limited to n="7
after results had sufficiently reached the threshold for
significance. In test arm 2, preliminary analysis with 5-7
animals in all groups was used to choose the most optimal
dosing regimen. Subsequently, groups with the most opti-
mal dosing regimen were expanded according to power
analysis, which was based on the preliminary analysis. An
expected difference of 30% in histologic necrosis at 6 and
24 h reperfusion resulted in minimum group sizes of n =
12 (standard deviation 25%, a = 0.05, B = 0.8). Group sizes
in test arm 3 were based on the same power analysis.
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Sample collection

Blood sampling was performed via the tail vein when the
animals remained in the experiment (test arm 3) or via
cardiac puncture when the animals were sacrificed by exsan-
guination. Following sacrifice, liver specimens were har-
vested for histological processing. Standard biopsies were
taken of the liver lobes that had been subjected to ischemia.
This included one biopsy of the center of the median lobe,
and one biopsy of the center of the left lateral lobe. For each
animal, the average result of these two biopsies determined
the final result that was included in statistical analysis.

Assessment of liver injury, inflammation, and fibrosis
Serum ALT and bilirubin levels were assayed in blood
samples (Fig. 2) by routine clinical chemistry using a
Cobas 8000 modular analyzer (Roche, Basel, Switzerland).
Histological sections were processed as described previ-
ously and stained with hematoxylin and eosin (H&E) [29].

The extent of necrosis was quantified by an experi-
enced hepatopathologist (JV) in liver biopsies collected
after I/R (Fig. 2). Analysis was performed in 10 random
fields of view (FOVs) per liver and expressed as a per-
centage of the total FOV surface [30].

Statistical analysis

Statistical analysis was performed in GraphPad Prism
(GraphPad Software, San Diego, CA). Results are presented
as mean + SEM. ATV and vehicle control-treated groups
were compared using an unpaired students t-test with
Welch’s correction. The Gaussian distribution of each data
set was confirmed with a Shapiro-Wilk test (n<8) or a
D’Agostino-Pearson omnibus test (7>8). A P-value of <
0.05 was considered statistically significant.

Results

The 7-days BDL resulted in severe cholestasis, as evidenced
by a mean total bilirubin of 174 + 23 pM. Histological sec-
tions acquired after I/R exhibited septal fibrosis, which had
developed before I/R due to the chronic nature of this
process. Cholestasis was also associated with elevated
plasma ALT levels (Fig. 3a), reflecting hepatocellular injury
that was consistent with previous reports [8].

Daily oral doses of 5 mg/kg ATV during the 7-days
BDL period as well as a single i.v. dose of 5 mg/kg on
day 6 during the 7-days BDL period (test arm 1) reduced
ALT levels by ~50% (140 +5 U/L for control vs. 79 + 4
U/L for ATV) and ~20% (150 +7 U/L for control vs.
125+ 4 U/L for ATV), respectively (Fig. 3a). These data
indicate that ATV (a) reached the liver following oral as
well as systemic administration and (b) conferred a he-
patoprotective effect during the progression of chole-
static liver injury.

Inasmuch as cholestatic hepatopathology is amplified
as a result of I/R, the pharmacodynamic efficacy of ATV

Page 4 of 8

was examined in a dose finding setting at 6 h reperfu-
sion following 30 min of ischemia. As shown in Fig. 3b,
i.v. administration of ATV at 5 mg/kg 24 h before the in-
duction of ischemia resulted in significantly reduced
ALT levels at 6 h reperfusion (2572 + 500 U/L for con-
trol vs. 953+ 197 U/L for ATV; P =.01). Consequently,
this dosing regimen was more closely investigated in
terms of hepatocellular damage (ALT) and histological
necrosis. The other dosing regimens at 24 h before is-
chemia induction were not able to significantly decrease
ALT levels at 6 h reperfusion (Fig. 3b).

Although ATV 5 mg/kg iv. 24 h before ischemia re-
duced ALT levels at 6 h reperfusion, the protective ef-
fects were abrogated at 24 h reperfusion, as measured in
terms of ALT levels (1036 + 288 U/L for control vs. 859
+223 U/L for ATV; P =.63; Fig. 3c) and histological ne-
crosis (31 +7% for control vs. 23 + 6% for ATV; P = .43;
Fig. 3c and e). Given that necrosis is irreversible, these
results demonstrated that ATV was unable to ultimately
protect the liver from damage when administered sys-
temically 24 h before I/R.

It is known that ATV is taken up by sinusoidal endo-
thelial cells and hepatocytes, [31] and metabolized in
and excreted by the liver [32]. Administering ATV 24 h
before I/R may therefore have resulted in subtherapeutic
intrahepatic ATV levels, accounting for the absence of
hepatoprotection. To resolve this potential pharmacoki-
netic hurdle, ATV was administered 30 min before is-
chemia induction at the optimal concentration (5 mg/
kg) in accordance with previous reports (24). Neverthe-
less, this treatment regimen neither resulted in reduced
liver damage at 24 h of reperfusion, as measured in
terms of ALT levels (1491 + 1094 U/L for control vs.
1396 £ 986 U/L for ATV; P=.91; Fig. 3d) and necrosis
(39 £ 6% for control vs. 25 + 6% for ATV; P =0.12; Fig. 3d
and e). In light of these data, subsequent experiments
were discontinued, as there was no compelling evidence
that ATV protects cholestatic liver from I/R injury.

Discussion

Atorvastatin has been shown to protect against I/R injury
in experimental models of normal and steatotic livers [20,
21, 27, 28]. Even short-term therapy with ATV (5 mg/kg)
just 1 h before ischemia in normal and steatotic mouse
livers conferred a 70-90% reduction in post-I/R necrosis
[23]. Other studies used varying dosages of statin pretreat-
ment at varying time points and found similar effects in re-
duction of hepatopathology; these regimens included ATV
pretreatment 10 mg/kg 24 h and again 1 h before ischemia
induction, [33] Simvastatin (5 mg/kg) pretreatment 1 h
before ischemia induction, [28] and Simvastatin (1 mg/kg)
even 30 min before ischemia induction [21]. Key mecha-
nisms include suppression of inflammation and micro-
vascular protection. Statins reduce activity of signaling
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proteins Toll-like receptor-4 and High mobility group box
1 (HMGBL), translating to reduced activity of downstream
inflammation mediator nuclear factor kappa B (NF-kB) as
well as cytokines tumor necrosis factor alpha (TNF-a) and
interleukin 6 (IL-6) [20, 23, 33]. Statins also upregulate
endothelial nitric oxide synthase (eNOS) production [21,
24]. eNOS stimulates the production and bioavailability of
nitric oxide (NO) in the vascular endothelium, which sub-
sequently causes vasodilatation of the hepatic microvascula-
ture, and suppresses thromboxane A2 production [25, 28].
Another study found that vasoprotective effects of ATV
were modulated through a decrease in intracellular
adhesion molecule-1 (ICAM-1) and preservation of
antithrombin-III (ATI) levels [33]. These hepatoprotective
mechanisms attributed to statins are schematically outlined
in Fig. 2 for ATV. Next to anti-inflammatory and vasopro-
tective mechanisms, statins also exert anti-oxidant effects
after I/R. One study found an increase in antioxidant
enzyme activities after statin pretreatment, including

superoxide dismutase (SOD), glutathione peroxidase (GPx)
and catalase (CAT), [28] and another study found that anti-
oxidant effects are also achieved by a reduction in nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase
activity [19]. The above-presented results of previous
studies warrant clinical trials that should test if statins can
effectively be used to protect normal and steatotic livers
against I/R injury in clinical practice.

We hypothesized that ATV would also protect chole-
static livers against I/R injury. ATV potentially inter-
venes in several of the processes that are associated with
pre-existing liver damage in cholestasis, including sterile
inflammation, [9-11] microvascular perfusion defects,
[12, 34, 35] and impaired energy status [36]. The experi-
ments demonstrated that oral ATV administered daily
(5 mg/kg) as well as a single i.v. bolus 24 h before animal
sacrifice (5 mg/kg) reduced the extent of cholestasis-
induced liver damage during 7-d BDL, indicating that
ATV reached the liver and conferred a hepatoprotective
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effect. However, systemic administration of ATV did not
protect the liver against I/R damage, regardless of the
dosage (up to 7.5 mg/kg) and time of administration
(24 h or 30 min before ischemia induction). Further
mechanistic elucidation was therefore not performed
and the study was terminated prematurely.

Patients with perihilar cholangiocarcinoma typically
present with obstructive jaundice and cholestasis upon
admission, which constitute severe risk factors in liver
surgery. Consequently, biliary drainage is often
employed to alleviate these conditions prior to surgery.
Nonetheless, some patients are selected to undergo sur-
gery without biliary drainage, [3, 4] and these patients
may benefit from statin treatment to reduce liver injury
before surgery, based on our results and those of others
[14-16, 37]. Similarly, patients with primary biliary cir-
rhosis may benefit from statin treatment. One report de-
scribed lower total bile acid levels, [38] and several
reports described a reduction in cholestasis markers in
patients with primary biliary cirrhosis [38, 39]. It should
be noted that recent studies did not reproduce these
findings, [40, 41] so the actual clinical benefit of statins
in the treatment of cholestasis remains unclear.

The exact reasons for the failure of ATV to prevent he-
patocellular damage after I/R in cholestatic livers are cur-
rently elusive, and may be explained by several
mechanisms. Microvascular perfusion defects and im-
paired energy status may have persisted after ATV treat-
ment. This could have been caused by mechanical
compression of the hepatic microcirculation due to biliary
hyperdilatation as a result of the cholestasis, impairing
intrahepatic blood flow and energy metabolism [8]. Alter-
natively or additionally, cholestasis may have caused a
pre-existent vasoconstrictive state that rendered the hep-
atic microcirculation unreceptive to ATV-mediated inhib-
ition of vasoconstrictors (endothelin-1, thromboxane A2)
and upregulation of NO, which would generally result in
improved microcirculation, oxygen delivery, and energy
metabolism. Also, the poor responsiveness to ATV treat-
ment may have been exacerbated by the prevailing state of
oxidative stress and sterile inflammation in cholestatic
livers, [8] which cannot be fully resolved by HMGB-1,
TLR4 and NF-kB inhibition with ATV [20, 23]. In light of
the negative results, we chose not to further investigate
the mechanisms that underlie the lacking therapeutic
efficacy of ATV. Instead, future research efforts should be
directed at evaluating other types of pharmaceutical
agents that target the multifarious pathogenic features of
I/R injury in cholestatic livers.

Lastly, readers should note that this study has several lim-
itations. First, the experimental model was associated with
substantial variability in outcomes, despite the broad ex-
perience with this model in our laboratory [8, 42—44]. The
group sizes had to be extended during the study following
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interim analysis to overcome the considerable standard
deviations, but were still inadequate to statistically resolve
minor beneficial effects of ATV. However, it is questionable
whether such small improvements in outcome would
justify the use of ATV as an intervention. Moreover, liver
damage following I/R was extensive, probably owing to
7 days of BDL prior to ischemia induction. Although this is
a widely used model for extrahepatic cholestasis, we cannot
preclude that ATV does not protect the liver against I/R in-
jury in cases of milder cholestasis. Lastly, BDL was irrevers-
ible in the model used in this study. Reconstruction of bile
flow in the reperfusion phase would have better resembled
the clinical situation of patients with perihilar cholangiocar-
cinoma, who normally undergo a bile duct reconstruction
after partial liver resection (i.e. hepaticojejunostomy). None-
theless, such an additional procedure would have prolonged
laparotomy time, and as a consequence would have added
even more variability to the model.

Conclusions

Pre-treatment with Atorvastatin did not protect chole-
static rat livers from hepatocellular damage after I/R.
Clinical trials are currently warranted to investigate if
statins can ameliorate I/R injury in livers with healthy or
steatotic parenchyma, but these studies should not in-
clude patients with cholestatic livers.
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