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Abstract

vertebrate chromosome evolution.

Background: The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian
sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene
and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has
been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X
chromosome orthologs in incomplete avian genome assemblies.

Results: This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination
of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome
organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to

X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region
precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies
between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in
therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region,
currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of
synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein
coding genes and the role of tandem arrays in formation of novel genes.

Conclusions: Chromosomal regions orthologous to Therian X chromosomes have been located in the
genome of the frog X tropicalis. These X chromosome ancestral components experienced a series of fusion
and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching
tetrapod X tropicalis’ simple diploid genome and robust synteny to amniotes greatly enhances studies of
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Background

Due to suppression of X-Y recombination, the eutherian
X chromosome has not undergone major reorganization
for over 100 million years and retains an ancestral state
[1-3]. Our ability to identify the chromosomal compo-
nents that gave rise to the X chromosome prior to the
mammalian radiation has been limited both by the
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incomplete state of avian genome assemblies, and by the
ancestral teleost whole-genome duplication and subse-
quent chromosome reshuffling that occurred during the
long (>400MY) period since divergence of amniote and
fish lineages [4].

Within Theria, the human X chromosome long arm
and a proximal portion of the short arm correspond to
genes on the marsupial X chromosome. This domain,
the X-conserved region (XCR), is shared by sex chromo-
somes of all live-bearing mammals. In contrast, the
remainder of the human X short arm, the X-added region
(XAR), is autosomal in marsupials [5], and translocated
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to eutherian sex chromosomes between the divergence of
marsupials and placental mammals ~148 million years
ago and the eutherian radiation ~100 million years ago
[6]. The most basal extant mammal, the egg-laying mono-
treme platypus, has five pairs of X and Y chromosomes,
but these show no homology to the human X. Rather,
platypus autosome 6 shares synteny with the entire ther-
ian XCR [7,8] including the SOX3 gene from which the
testis-determining gene SRY evolved, consistent with this
part of the genome being the progenitor of X and Y [9].
The XAR maps to platypus autosomes 15q and 18p.

Broader comparisons within amniotes show that the
human XAR is co-linear with a region on chicken
chromosome 1, with much of XCR syntenic to the short
arm of chicken chromosome 4 [10]. Controversially,
another analysis detected synteny between two XCR
regions and chicken chromosome 12 plus several micro-
chromosomes, suggesting a third building block in gen-
esis of the human X chromosome [11]. However,
subsequent studies argue that putative X orthologs on
chicken chromosome 12 and microchromosomes are
actually paralogs, and true orthologs of many genes,
especially at the border between XCR and XAR, are
missing from the current chicken genome assembly [12].

Since the chicken genome assembly remains incom-
plete, and the duplicated genomes of teleosts have
experienced frequent linkage disruptions [13] fragment-
ing their X chromosome orthology, a different outgroup
is required to elucidate tetrapod chromosomal evolution.
Recently, the amphibian Xenopus tropicalis has been
the subject of a genome sequence assembly [14] and a
meiotic linkage map [15]. The genome of X. tropicalis,
unlike those of teleost fish and other Xenopus frogs, dis-
plays a canonical diploid vertebrate organization, pre-
serving a high degree of synteny to amniote genomes
[14]. The present study uses the X. tropicalis genome as-
sembly and linkage map in combination with cytogenetic
localization to clarify the deep evolutionary origin of the
mammalian X chromosome.

Results and discussion

Homologies between human X and X. tropicalis
chromosomes

We identified putative orthologs of human X chromo-
some genes in the X. tropicalis genome assembly, and
obtained the chromosomal locations of 454 of these in
two ways. Many X ortholog-containing sequence scaf-
folds could be directly assigned to linkage groups/chro-
mosomes using the meiotic map. Cytogenetic locations
of a subset of these genes, as well as X orthologs from
scaffolds not represented on the meiotic map, were also
determined by fluorescence in situ hybridization (FISH).
In total, 442 (97%) of these X orthologs were found on
chromosomes 2 and 8 (Additional file 1); the remaining
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12 orthologs are scattered throughout other X. tropicalis
chromosomes. Intriguingly, many of the scaffolds that
had not been localized by genetic mapping were placed
by FISH on the short arm of chromosome 2, which is
known to be missing from the published meiotic linkage
map (Additional file 2) [15]. The known positions of
scaffolds containing human X orthologs are displayed
in Figure 1.

On X. tropicalis chromosomes 2 and 8, scaffolds con-
taining large blocks of human X orthologs are inter-
rupted by gene clusters corresponding to other human
chromosomes (Additional file 1). Chromosome 2 con-
tains nearly all the XAR genes (134), with 306 XCR
orthologs found on chromosome 8 (Figure 2, Additional
file 1). These results confirm the remarkable evolution-
ary conservation of chromosomal content noted in the
genome assembly analysis [14], despite some bias due to
easier identification of frog orthologs in synteny blocks
where neighbouring gene identities are also conserved.
The exceptions to the XCR and XAR conservation are
two XCR genes found on chromosome 2 (scaffold 422).
This is likely to result from a translocation in Amphibia,
since chicken and opossum orthologs of these two genes
reside as expected in chromosome 4 and X, respectively.
The XAR-XCR boundary is located between the RGN
and PCTKI genes, an interval containing the NDUFB11-
RBM10 border previously suggested by human-marsupial
comparisons [16]. The X. tropicalis sex determining locus
has been mapped [17] to the neighbourhood of scaffolds
494, 605 and 735 on chromosome 7, and does not appear
to be linked to amphibian X-borne genes.

Is there a third evolutionary stratum in human X?
Comparisons of human X with the chicken genome have
reached differing conclusions. The third evolutionary
stratum on the human X identified by Kohn et al. [11]
consists of the gene-rich regions Xp11 and Xq28, which
were apparently conserved with chicken chromosome 12
and microchromosomes. However, these putative syntenic
regions in the chicken genome have since been shown
to consist of avian paralogs, with many true orthologs
present in EST collections or unanchored contigs but
missing from the chicken genome assembly [12], challen-
ging the hypothesis of the third evolutionary stratum.

Our data strongly support a common ancient origin
for the entire XCR. We identified 33 orthologs of Xq28
between BGN and IKBKG in the frog genome, of which
32 localize to chromosome 8 together with the remain-
der of the XCR (Additional file 1). Similarly, 21/22 Xp11
orthologs between GPKOW and FAAH2 localized to
frog chromosome 8. Between RGN and GPKOW in
Xpll, synteny comparisons among amniotes have been
problematic. While this region is well represented on
the opossum X chromosome, data from other species
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Figure 1 Positions of scaffolds containing orthologs of human X chromosome genes in Xenopus tropicalis chromosomes. Of 454
amphibian orthologs of human X-borne genes identified in this study, 442 (97%) localized to X. tropicalis chromosomes 2 and 8. Mosaic
distribution of X orthologs (blue = XAR; green =XCR) suggests internal rearrangements after chromosomal fusions. cM — centimorgans,
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comprise only six platypus genes from chromosome 6
and a mixture of orthologs and paralogs from chicken
chromosomes 1, 12 and 4 [19]. We used FISH to obtain
cytological locations for 13 orthologous frog genes from
this area, with all placing to the short arm of chromo-
some 8.

Overall, we were able to locate putative frog orthologs
of 68 human Xpll and Xq28 genes. 66 of these are
located on chromosome 8 together with the rest of the
XCR orthology, indicating that the whole mammalian
XCR shares ancestry with a single X. tropicalis chromo-
some. Delbridge et al. [12] also hypothesized that the
Xpll and Xq28 regions could have arisen from an
ancient genome by segmental duplication, since paralo-
gous regions exist on single autosomes in human, rat,
opossum and chicken. Orthologs of human genes from
both Xpll and Xq28 were found together in the
same frog scaffolds (154, 456, 507 and 690) as shown in
Additional file 1. This is consistent with the Xpll and
Xq28 regions being located near each other deep in evo-
lution, followed by segmental duplication before diver-
gence of amniotes and amphibians.

X chromosome deep evolution
Kohn et al. [11] have already suggested that XCR existed
as an individual autosome in an amniote ancestor,

because it persists as the single chromosome 4A in birds
(except Galliformes) [20-22]. As mentioned above, this
ancestral autosome likely acquired the sex-determining
gene SRY after divergence of Prototheria and Theria,
then fused with the XAR in the eutherian lineage. The
distribution of human orthologs in frog chromosomes
supports this single-chromosome origin for the XCR. In
X. tropicalis, chromosome 8 contains not only XCR
homology, but also homology to other human chromo-
somes (Figure 1). This suggests that in the amphibian
lineage, the putative ancestral XCR fused with another
autosome to form an initial frog chromosome 8, which
was then reshaped by intrachromosomal rearrangements.

The history of the XAR is more complex. In all non-
eutherian vertebrates studied, the regions corresponding
to the XAR do not exist as separate cytological entities,
but are present within chromosomes, surrounded by
other conserved gene blocks that are autosomal in
eutherians [8,14,23]. In order to trace the broader
chromosomal context of XAR evolution, we examined
homology of these nearby gene blocks in non-eutherian
vertebrate genomes. Regions surrounding the identified
XAR homology on opossum chromosomes 4 and 7,
chicken chromosome 1, and frog chromosome 2 were
compared to the human genome; incomplete genomic
data for wallaby, platypus and the anole lizard preclude
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Figure 2 Regions of homology between human X and Xenopus
tropicalis, Gallus gallus and Monodelphis domestica
chromosomes. Only gene blocks larger than 0.7 Mbp are shown.
Data are from Additional file 1 and the Comparative Genomic
display of the Ensembl database [18]. cen — centromere, chr. -
chromosome.

synteny analysis. Strikingly, these XAR-neighbouring
regions of opossum chromosomes 4 and 7 showed co-
herent and complementary stretches of homology to
parts of human chromosomes 2, 3, and 13 (Figure 3 and
Additional file 3) previously hypothesized to derive from
fission of a single predecessor [8,23]. The homology of
these three human autosomes to both opossum 4 and 7
allows us to trace the genesis of the XAR in mammals.
Localized human genome homology to both marsupial
autosomes strongly supports a single pre-XAR chromo-
some, whose gene content was nearly identical to opos-
sum chromosomes 4 and 7, which underwent a simple
fission event to give these two autosomes in the marsu-
pial lineage (Figure 4, second row). Human chromo-
somes 2, 3, and 13 show homology to both opossum
chromosomes 4 and 7, and thus identify breakpoints in
chromosomal rearrangement events following the diver-
gence of marsupials from Eutheria. Human chromo-
somes with homology to either opossum chromosome 4
or 7, but not both (human chromosomes 11, 13, 15, and
21, Figure 3) are less informative since they do not
evince breakpoints. The most parsimonious way to
obtain the observed arrangement of homologies (includ-
ing three breakpoints) in the eutherian lineage is a
single internal translocation or inversion event in the
pre-XAR, followed by fragmentation of the pre-XAR and

Page 4 of 8

fusion with XAR to form the eutherian X and autosomes
(Figure 4, top row).

Our comparison of tetrapod genomes supports the fol-
lowing model for X evolution (Figure 4). The pre-XAR
ancestral chromosome (see Figure 4, pink and blue
second tier from top) can be defined as the sum of opos-
sum chromosomes 4 and 7 (minus a region of chromo-
some 4 orthologous to human chromosome 19, which
may represent a subsequent marsupial-specific fusion
event). Differences in gene block order between human
and opossum in this region suggest that in the period
following divergence of marsupials but prior to the eu-
therian radiation, rearrangements inside the pre-XAR
could have taken place. Further evolution of the euther-
ian karyotype then involves fragmentation of the pre-
XAR chromosome, with the mature XAR joining the
XCR (Figure 4, yellow) to complete the mammalian X,
and the remaining pre-XAR fragments contributing to
human chromosomes 1, 2, 3, 11, 13, 15 and 21.

Analysis of synteny data from frog and chicken gen-
omes (Additional file 3) shows that deeper in evolution,
regions corresponding to the pre-XAR share almost
identical gene blocks with each other, but contain sub-
stantially fewer genes than the therian pre-XAR. We
therefore infer the existence of a single proto-XAR
chromosome, ancestral to the pre-XAR, in the progeni-
tor of Synapsida and Sauropsida (Figure 4, blue). In the
amphibian lineage, the proto-XAR region probably fused
with another chromosome (Figure 4, green) to form frog
chromosome 2. In birds, the proto-XAR now forms a
major portion of chicken chromosome 1, plus a small
region of chicken chromosome 23 (homologous to
part of human chromosome 1 derived from the pre-
XAR). Future availability of a more detailed anole
genome may help identify differences in chromosomal
evolution between birds and other lines of Sauropsida.

Fusion partners of the proto-XAR (Figure 4, pink),
identified by their presence in opossum chromosomes,
are found in chicken chromosomes 7, 9, 21 and 24
(Additional file 3). In therians, these fusions formed the
pre-XAR, which then fragmented to give rise to large
areas of human chromosomes 2, 3 and 11 homologous
with opossum chromosomes 4 and 7. The structure of
the human XAR differs from the corresponding part of
the proto-XAR retained in frog by only a single trans-
location associated with inversion. Orthologs from frog
scaffold 253 lie at the start and end of the XAR
(Additional file 1), while their counterparts form a con-
tinuous region of chromosome 1 in chicken.

Evolution of gene content

The human X chromosome is highly enriched for
reproduction- and brain-related genes [24-26]. How-
ever, the human genome project detected negligible gene
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movement to the human X chromosome from auto-
somes [27], and brain-related genes on the human X
and syntenic chicken chromosomes share an ancient ori-
gin [28]. Our analysis confirms minimal gene traffic
from other chromosomes onto the mammalian X, as
only 1.5% of human X chromosome single protein cod-
ing genes are found on X. tropicalis chromosomes other
than chromosome 2 or 8, although identification of new
frog orthologs could affect this ratio.

Segmental duplications resulting in tandemly arrayed
genes (TAGs) are a source for emergence of new genes
in mammalian and primate evolution [29-31]. Selection
pressure sometimes results in repeated duplication of
multigene segments. In yeast, the number of tandemly
repeated units containing genes for metallothionein and
an unrelated gene [32] increases or decreases via non

reciprocal recombination in response to intensity of
selection by copper. An intriguing convergent feature of
human X and chicken Z chromosomes is the presence
of TAGs with elevated expression in testis, while expres-
sion of single-copy conserved genes shows no sex bias
[19]. These findings point to a central role for TAGs in
evolution of human X chromosome gene content.

In the case of the human X chromosome, 5 of 15
tandemly-arrayed multigene families have single known
orthologs in the X. tropicalis genome (Additional file 1).
For example, the MAGE superfamily is represented
by a single gene in X. tropicalis chromosome 8 [33].
The same frog chromosome bears single orthologs of
the SAGEI and CT45 families. The gene families BEX,
TCEAL (WEX), NXF and GPRASP (GASP) evolved by
gene conversion from a common ancestral GPRASP-like
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gene [34,35]. The frog genome contains a single ortholog
(ENSXETG00000019743) of the ARMCX- and GPRASP-
related gene family on chromosome 3, inferring the
existence of a new superfamily located as a single block
in human X. In addition to such single gene ancestors of
amniote TAGs, ancient and conserved TAG clusters
such as the ARSD family (Additional file 1) are also seen
in the X. tropicalis genome.

Conclusions

The comparison of amphibian and amniote genomes
presented here traces the constituents of the human X
chromosome back more than 300 MYA to the common
ancestor of the tetrapod lineage. Chromosomal fusion
partners and breakage events giving rise to the X-
conserved and X-added regions and other domains can
be inferred from extant genomic and cytogenetic evi-
dence. This analysis demonstrates robust conservation
of these chromosomal blocks and unambiguously con-
firms a 2-component model for the origin of the euther-
ian X chromosome.

Methods

Homo sapiens Genome Build 37.1 [36] served as the
source of the human gene list. We excluded pseudogenes,
gene models, microRNAs and miscellaneous RNAs from

the evaluation, leaving 182 genes in the human XAR and
627 from the XCR. X. tropicalis orthologs were then
identified individually in Ensembl [37] and Xenbase [38]
databases. Xenbase, the principle source of X.tropicalis
orthologs, contains 4705 manually-annotated and 10,833
machine-annotated gene pages. Entries on the gene list
were based on e-values of 1e'® with a minimum 55%
identity and 65% coverage [39]. Chromosomal locations
of some scaffolds (JGI X. tropicalis genome assembly 4.1)
containing identified orthologs were obtained from the
existing X. tropicalis linkage map [15]. Information about
blocks that are homologous between human, opossum
and chicken (Additional file 3) is from the Comparative
Genomics display of the Ensembl database [18]. Ortho-
logs of human genes in gaps between synteny blocks
were identified in databases [37,38] and the X. tropicalis
linkage map [15]. Some families of human duplicated
genes have single known ancestral orthologs, which were
only counted once. In total, we were able to identify
chromosomal locations in the X. tropicalis genome for
454 human X orthologs.

For certain X. tropicalis sequence scaffolds not repre-
sented on the current linkage map, we also obtained cyto-
logical locations using fluorescent in situ hybridization
coupled with tyramide amplification (FISH-TSA) using
chosen scaffold-specific cDNA probes [40,41]. Probes for
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chromosomal in situ hybridization were generated from
c¢DNAs of frog orthologs of human X chromosome genes
described in Additional file 4. Images of chromosomes
visualized with the fluorophores tetramethylrhodamine
and diamidinophenylindole were collected at two differ-
ent wavelengths (U-MWV and U-MWIY filters) on an
Olympus BX40 microscope with 100x objective using a
Sony SPT-M320CE camera. Contrast and brightness
were adjusted using the ACC program (Sofo, Brno) and
the images merged in pseudocolor.

Additional files

Additional file 1: Human X-borne genes and their X. tropicalis
orthologs. Table lists genes from Homo sapiens Genome Build 37.1 [36]
and their X. tropicalis orthologs obtained from Ensembl [37] and Xenbase
[38] databases. Human tandemly-arrayed genes are highlighted in yellow,
X. tropicalis orthologs on chromosome 2 are highlighted in blue, X.
tropicalis orthologs on chromosome 8 are highlighted in green, X.
tropicalis orthologs in other chromosomes are highlighted in red, and the
border gene between XCR and XAR is highlighted in grey.

Additional file 2: Cytogenetic localisation of X. tropicalis genes in
chromosomes. FISH-TSA localization of genes from reference scaffolds
onto X. tropicalis chromosomes using scaffold-specific cDNA probes.
Probes are described in Additional file 4.

Additional file 3: Chromosomal positions of orthologs of genes
from human chromosomes 1, 2, 3, 11, 13, 15, 19 and 21. Table
shows position of human gene orthologs in X. tropicalis, chicken and
opossum chromosomes. Syntenic blocks between human, opossum and
chicken are from the Comparative Genomics display of the Ensembl
database [18]. Orthologs of human genes in gaps between synteny
blocks were identified in databases [37,38] and the X. tropicalis linkage
map [15].

Additional file 4: Probes used for gene visualization by FISH-TSA.

Table contains corresponding scaffolds and description of cDNA probes
for FISH-TSA.
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X. tropicalis: Xenopus tropicalis; XAR: X chromosome added region; XCR: X
chromosome conserved region; FISH-TSA: Fluorescent in situ hybridization
coupled with tyramide amplification; pre-XAR: Ancestral pre-XAR
chromosome in therian mammals; proto-XAR: Predecessor of X chromosome
added region in Tetrapoda; TAG: Tandemly arrayed genes.
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