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The availability of microelectrode array systems (MEA’s)
has increased dramatically in recent years. Along with
this increase in availability, these systems have also
grown in capability. Modern systems stimulate and
record in-vitro neuronal networks on an increasing
number of channels. Closed-loop capabilities further
expand the functionality of these systems. Future minia-
turization of these systems and commensurate increased
resolution promises a continued rise in the volume of
data being produced in this domain.

It is difficult to determine if analysis tools are keeping
pace with data generation. As of a few years ago Brown
et al. saw a distinct need for investment in this vein[1].
It seems likely that data acquisition will continue to out-
strip analysis just as it has in other bioinformatics
domains. In 2006 Waganaar et al made available an

extensive data set or recorded microelectrode array
activity [2]. This data set contained both spontaneous
and stimulated activity recorded regularly, from 58
unique cultures, of varying cell density, over a period of
five weeks. While this study is referenced by hundreds
of presenters and researchers, only a few groups have
published analyses of this data. Patnaik et al stand out
in that very small cohort as they sought to infer network
structure from this data set based on the last 5 days of
recordings from 6 cultures[3]. It is likely that these cul-
tures were more static at this stage and were no longer
developing connections at the same rate one may have
observed in earlier time points.

Genetic algorithms (GA’s) and other evolutionary
computing techniques have a proven track record in
temporal knowledge discovery, network analysis, and
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machine learning[4][5]. In this work we demonstrate the
feasibility of using a GA to tease out temporal and spa-
tial relationships in the neuronal networks. Our analysis
yields a functional and explanatory model of signal pro-
pagation on MEA’s and the development of neuronal
networks in-vitro. As shown in figure 1 we seek to
incorporate a broad range of MEA activity. The descrip-
tive nature of the output from the evolutionary system
can be tuned to include domain specific inferences.
These models can present more actionable information
for network design than their purely statistical
counterparts.
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