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Abstract

Background: Protein solvent accessibility prediction is a pivotal intermediate step towards modeling protein tertiary
structures directly from one-dimensional sequences. It also plays an important part in identifying protein folds and
domains. Although some methods have been presented to the protein solvent accessibility prediction in recent years,
the performance is far from satisfactory. In this work, we propose PredRSA, a computational method that can
accurately predict relative solvent accessible surface area (RSA) of residues by exploring various local and global
sequence features which have been observed to be associated with solvent accessibility. Based on these features, a
novel and efficient approach, Gradient Boosted Regression Trees (GBRT), is first adopted to predict RSA.

Results: Experimental results obtained from 5-fold cross-validation based on the Manesh-215 dataset show that the
mean absolute error (MAE) and the Pearson correlation coefficient (PCC) of PredRSA are 9.0 % and 0.75, respectively,
which are better than that of the existing methods. Moreover, we evaluate the performance of PredRSA using an
independent test set of 68 proteins. Compared with the state-of-the-art approaches (SPINE-X and ASAquick), PredRSA
achieves a significant improvement on the prediction quality.

Conclusions: Our experimental results show that the Gradient Boosted Regression Trees algorithm and the novel
feature combination are quite effective in relative solvent accessibility prediction. The proposed PredRSA method
could be useful in assisting the prediction of protein structures by applying the predicted RSA as useful restraints.

Keywords: Solvent accessibility, Sequence features, Gradient boosted regression trees

Background
Since the concept of solvent accessibility was first intro-
duced by Lee and Richards [1], defined as the surface
area of a protein that is accessible to a spherical solvent
while probing the surface of that molecule, it has been
considered as a key factor for understanding protein struc-
ture and function [2]. Predicting the three-dimensional
(3D) structures of proteins from their one-dimensional
sequences is a challenging issue because of the increasing
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gap between the enormous number of protein sequences
and the number of known structures. Studies of sol-
vent accessibility in proteins have provided many useful
insights into the 3D structures of proteins [3]. Further-
more, knowledge of solvent accessibility has proved useful
for structural domains identification [4], fold recogni-
tion [5], binding region identification [6–8] and protein
intrinsic disorder [9]. The solvent accessibility is partic-
ularly important because it is associated with the spatial
arrangement and packing of amino acids during the pro-
cess of protein folding. It also plays an important role in
predicting the active sites of protein-protein or protein-
ligand binding [10].
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In many earlier studies, the solvent accessibility predic-
tion was taken as a classification problem with varying
thresholds, two-state (exposed or buried) or three-state
(exposed, intermediate or buried) [11–15]. However, there
is no standard definition for the thresholds of solvent
accessibility states. For instance, a residue may be pre-
dicted to be exposed state based on a relative solvent
accessibility threshold of 10 %, but the same residue may
be predicted to be buried state based on a threshold of
20 %. In view of this, it is necessary to predict the real val-
ues of solvent accessibility. Some representative machine
learning techniques have been proposed to predict the
real values of solvent accessibility, including multiple lin-
ear regression [16], support vector regression [17–19],
neural network [20, 21], energy optimization [22] and
nearest neighbor method [23].
For the real-valued solvent accessibility prediction,

Ahmad et al. [20] proposed a neural network method with
only single sequence information as the input features.
The result showed that this method achieved a MAE
of 18.0–19.5 % on different data sets. Adamczak et al.
[21] employed evolutionary information in the form of
position-specific scoring matrix (PSSM) profile to train a
neural network-based regression for the prediction. Com-
pared with the single sequence based neural network [20],
the prediction performance was improved and the MAE
decreased by about 5 % on the PFAM database [24].
Subsequently, Lee et al. [16] applied PSSM profile by con-
structing a correlation matrix different window positions
to train a multiple linear regression method. The result
showed a performance of 16.6 % MAE and 0.63 PCC
on the Barton-502 dataset. Garg et al. [25] took multi-
ple sequence alignment and secondary structure as input
features to predict RSA based on a feed-forward neural
network. The result indicated that a lower MAE achieved
on CASP6 was 15.9 % and a higher PCC was 0.68.
Although these methods for surface accessibility predic-

tion were developed, several issues still exist and make
surface accessibility prediction a very challenging task.
Mainly, there are three reasons: (1) specific biological
properties for precisely predicting surface accessibility are
not fully exploited, and no single parameter can definitely
estimate the accessible surface area, various combina-
tions of different feature types, including PSSM profiles,
secondary structure features, native disorder features as
well as other global sequence features [26], need to be
investigated comprehensively; (2) the performance of the
existing methods is still unsatisfactory, especially in terms
of independent testing and (3) high-performance ensem-
ble learning algorithms such as boosted regression trees
haven’t been intensively used in this area.
In this article, we propose a new and efficient approach,

PredRSA (Prediction of Relative Solvent Accessible sur-
face area), that integrates gradient boosted regression

trees (GBRT) algorithm with multiple sequence-based
features (position-specific scoring matrix, secondary
structure, conservation score, native disorder) and a
global feature (side-chain environment) to predict RSA.
We have benchmarked PredRSA using the Manesh train-
ing dataset and an independent dataset. Results show
that PredRSA significantly outperforms the state-of-the-
art methods and indicate that the GBRT algorithm and the
novel feature combination are important determinants in
the prediction of RSA.

Methods
The GBRT algorithm
Our approach utilizes an ensemble regression algorithm
for predicting RSA values of amino acid residues in a pro-
tein sequence. Generally, a target residue in sequence can
be described as an n-dimension vector. Let us denote an
amino acid residue by x = (x1, x2, · · · , xn) where xi ∈ R
and the corresponding real-valued RSA by y. The goal of
predicting RSA real value of the amino acid residue in
sequence is to find a function F∗(x) that maps x to y,
such that over the joint distribution of all (y, x)-values, the
expected value of some specified loss function �(y, F(x))
is minimized as follows:

F∗(x) = arg min
F(x)

Ey,x�(y, F(x))

= arg min
F(x)

Ex[Ey(�(y, F(x))|x] (1)

Let
{
yi, xi

}N
1 be a set of training data, N is the number

of all amino acid residues in the training set. The GBRT
algorithm iteratively constructs M different weak learners
h(x,�1), · · · , h(x,�M)which consist of regression trees of
fixed size from training set and constructs the following
additive function F(x):

F(x) = β0 +
M∑

m=1
h(x,�m) (2)

where βm and �m are a weight and vector of parameters
for the mth weak regression tree h(x,�m), respectively,
and β0 is an initial value. Both the weight βm and the
parameters �m are iteratively determined from m = 1
to m = M so that a loss function �(y, F(x)) is mini-
mized. That is, βm and �m for themth regression tree are
determined as follows:

(βm,�m) = arg min
β ,�

N∑
i=1

�(yi, Fm−1(xi) + βh(xi,�)) (3)

where F0(x) is an initial value and given by F0(x) = β0 =
arg minβ

∑N
i=1 �(yi,β), Fm−1(x) is the (m−1)th additive

function combined from the first to the (m − 1)th weak
regression tree.
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However, in general, it is not straightforward to solve
Eq. (3). Therefore, GBRT separately and approximately
estimates (βm,�m) with a simple two-step fashion [27].
For the estimation of the parameters �m, we determine
them so that the function defined by the regression tree
approximates a gradient with respect to the current func-
tion Fm−1(x) in the sense of least-square error as follows:

�m = arg min
�

N∑
i=1

(ỹim − h(xi,�))2 (4)

where ỹim is the gradient and is given by

ỹim = −
[

∂�(yi, F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

(5)

When the mth regression tree using the �m has Lm leaf
nodes, the regression tree is given by

h
(
x, {Rlm}Lml=1

)
=

Lm∑
l=1

ȳlml(x ∈ Rlm) (6)

where Rlm is a disjoint region that the lth leaf node of the
mth regression tree defines. l(.) is a Boolean function that
outputs 1 in case the argument of the function is true. ȳlm
is a constant for the Rlmth region, defined as the mean of
training data that belongs to the lth leaf node of the mth
regression tree. The weight βm can be straightforwardly
chosen using line search:

βm = arg min
β

N∑
i=1

�

(
yi, Fm−1 (xi)−β

∂�
(
yi,Fm−1(xi)

)
∂Fm−1(xi)

)
(7)

Then, a new additive function Fm(x) is updated as follows:

Fm(x) = Fm−1(x) + ν

Lm∑
l=1

βmȳlml(x ∈ Rlm) (8)

where 0 < ν < 1 is a shrinkage parameter, also called
the learning rate to scale the step length the the gradi-
ent descent procedure. In this work, we take Huber loss
function [28] as the loss function given by

�(y, F) =
{

1
2 (y − F)2 if |y − F| � δ

δ(|y − F| − δ/2) if |y − F| > δ
(9)

Hence, in Eq. (5), ỹim becomes:

ỹim =
{
yi − Fm−1(xi) if |yi − Fm−1(xi)| � δ

δ.sign(yi − Fm−1(xi)) if |yi − Fm−1(xi)| > δ
(10)

The value of the transition point δ depends on the itera-
tion numberm.
Finally, the resulting RSA value y corresponding to the

amino acid residue x is given by: y = FM(x).

Sequence encoding schemes
Selecting appropriate features is a crucial step because
it directly determines the prediction performance. In

this article, we explore various sequenced-based features
which have been shown to be related to the solvent acces-
sibility or ever applied in the similar issues. These features
include PSSM profiles [29–31], PSIPRED-predicted sec-
ondary structure [32], DISOPRED-predicted native disor-
der [33], conservation score and side-chain environment
compositions [34]. In this section, a more detail descrip-
tion about how to extract and encode these different
sequence-based features as follows.

PSI-BLAST-based profiles
Position-specific scoring matrix (PSSM) of a residue
which is achieved by the PSI-BLAST program con-
tains important evolutionary information that deter-
mines whether this residue is conserved in its family of
related proteins. Each element in the PSSM represents
the probability of each residue position in the multi-
ple sequence alignment. Plenty of previous studies have
shown that multiple sequence alignments in the form of
PSSM can substantially improve overall prediction per-
formance [35–38]. In this article, the PSSM profile for
each protein sequence is generated with default param-
eters (3 iterations and 0.001 of E-value cutoff ) against
the non-redundant (nr) dataset obtained from the NCBI.
We encode each residue using a local sliding window
approach based on the PSSM profiles. The PSSM pro-
file generated by PSI-BLAST consists of the likelihood
of a particular residue substitution at a specific posi-
tion. These likelihood values are normalized to [0,1] by
standard logistic function:

x′ = 1
1 + exp (−x)

(11)

where x is the score derived from the PSSM profile and
x′ is the standardized value of x. For a given residue, its
local sequence fragment is extracted and encoded as a
20 × (2l + 1)-dimensional vector by using a sliding win-
dow scheme where l denotes the half window size and
L = 2l + 1 is the whole window length. Furthermore,
the predictive performance of a variety of different local
window sizes L (from 3–17) has been evaluated to select
the optimal local window size L for the RSA prediction.
Finally, in this encoding scheme, a residue is encoded by a
20 × L = 20 × (2l + 1)-dimensional vector.
In addition, we try to introduce residue conservation

score for the solvent accessibility prediction. The value of
sequence conservation for residue is a measure of how
often a given residue is seen at an equivalent position in
an equivalent protein across different species. Generally,
residue conservation score is proportional to its buried
degree. The conservation score is obtained by PSI-BLAST
search as well [39, 40].
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PSIPRED-predicted secondary structure information
In this work, we use the PSIPRED program to predict
the secondary structure information. PSIPRED provides
highly accurate prediction for protein secondary struc-
tures by applying a feed-forward neural network. The
outputs of PSIPRED are encoded by the probability pro-
files of three secondary structures (C for coil, H for helix
and E for strand). Some previous works have shown that
incorporation of PSIPRED-predicted secondary structure
information can significantly improve the prediction
performance [25, 41].
Analogously, for a given residue, its three-state sec-

ondary structure profiles are extracted and encoded using
a sliding window of L = 2l + 1 consecutive residues.
Therefore, in this encoding scheme, a residue is composed
of a 3 × L = 3 × (2l + 1)-dimensional vector.

DISOPRED-predicted native disorder information
In the past decade, protein disorder or unstructured
regions have received considerable attention in that they
are commonly responsible for important protein func-
tion. As such, there has been an increasing interest in
studying such regions in proteins. Unstructured regions
are found to be associated with molecular assembly,
protein modification and molecular recognition [42–44].
Research shows unstructured regions have a large solvent
accessible area, which explains why polar and charged
residues which favorably interact with water are prevalent
in these regions [45]. The conclusion is that disordered
regions are strongly correlated with local solvent acces-
sibility areas. Local solvent accessibility values are often
used to find the disordered regions as well [46, 47].
In order to further improve the performance, in this

study, we use DISOPRED program to output the pre-
dicted possibility of each residue being natively disordered
or ordered. Similarly, a residue is encoded by a 2 ×
L = 2 × (2l + 1)-dimensional vector in this encoding
scheme.

Side-chain environment
The concept of side-chain environment was first pur-
posed by Eisenberg et al. [34] and used to identify pro-
tein sequences that fold into a known three-dimensional
structure. Then Li et al. [39] utilized it for prediction of
protein-protein binding site.
The side-chain environment of a residue is typically

defined as buried, partially buried, or exposed based on its
solvent accessible surface area. The buried and partially
buried residue environments can be further subdivided
according to the fraction of side-chain area covered by
polar atoms. Based on this, we divide the side-chain envi-
ronment of a residue into six classes (see Fig. 1). The
detailed definition of the side-chain environment were
described in the work of Eisenberg et al. [34].

Fig. 1 The definition of the six side-chain environment categories.
This figure shows the classification method of side-chain
environment. RSA represents the relative accessible surface areas and
F represents the fraction of the whole side-chain area covered by
polar atoms. If RSA < 0.09, the residue will be placed into class
B(buried). If 0.09 � RSA < 0.36, the residue will be placed into class
P(partial buried). If RSA � 0.36, the residue will be placed into class
E(exposed). Within class B, if F < 0.45, the residue will be placed into
B1, if 0.45 � F < 0.58, the residue will be placed into B2, and if
F � 0.58, the residue will be divided into class B3. In class P, if
F < 0.67, the reside will be divided into class P1, and if F � 0.67, the
reside will placed into class P2

Framework of PredRSA
In this subsection, we describe the PredRSA framework
that uses an accurate and effective ensemble computa-
tional approach for real values of relative solvent acces-
sibility prediction from protein primary sequences. We
are interested in investigating the influence of various
sequence-based features and their combinations on the
prediction performance of solvent accessibility. In order
to fully exploit the sequence-derived features for RSA pre-
diction, we propose a novel PredRSA approach which
incorporates five different types of sequence-derived fea-
tures as inputs. They are four local features (position-
specific scoring matrix, secondary structure, conservation
score, native disorder) and a global feature (side-chain
environment). Figure 2 illustrates the flowchart of our
proposed approach.
To determine the optimal local sliding window size L

and the iterative tree number M, we calculate the predic-
tion performance for L in the range of 3–17 with a step
of 2 and M in the range of 100–1500 with a step of 50
using a grid search method. With L = 7 andM = 800, the
PredRSA approach achieves the best performance for the
RSA prediction.

Results and discussion
Datasets
Two non-homologous datasets of proteins chains with
pair-wise sequence similarity less than 25 % have been
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Fig. 2 The framework of PredRSA for protein relative solvent accessibility prediction. Five different types of sequence-derived features are generated
and used as input to build the GBRT model. These features consist of PSSM in the form of PSI-BLAST profiles, predicted secondary structure
information by PSIPRED, predicted native disorder information by DISOPRED, conservation score and side-chain environment

used in order to objectively compare our approach
with other available methods developed previously. One
dataset is consisted of 215 proteins, which was also used
earlier by Manesh et al. [11] for solvent-accessible surface
area of residues prediction. The other dataset is con-
sisted of 502 proteins, obtained from the Cuff and Barton
[48] dataset of 513 proteins , selected by removing those
sequences, which have less than 30 residues. These two
datasets have been referred to as Manesh-215 and CB-
502, respectively. However, since the Manesh-215 dataset
was widely used by researchers to benchmark prediction
methods [18, 20, 25, 49], taking into account compara-
tive purposes, we use Manesh-215 as the main data set for
evaluation and analysis.
To further evaluate the performance of existing meth-

ods and the method developed in the present study, we
also generate an independent dataset of CASP10 pro-
teins. Originally, it contains 85 proteins [50], and we
have removed 17 structures (containing chains) by using
PISCES culling sever [51] with 25 % sequence similarity

cutoff including X-ray (less than 3.0 Å resolution and 0.3
of R-factor) and NMR structures which containmore than
50 residues. Finally, the remaining 68 proteins are used for
independent test.

Calculation of RSA
In this work, we take relative solvent accessibility, also
called relative solvent accessible surface area (RSA) as the
prediction of solvent accessibility. The RSA of a residue in
a protein chain is a normalized value from 0–1. It is calcu-
lated as the ratio by dividing the solvent accessible surface
area (ASA) by the maximum solvent accessibility accord-
ing to Manesh’s work [11] which uses Gly-X-Gly extended
tripeptides. The values of ASA are calculated using DSSP
[52] for all considered protein structures.

Evaluation measures
To measure the performance of real-valued RSA pre-
dictions, three widely used measures for real value RSA
prediction are adopted in this study.
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The first measure, mean absolute error (MAE), is
defined as the average difference between the predicted
and experimental RSA values of all residues:

MAE =
∑ ∣∣RSApredicted − RSAexperimental

∣∣
N

(12)

The second measure is the root mean square error
(RMSE), which is defined as follows:

RMSE =
√√√√ 1

N

i=1∑
N

(
RSApredicted − RSAexperimental

)2
(13)

The third measure, Pearson correlation coefficient
(PCC), the ratio of the covariance between the predicted
and experimental RSA values which is given by:

PCC =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

∑N
i=1(yi − ȳ)2

(14)

where N is the total number of residues in a protein
sequence to predict; xi and yi are the experimental and
predicted RSA values of the i-th residue, respectively; x̄
and ȳ are their corresponding means. PCC = 1 indi-
cates that the two sets of values are fully correlated, while
PCC = 0 indicates that they are completely uncorrelated.
Two-state (buried or exposed) predictions are evalu-

ated according to various thresholds of RSA. Prediction
accuracy which is defined by the percentage of correctly
predicted residues divided by the total number of residues
and Matthews correlation coefficient (MCC) are given as
follows:

ACC = Nb + Ne
N

(15)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(16)

where N is the total number of residues in a chain, Nb
and Ne represent the number of residues correctly pre-
dicted as buried and exposed, respectively.TP,TN , FP and
FN are the numbers of the true positives, true negatives,
false positives and false negatives, respectively.

Effect of different sequence encoding schemes on the
prediction performance
We analyze the importance or contribution for each indi-
vidual feature, which is useful to identify those features
that have the most significant influence on overall pre-
diction performance. The performance of each individual
predictive is shown in Fig. 3. The feature of side-chain
environment is first introduced to predict RSA and it is
strongly related to solvent-accessible surface areas.
Table 1 compares the prediction performance of five

different combinations of sequence-based features on
Manesh-215 with 5-fold cross-validation. As shown in
Table 1, the prediction performance of combining all
five types of features is the best. It suggests that com-
prehensive sequence encoding schemes can improve the
predictive performance. More importantly, incorporating
side-chain environment into the model can significantly
increase the prediction performance.

Performance comparison with other regression
approaches
In this section, we compare the performance of PredRSA
with that of other five existing real value RSA predictors,

Fig. 3 The importance of the five relevant features used in PredRSA. PSSM, SS, DISO, SCE and CS stand for position specific scoring matrix, protein
secondary structure, protein native disorder, side-chain environment and conservation score, respectively
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Table 1 Prediction of real-valued RSA using the GBRT algorithm
based on five different sequence encoding schemes that
incorporate various combinations of sequence features

Feature RMSE(%) MAE(%) PCC

PSSM 13.87 10.26 0.67
PSSM+DISO 13.38 9.93 0.69
PSSM+DISO+SS 13.04 9.64 0.71
PSSM+DISO+SS+SCE 12.23 8.99 0.74
PSSM+DISO+SS+SCE+CS 12.07 8.86 0.75

including a quadratic programming and buriability energy
function for solvent accessibility prediction (QBES) [22],
a neural network-based method using multiple sequence
alignment and secondary structure (SARpred) [25], an
improved two-layer neural network (Real-SPINE) [53], a
support vector regression using enhanced PSSM features
(SVR) [54] and an ensemble of artificial neural networks
method (NetSurfP) [55]. Table 2 summarizes the results
of these methods. We observe that our method achieves
a significantly better performance over the compared pre-
dictors. Particularly, the PCC value of PredRSA is approx-
imately 5 % higher than that of the previous predictors
on Manesh-215. It is worth to point out that experimental
maximum solvent accessibility scores are varied based on
different references [11, 56, 57]. A higher maximum sol-
vent accessibility score will lead to a lower RSA value, and
thus a relatively lower MAE is obtained according to the
definition of MAE. One reason for the differences of MAE
between PredRSA and the other methods is that these
methods may use different maximum solvent accessibility
scores. On the other hand, the prediction precision of Pre-
dRSA is higher than that of the other methods and yields
a lower MAE.

Performance comparison for two-state prediction
In the past, a plenty of approaches have been proposed
for predicting the states (exposed or buried) of residues.
Here we examine the performance of our method in terms
of two-state prediction. We assign the label of a residue
based on its predicted RSA value and a chosen threshold.
Table 3 shows the performance of the two-state classifica-
tion prediction.

Table 2 Performances comparison in predicting real values:
PredRSA vs. other existing methods

Manesh-215 CB-502

Method MAE(%) PCC MAE(%) PCC

QBES - 0.52 - 0.49
SARpred 14.9 0.68 15.9 0.66
SVR 14.2 0.69 14.8 0.68
Real-SPINE 13.8 0.70 14.5 0.68
NetSurfP 13.6 0.70 14.3 0.71
PredRSA 9.0 0.75 9.4 0.73

Table 3 Prediction performance of two-state classification based
on different thresholds

Manesh-215 CB-502 CASP10

Threshold(%) ACC(%) MCC ACC(%) MCC ACC(%) MCC

5 80.1 0.54 77.9 0.50 78.5 0.48

10 81.7 0.63 79.0 0.58 79.1 0.57

20 81.0 0.61 80.5 0.60 78.3 0.56

25 81.2 0.58 81.0 0.57 79.7 0.56

30 82.4 0.54 82.1 0.52 80.5 0.51

40 87.1 0.42 86.8 0.39 85.0 0.40

50 93.2 0.25 93.0 0.23 91.2 0.30

We also compare the classification accuracy of PredRSA
with that of other approaches by different thresholds.
The threshold is used to determine the state (exposed
or buried) of a predicted real value. For example, a 5 %
threshold means a residue is defined as buried if its
RSA value is less than 5 %. The methods for compar-
ison include SARpred [25], pace regression algorithm
(PR) [58], two-stage SVR [19] and SVR [54]. The predic-
tion accuracy is showed in Table 4. Our method yields
more than 80 % classification accuracy at any thresholds
and obtains almost the highest accuracy across all the
thresholds.

Independent test on the CASP10 dataset
An independent test (CASP10) is constructed to fur-
ther validate the usability of our PredRSA method. We
train the classifiers based on the Manesh-215 dataset and
test against the CASP10 dataset which contains 68 pro-
teins. Other state-of-the-art methods including SPINE-X
[59] and ASAquick [60] are also evaluated. SPINE-X uses
a multistep neural-network algorithm by coupling sec-
ondary structure prediction with prediction of solvent
accessibility and backbone torsion angles in an iterative
manner, while ASAquick utlizes solely sequential widow
information and global features with a general neural
network method. The Pearson correlation coefficient of
PredRSA is 0.71, which outperform the results of SPINE-X
and ASAquick by a rate of 2 % (0.69) and 4 % (0.67).

Table 4 Performance comparison of two-state classification:
PredRSA vs. other existing predictors

Accuracy for two-states prediction(%)

Method 5 % 10 % 20 % 25 % 30 % 40 % 50 %

SARpred 74.9 77.2 77.7 - 77.8 78.1 80.5

PR 76.8 74.8 75.3 76.7 77.7 79.8 86.3

SVR 80.9 80.1 78.7 - - - 80.8

Two-stageSVR 81.1 78.7 77.6 77.3 - - 79.5

PredRSA 80.0 81.6 80.9 81.1 82.2 87.1 93.2
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Fig. 4 Predicted and experimental values (%) of RSA for each residue of CASP10 T0675

Case study
For a better understanding of the power of our pro-
posed PredRSA approach and illustrating the significance
of PCC, RMSE and MAE measures used in this work, an
example of the real-valued RSA for T0675 (Insulinoma-
associated protein) from CASP10 is shown in Fig. 4. For
this protein, our method gives a MAE of 5.31 %, a RMSE
of 7.91 % and a PCC of 0.92. From Fig. 4, we can see that
the majority of its predicted RSA values are in good agree-
ment with the corresponding experimental RSA values
calculated by DSSP, except for several separate positions.

In Fig. 5, the continuous real-value prediction of RSA
and the actual continuous values are shown. Significant
correlation between the true values and the predicted
values is obtained.

Residue-specific variation in prediction error
In order to assess the prediction performance of various
types of residues, we further calculate the average RSA
values on the Manesh-215 dataset for all 20 amino acids
(Fig. 6) from the PredRSA predictor. As can be seen from
Fig. 6, an overwhelming majority of types of amino acids

Fig. 5 Correlation between experimental RSA values and predicted RSA values of CASP10 T0675. The Pearson correlation coefficient score is 0.92
and the most buried residues are well predicted with the RSA values near zero
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Fig. 6 Comparison between true mean values and predicted mean values for 20 amino acids on the Manesh-215 dataset

are predicted with <1 % mean error. All types of amino
acids are predicted with <2 % mean error in our method.
In particularly, we find that the true mean RSA values are
in highly accord with the predicted mean RSA values for
these amino acids, such as A (Ala), K (Lys), N (Asn), T
(Thr).
Furthermore, we calculate the prediction errors of

20 amino acids on the Manesh-215 dataset. Figure 7
shows the mean absolute error (MAE) and the standard
root mean square error (RMSE) of 20 amino acids. As
expected, G (Gly) shows the highest MAE and RMSE due
to its flexibility, and other polar residues show similar

behavior. Hydrophobic amino acids including C (Cys), F
(Phe), M (Met) andW (Trp) are better predicted than less
hydrophobic amino acids. These results are also in good
agreement with our PredRSA method.

Conclusions
Knowledge of residue solvent accessibility gives useful
insights into protein structure and function prediction. In
this work, we have presented PredRSA to predict real-
valued relative solvent accessibility as well as classification
state (buried or exposed) of a target residue. The method
is based on a gradient boosted regression trees (GBRT)

Fig. 7Mean predicted errors of 20 amino acids on the Manesh-215 dataset. The green line represents standard root mean square error, the red line
represents mean absolute error and the blue line represents the corresponding data distribution of 20 amino acids
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algorithm combined with a novel set of features. The
5-fold cross-validated correlation coefficient between pre-
dicted and experimental RSA (0.75) is significantly better
than existing methods on the Manesh-215 dataset. We
also performed additional independent benchmark tests
of PredRSA on the CASP10 set containing 68 proteins
where we find that the proposed method outperforms
existing methods. Furthermore, for prediction of discrete
state, our method is able to achieve an accuracy of 79.7 %
with an MCC value of 0.56 using two states classifications
at a threshold of 25 %, which defines an approximately
balanced division into the two classes.
Experimental results showGBRT is an efficient machine

learning approach for continuous values of the solvent
accessibility of a target residue. Compared with other tra-
ditional techniques, GBRT has several obvious advantages
such as high prediction accuracy and stronger generaliza-
tion capability.
On the other hand, PredRSA utilizes a variety of mul-

tiple sequence-derived features, including the position-
specific scoring matrices and conservation score in the
form of PSI-BLAST profiles, predicted secondary struc-
ture, predicted natively disordered region and side-chain
environment. We have comprehensively assessed the
effects of different sequence encoding schemes on the
prediction performance of RSA, and the results show
the prediction performance of RSA outperforms previous
methods. Our work provides a complementary and useful
approach towards the more accurate prediction of protein
solvent accessibility.
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