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Does conservation account for splicing
patterns?
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Abstract

Background: Alternative mRNA splicing is critical to proteomic diversity and tissue and species differentiation.
Exclusion of cassette exons, also called exon skipping, is the most common type of alternative splicing in mammals.

Results: We present a computational model that predicts absolute (though not tissue-differential) percent-spliced-in
of cassette exons more accurately than previous models, despite not using any ‘hand-crafted’ biological features such
as motif counts. We achieve nearly identical performance using only the conservation score (mammalian phastCons)
of each splice junction normalized by average conservation over 100 bp of the corresponding flanking intron,
demonstrating that conservation is an unexpectedly powerful indicator of alternative splicing patterns. Using this
method, we provide evidence that intronic splicing regulation occurs predominantly within 100 bp of the alternative
splice sites and that conserved elements in this region are, as expected, functioning as splicing regulators. We show
that among conserved cassette exons, increased conservation of flanking introns is associated with reduced inclusion.
We also propose a new definition of intronic splicing regulatory elements (ISREs) that is independent of conservation,

and show that most ISREs do not match known binding sites or splicing factors despite being predictive of

percent-spliced-in.

Conclusions: These findings suggest that one mechanism for the evolutionary transition from constitutive to
alternative splicing is the emergence of cis-acting splicing inhibitors. The association of our ISREs with differences in
splicing suggests the existence of novel RNA-binding proteins and/or novel splicing roles for known RNA-binding

proteins.
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Background

Alternative splicing, the production of multiple mRNA
isoforms from a single gene, is critical to the generation of
biological complexity and the differentiation of both tis-
sues and species [1]. Consequently, there has been great
interest in recent years in developing in silico models of
the splicing code — the interactions of cis and trans reg-
ulatory elements — from simpler biological features such
as genetic sequence, nucleosome positions and RNA sec-
ondary structure [2, 3]. Ideally, a splicing model should
be able to make several types of predictions: the ‘abso-
lute’ percent-spliced-in W of any exon in various tissues,
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AW between tissues, the impact of mutations on W [4],
and binding sites for RNA-binding proteins (RBPs) that
affect splicing [5]. Notably, none of these goals requires
the model to actually mimic the inner workings of the
cell, and most metrics used to evaluate the quality of a
model’s predictions do not take into account its biophysi-
cal fidelity.

It has long been known that alternative splicing is asso-
ciated with modified evolutionary conservation of both
exons [6] and their flanking introns [7]. Modrek and
Lee [6] found that newly created exons (those with non-
conserved splice junctions) have low W and hypothesized
that this served a useful evolutionary purpose, by allow-
ing the exon to accumulate beneficial mutations without
the organism losing the benefits of the original protein in
the meantime. Sorek and Ast [7] noted that alternatively
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spliced exons are disproportionately likely to have con-
served flanking introns, and identified that one abundant
k-mer in conserved downstream introns had known cis-
regulatory properties.

The role of intronic conservation extends to tissue-
specific splicing regulation as well. Sugnet et al. [8] found
that exons with high AW between brain or muscle and
other tissues tended to have highly conserved flanking
introns. Yeo et al. [9] discovered that conserved Fox and
Nova motifs in introns are associated with higher W
in brain tissue. Wang et al. [10] found that exons with
‘switch-like’ AW > 0.5 between any pair of tissues have
increased conservation in flanking introns.

Computational models of splicing often depend on con-
servation for their accuracy. A previous study on alterna-
tive splicing modelling [2] found that a metric of model
quality increased by one-third when conservation was
incorporated into the model. The most accurate existing
models of alternative splicing [4, 11, 12] also rely heav-
ily on conservation. These models train neural networks
on over 1000 ‘hand-crafted’ features, including motif
counts, position weight matrix (PWM) correspondences,
sequence lengths, RNA secondary structure, nucleosome
positions, and translatability and frameshift features. In
these models, conservation is used both in raw form, as
averages over the first 100 bp of each flanking intron
(average conservation), and to weight motif counts. The
underlying assumption is that conservation is mostly use-
ful to indicate the overall level of cis elements in flanking
introns (average conservation) and to determine which
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occurrences of interesting motifs are actually relevant for
splicing (conservation-weighted motif counts).

This article introduces several computational models of
splicing that depend on conservation, with the goal of
understanding the evolution of alternative splicing. Some
previous studies of alternative splicing and conservation
[13-15] analyze the conservation of alternative splicing
patterns between species. Instead, we prefer to focus on
the conservation of the sequence near alternative splice
sites, as this incorporates flanking introns into the analysis
and provides more fine-grained insights into the differing
roles of conservation in various regions of the sequence.

Results and discussion

We constructed several computational models of alterna-
tive splicing in humans from RNA-Seq data and compared
the accuracy of their absolute W predictions, measured
as the ability to distinguish cassette exons with high W
(> 2/3) from those with low ¥ (< 1/3) for all tissues
simultaneously (Fig. 1). Strikingly, one technique which
surpasses all previous techniques (Fig. 1(b)) does not use
any hand-crafted features at all: instead, it learns directly
from the sequence and conservation track (33-way mam-
malian phastCons). No additional information is provided
besides the locations of the splice sites.

However, even this minimalist model, which we call
ConsNet, or conservation-weighted convolutional neu-
ral network, is substantially more complex than what is
necessary to predict W. Nearly equivalent performance
was obtained with a very simple neural network model
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Fig. 1 AUC of various alternative splicing models. (a) A convolutional DNN trained on sequences up to 384 bp from each of the four splice sites
involved in cassette splicing (8 x 384 bp). (b) Same as (a), weighting the post-convolutional feature map by conservation (8 x 384 bp). (c) Same as (b),
using only the 100 bp at each end of the cassette exon (2 x 100 bp). (d) Same as (c), using only the first 100 bp of each flanking intron (2 x 100 bp).
(e) State of the art: the method of [11] (1393 features). (f) A DNN trained on only the conservation of the regions in (d) (2 x 100 features). (g) A DNN
trained on junction conservation divided by average conservation over 100 bp (2 features). (h) A DNN trained on junction conservation (2 features).
(i) A DNN trained on average conservation over 100 bp (2 features). (j) A DNN trained on the combined features of (e) and (g) (1393 + 2 features)
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trained on just two features for each exon: the conserva-
tion on the intronic side of each of its splice junctions
(junction conservation) normalized by the average conser-
vation over the first 100 bp of the corresponding flank-
ing introns (average conservation), hereinafter called the
Junc/Avg model (Fig. 1(g)). (The Junc/Avg model is almost
equivalent to training ConsNet on only the first base into
the intron, since ConsNet’s conservation track was also
normalized by average conservation).

When trained in a simple logistic regression with all
of the hand-crafted features from previous models, these
two features have the highest weights (Table 1), emphasiz-
ing that the Junc/Avg features are individually more useful
than any previous features. Further, adding the Junc/Avg
features to the previous features improves AUC by 1.6 %
(compare Fig. 1(e) and (j)), indicating that Junc/Avg pro-
vides substantial new information not captured by any
previous features. In particular, Junc/Avg is not merely
a proxy for splice site strength: a deep learning model
trained to predict W from the MaxEntScan [16] splice
site scores of the two alternative splice sites and the two
neighbouring constitutive splice sites achieves an AUC of
only 0.643 + 0.007, subtantially lower than the Junc/Avg
model.

While the Junc/Avg model is worse than [11] at pre-
dicting the absolute W values of events with intermediate
W (Table 2), it still performs respectably well even at this
task.

The Junc/Avg model appears to be an exceptionally con-
cise summary of phastCons conservation information: it
performs as well as a neural network trained on the full
100 bp of intronic conservation (compare Fig. 1(f) and
(g)); and it is the simplest model to do so, as junction
and average conservation individually perform far worse
(Fig. 1(h)/(i)).

The utility of junction and average conservation is not
limited to phastCons. GERP++ [17], a measure of purify-
ing selection derived from multiple sequence alignments,

Table 1 Junc/Avg features are more predictive than any
previous features

Feature Weight
Downstream Junc/Avg 0.904
Upstream Junc/Avg 0.747
C1AC2 Translatability 0.691
C1A Translatability 0.567
C1C2 Translatability -0473
Log length of A 0424
Upstream splice site strength 0.345

Weights of the top 7 features in a logistic regression of 1393 features based on the
1014 features used in [2] and the Junc/Avg features. The Junc/Avg features (shown in
bold) are individually more predictive of W than any of the features used previously
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Table 2 The state of the art outperforms the Junc/Avg model at
intermediate W prediction

v Events Junc/Avg nn

All 6871 0643 (p < 1e-308) 0647 (p < 1e-308)
0.1-09 319 0261 (p < 2e-06) 0293 (p < 1e-07)
0.2-0.8 159 0117 (p < 0.1) 0200 (p < 0.01)
0.3-0.7 83 -0.134 (p < 0.2) -0.174 (p < 0.1)
04-0.6 9 -0.778 (p < 0.01) 0.050(p < 0.9)

Performance (Spearman correlation with W) of the Junc/Avg model and [11] at
predicting the absolute W values of intermediate-W events. An event is defined to
fallinto a particular W range if both W 4+ o and W — o are inside the range (where o
is the standard deviation of W across tissues), i.e. if it is at least one full standard
deviation inside

is not normalized to be between 0 and 1 so the heuristic
of dividing junction by average conservation is not appli-
cable. However, a model trained to predict ¥ from the
upstream and downstream GERP++ junction and average
scores individually (4 features) obtains an AUC of 0.948 +
0.003, comparable to using phastCons.

Nonetheless, there are limits to the power of conserva-
tion. The Junc/Avg model performs worse than existing
models at predicting AW between tissues: the Spearman
correlation between its predictions and the true tissue dif-
ferences, concatenated over all tissue pairs and excluding
pairs of measurements that are statistically indistinguish-
able (0 (AW) > |AW]), is a mere 0.017, compared to 0.072
using the method described in [11]. Even so, the Junc/Avg
model does well at predicting W for exons with substantial
tissue differences in inclusion (max cross-tissue |[AW| >
10 %), with an AUC of 0.883 + 0.007.

The Junc/Avg model is also too simple to predict differ-
ences in ¥ due to mutations, not least because it does not
have access to the sequence and thus has no conception
of what a mutation is. Even for absolute W prediction, the
sequence contains information beyond what is provided
by conservation: giving the model access to the sequence
improves AUC (area under the receiver-operating charac-
teristic) by 1.4 % (compare Fig. 1(d) and (f)).

On a more fundamental level, this model does not cap-
ture as much biophysical information as previous models,
which can predict the effect of trans elements on splic-
ing. Xiong et al. [4] found that removing Muscleblind-like
RBPs from their model had a similar effect on ¥ to
knocking down these RBPs in actual cells.

Intronic splicing regulation occurs predominantly within
100 bp of the alternative splice sites

Comparing Fig. 1(c) and (d), we see that ConsNet per-
forms worse at predicting absolute ¥ from the 100 bp
at each end of the cassette exon than from the first
100 bp of each flanking intron, perhaps because exonic
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conservation is not a pure indicator of splicing regula-
tion as it is confounded by effects on protein function.
With this in mind, we focus on intronic splicing regula-
tion rather than exonic regulation for the remainder of our
analysis.

Is there anything special about 100 bp? Figure 2 shows
the correlation between junction/average conservation
and W as the averaging window is increased from 1 to
384 bp into the flanking intron. For upstream introns,
the maximum correlation occurs at an averaging win-
dow of 132 bp; for downstream introns, 92 bp. Beyond
these distances, incorporating additional distal conser-
vation information into the average only degrades the
prediction.

To confirm that using only the first 100 bp of each flank-
ing intron does not miss much information, note that
once ConsNet is provided with these 200 bp, it does not
help the prediction any further to provide it with the con-
servation and sequence of an entire 384 bp on both the
intronic and exonic sides of the splice sites and the same
768-bp region around the two nearest constitutive splice
sites (compare Fig. 1(b) and (d)).

Under the assumption that conserved sequences near
introns are predominantly splicing regulators, these
results provide evidence that most intronic splicing regu-
lation occurs within about 100 bp of the splice site in both
upstream and downstream introns. This does not negate
the fact that some important intronic splicing regulation
occurs further away from the splice site [18]; however,
such distal regulation appears to be the exception rather
than the rule.

0.6
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Fig. 2 Most intronic splicing regulation occurs within 100 bp of the
splice site. Correlation between junction/average conservation and
tissue-averaged W as the averaging window is increased from 1 to
384 bp of the flanking introns nearest the splice site. The correlation
peaks at 132 bp for the upstream splice site and 92 bp for the
downstream splice site
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New exons, and old exons with conserved cis elements,
have reduced ¥

We next investigated why Junc/Avg conservation is signif-
icantly more informative than either Junc or Avg on their
own. Fig. 3 shows a scatter plot of upstream junction ver-
sus average conservation for high W (red) and low W (blue)
events (as for most of the following analysis, downstream
results are similar). The events are divided into 3 regimes
based on whether they have high (> 0.5) or low junction
or average conservation:

1. Old™: old exons with few conserved cis elements
(high junction, low average)

2. Old*: old exons with many conserved cis elements
(high junction, high average)

3. New: new exons (low junction, low average)

The size of the fourth category, with low junction and
high average conservation, is negligible with only 0.2 % of
events. We note that old and new are relative terms and
are on the time scale of the most recent common ancestor
of the species included in the conservation track.

As seen from the pie charts of Fig. 3, events in Old™ over-
whelmingly have high W, those in New mostly have low
W, and those in Old* are evenly split between high and
low ¥ with most exons exhibiting differential regulation
between cell types (see Additional file 1: Section 1). This
explains why Junc/Avg is so effective: junction conserva-
tion distinguishes low ¥ New from high W Old", average
conservation distinguishes high ¥ Old™ from lower W
Old*, but Junc/Avg does both because it assigns similarly
low values to both New and Old*, which both have rela-
tively low W (note that all events along the line y = x have
the same Junc/Avg value).

The success of both ConsNet and the Junc/Avg model,
compared to previous models of alternative splicing, is
primarily attributable to the use of junction conservation.
Previous models assumed that only the conservation of
intronic cis elements was important, but our results show
that conservation of the splice junction, which is related
to the evolutionary age of the exon, is also extremely
predictive of splicing.

Conserved cis elements are associated with reduced ¥
across multiple evolutionary timescales

The inverse correlation between conserved cis elements
and W is not limited to conservation across mammalian
species. Within each of the regimes New, Old™ and Old*
— which, recall, refer to mammalian conservation — we
compared the W values of exons with high versus low
average primate conservation over 100 bp of flanking
introns (Table 3). Among Old~ exons, exons with high
average primate conservation — which recently devel-
oped conserved cis elements — have lower W than exons



Wainberg et al. BMC Genomics (2016) 17:787

Page 50f 10

1.0 <
£y [

© ,0ld"(36107)
. [

]
* 33263,92.1%

=03l -

|
i  0ld* (7039)

3412, 48.5% 3315, 47.1%

[ 312, 4.4%

R

e Py
oy 1 To389,17.7%

0.4

New (13532)
.

Junction conservation

All events (56784) =

17045, 30.0%

[
671,1.2%
39068, 68.8%

! 1 ] 1

0.4

35000

0.6 0.8 1.0

Average conservation over 100 bp

I New
I Old-
I Old+

30000

25000

20000

15000 |

Number of events

10000 |

5000 -

0

U<1/3

1/3<¥<2/3

v >2/3

Fig. 3 Junction versus average conservation. a) Upstream junction versus average conservation for all high-confidence (o (W) < 0.1) high W (red)
and low W (blue) events (downstream results are similar). 99.8 % of all events fall into one of 3 regimes: high (> 0.5) junction and low average
conservation (Old"), high junction and average conservation (Old*), and low junction and average conservation (New). Small Gaussian noise was
applied in the y direction to avoid superimposing all tissues for each exon. Pie charts of W for each regime and the whole dataset, also including
medium W events (green), are superimposed. b) The same data broken down first by W range and then by conservation regime

which never developed many conserved cis elements.
Conversely, among Old* exons, exons with low average
primate conservation — which recently lost conserved cis
elements — have higher W than exons that retained them.

This indicates that an increase in the conservation
of cis elements over both the evolutionary timescale of
primates (~ 50 million years) and mammals (~ 200 mil-
lion years) is associated with a reduction in ¥. How-
ever, these two timescales are not equally important:

exons with many conserved cis elements in mammals
but not in primates (Old* Low) still have lower W than
those with many conserved cis elements in primates but
not in mammals (Old™ High). This indicates that mam-
malian conservation of cis elements has a more pro-
nounced relationship with W than primate conservation,
and that exons with intronic cis elements that diverged
farther in the past have greater differences in splicing
patterns.
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Table 3 Intronic cis elements that diverged farther in the past
have greater differences in splicing patterns

Mammalian conservation Average primate conservation Mean W

Low 0.728 + 0.003
Old”

High 0.63 +0.01

Low 0.56 +0.02
old*

High 0.500 # 0.007

Low 0.390 £ 0.004
New

High 0.37£0.03

Mean and standard error of W for events in each regime, broken down further by
whether the average primate conservation over 100 bp of the upstream flanking
intron is high (> 0.5) or low (downstream results are similar). Events in Old™ have
higher W than those in Old*; within each of these regimes, events with low average
primate conservation also have higher ¥

Conserved flanking introns are associated with increased
tissue-specific splicing, particularly in the brain

Echoing the relationship demonstrated by [10] between
intronic conservation and tissue-specific splicing (see
Background), Table 4 shows that the proportions of low,
medium and high W exons have much more inter-tissue
variance in Old* than in Old™. This suggests that con-
served flanking introns cause tissue differences in splicing
patterns. There is a particularly large difference in splic-
ing between brain tissue and other tissues in Old* that

Table 4 Conserved flanking introns are associated with greater
tissue differences in splicing patterns

Tissue Old” Old* New
Adipose 8/0/91 51/4/44 82/0/17
Adrenal 6/0/92 48/4/47 78/0/20
Brain 6/1/91 35/8/55 86/0/13
Breast 7/0/92 46/3/50 83/0/16
Colon 7/0/91 50/3/45 83/0/15
Heart 6/0/92 43/5/50 85/0/13
Kidney 6/0/92 50/2/46 81/0/17
Liver 6/0/93 49/2/48 80/0/19
Lung 7/0/91 52/2/44 80/0/18
Lymph 7/0/92 55/2/42 81/0/17
Ovary 8/0/90 48/5/46 82/0/17
Prostate 6/0/92 49/2/47 81/0/17
Skel. muscle 5/0/94 36/3/59 81/1/16
Testes 6/1/91 45/5/49 81/0/17
Thyroid 7/1/91 44/6/48 80/0/18
White blood 6/0/92 48/2/48 75/0/23
Std. dev. 0.8/0.3/0.8 2.3/0.3/2.4 4.2/1.9/5.1

Percentages of low/medium/high W values among exons in each regime and
tissue, and standard deviations of each percentage across tissues, for upstream
flanking introns (downstream results are similar). Note the particularly large
difference between brain and other tissues in Old* (bolded)
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barely appears in the other regimes, indicating that the
cassette exons responsible for giving the brain its unique
phenotypic qualities lie disproportionately in Old*.

However, tissue-specific regulation is not the primary
reason why Old* is evenly split between high and low
W. Among exons in Old* with high-confidence measure-
ments in at least half of tissues, 74 % upstream and 73 %
downstream are either high-W or low-W in every tissue. In
other words, only about a quarter of Old* exons display
any substantial tissue-specific regulation.

A new definition of intronic splicing regulatory elements
We next studied the relationship of k-mer counts to
intronic conservation and splicing. We restricted our
analysis to between 15 and 100 bp into the intron from
the splice site (the 15-100 bp region), since regions beyond
100 bp are less important for splicing regulation, and using
the first 15 bp adjacent to the splice site would confound
our analysis with splicing consensus sequences.

Yeo et al. [9] defined intronic splicing regulatory ele-
ments (ISREs) as k-mers that are significantly more con-
served than the background in the nearest 400 bp to the
splice site of both upstream and downstream flanking
introns. Voelker and Berglund [19] also used conserved
regions as a basis for finding novel ISREs. However, con-
servation alone is not enough to predict whether a k-mer
is associated with increased or decreased splicing, i.e.
whether it is an intronic splicing enhancer (ISE) or an
intronic splicing silencer (ISS).

An intuitive definition of an ISE (or ISS) is a k-mer
with the property that events containing the k-mer have
a higher (or lower) W than events that do not. However,
this definition does not account for differences in mono-
and dinucleotide frequencies between high- and low-W
events, and would for instance result in GC-rich k-mers
being labelled as ISEs and AT-rich k-mers as ISSs because
GC-rich introns are associated with increased splicing. To
control for this, we trained a linear regression model to
predict tissue-averaged ¥ from mono- and di-nucleotide
frequencies and considered the residuals of this model —
the difference between the true and predicted ¥ values for
each event, which are assumed to be the component of ¥
not attributable to mono- and di-nucleotide frequencies
— which we call residual V. We define a k-mer as an ISE
if residual W is significantly higher in events containing
the k-mer than in events not containing the k-mer at FDR
[20] g < 0.05, and as an ISS if residual W is significantly
lower, according to a Mann-Whitney test. Under this def-
inition, there are 7 upstream/16 downstream ISE 6-mers
and 35 upstream/85 downstream ISS 6-mers, or 143 ISRE-
region pairs in total (see Additional file 1: Section 2 and
Additional file 2 for a list).

To validate this definition, we trained a neural net-
work to predict absolute W using only ISRE counts in
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the upstream and downstream 15-100 bp regions, and
achieved an AUC of 0.644 £ 0.006, increasing to 0.810 £
0.006 when two additional features were included to
account for nonsense-mediated decay (NMD), Translat-
able.C1C2 and Translatable. C1AC2 (see [12]). (For this
experiment alone, we defined ISREs based on the corre-
lation across only exons not in the test set to avoid bias,
leading to a slightly smaller list of 132 ISRE-region pairs.)
[9]’s 296 upstream and 278 downstream 6-mers were less
useful at predicting W, performing no better than the same
number of random 6-mers (Table 5), despite containing
over 4 times as many 6-mers as our list.

Interestingly, there is little overlap between our and
[9]’s ISREs: upstream, only 2 of our ISREs (CCTCAG
and TGAGTA) overlap [9]’s (compared to an expected
value of 296 * 42/4096 = 3.0 if the two sets were selected
randomly), 7.2 % of our ISREs” instances and 5.1 % of
our ISRESs’ total basewise conservation; downstream, only
4 of our ISREs (TCTGAA, TTAAGA, GTATTT and
ATTAGA) overlap (compared to an expected value of 278
*101/4096 = 6.9 if random), 7.1 % of their instances and
7.2 % of their conservation overlap. One hypothesis for
the lack of overlap is that the two definitions may capture
different types of ISREs: perhaps our ISREs are moder-
ately functional in a wide variety of locations, while [9]’s
are highly functional but only in conserved locations, i.e.
in specific genetic contexts. However, using conservation-
weighted k-mer counts instead of raw counts, [9]’s ISREs
are still less predictive than ours (Table 5), which seems to
contradict this hypothesis.

There is also little overlap between our ISREs and
known RBP binding sites. We catalogued 793 6-mers
which contain the NOVA binding site YCAY [21] or are
subsequences of 7-mers found by [22] to have a high affin-
ity (E score > 0.45) for at least one of 207 RBPs. We found
that 12 of the 42 upstream ISREs and 14 of the 101 down-
stream ISREs matched one of these 793 6-mers, compared
to the 42 * 793/4096 = 8.1 upstream and 101 * 793/4096 =
19.6 downstream ISREs that would be expected to match
if the two sets were selected randomly. Additional file 1:
Section 3 and Additional file 3 list the RBPs which had
high affinity for each of the matching 6-mers.

Table 5 Our ISREs predict ¥ more accurately than [9]'s

OurISREsn=132 [Oln=574 Random n =574
Counts 0.644 £ 0.006 0.601 £ 0.008 0.609 £ 0.008
+NMD 0.810 4 0.006 0.788 £ 0.005 0.805 4 0.006
Cons 0.693 £ 0.006 0.608 £ 0.008 0.615 £ 0.007

AUCs for absolute W prediction using k-mer counts, counts plus two
nonsense-mediated decay (NMD) features from [12], and conservation-weighted
counts for various k-mer sets. The conservation weight of each k-mer instance is the
minimum conservation over its k bases, to avoid counting non-functional k-mer
instances that partially overlap functional ones. Our ISREs predict W more accurately
than [9]'s, which perform no better than the same number of random k-mers
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Common k-mers are more conserved in flanking introns
For each k-mer and region (upstream and downstream),
we define three properties. First, a k-mer’s intronic conser-
vation enrichment is the average conservation of all bases
in the 15-100 bp region that are part of an instance of
the k-mer, divided by the average conservation of the 15—
100 bp region across all events. Conservation enrichment
can be defined per event or globally across all events. If a
k-mer has a conservation enrichment greater than 1, it is
more conserved than a typical k-mer within 15-100 bp of
the splice site.

Second, a k-mer’s enrichment bias is the Spearman cor-
relation of its per-event conservation enrichment with
residual W across all events where the k-mer appears at
least once. Positive values indicate conservation enrich-
ment near high-¥ exons and negative values indicate
enrichment near low-W exons.

Third, a k-mer’s ISE/ISS character is the Spearman cor-
relation of its count in the 15-100 bp region with residual
W across events (to be consistent with the definition of
conservation enrichment, we include only events where
the k-mer appears at least once). k-mers with more posi-
tive (negative) Spearman correlations with residual W are
more likely to be ISEs (ISSs).

Figure 4 shows the total count across events versus
global conservation enrichment of each 6-mer in the
upstream 15-100 bp region. The large variation among
6-mer counts (o = 182) indicates substantial selection
pressure on flanking introns, confirming what we already

3.5 T T
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Fig. 4 6-mer count versus conservation enrichment. Total count of
each 6-mer versus conservation enrichment in upstream flanking
introns (downstream results are similar). The high variation among
k-mer counts (o = 182) indicates substantial selection pressure on
flanking introns. More common 6-mers tend to be more conserved
(Spearman correlation 0411, p < 1e-166). The most severely
under-conserved k-mers (conservation enrichment less than
one-third the background) are also extremely rare, appearing in a
tight band along the lower left edge of the plot
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know from conservation: if introns were not under selec-
tion pressure, all counts would be approximately identical,
aside from differences due to mono- and di-nucleotide
frequencies. Common 6-mers are more conserved than
rare ones (Spearman correlation 0.411, p < le-166),
suggesting that some k-mers are inherently more use-
ful than others and that variants disrupting the k-mers
are under negative selection as a result. Conversely,
the most severely under-conserved k-mers (conservation
enrichment less than one-third the background) are also
extremely rare, appearing in a tight band along the lower
left edge of the plot.

ISSs are more conserved near low ¥ exons; ISEs are more
conserved near high ¥ exons
Figure 5 compares the upstream ISE/ISS character and
enrichment bias of each 6-mer across all events where
the 6-mer appears at least once (1488 6-mers, or 36 % of
all 6-mers, appeared in fewer than 100 events or never
appeared more than once in any event and were excluded).
Upstream, these two properties have a Spearman corre-
lation of 0.059 (p < 0.003) across 6-mers; downstream,
the correlation is 0.054 (p < 0.005). Hence, ISEs are more
conserved near high W exons and ISSs near low W exons.
This further supports the view that k-mers have some
degree of ‘inherent’ regulatory activity, in addition to
activity that depends on location and context. Similar k-
mers tend to become conserved in the introns flanking
exons with similar W, even though the k-mer occurs in

0.3

‘ Conserved ‘in high-¥

0.2

Spearman(conservation enrichment, ¥)

Conserved in low-¥

—0.5 . . . . .
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Spearman(count, ¥)

Fig. 5 A ‘meta-correlation’ plot for 6-mers. The x coordinate of each
6-mer is the correlation across events where the k-mer appears of its
count in the upstream 15-100 bp region (downstream results are
similar) with tissue-averaged W (ISE/ISS character), and the y
coordinate gives the correlation of its conservation enrichment with
W (conservation bias). These two properties have a Spearman
correlation of 0.0588 (p < 0.003) across all 6-mers. 6-mers appearing
in fewer than 100 events or never appearing more than once in any
event are not shown
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different genetic contexts in each intron. If it is evolution-
arily advantageous for an exon to have high ¥, then ISEs
will be under selection and eventually become conserved,
and vice versa.

W appears to explain differences in ISS and ISE
conservation patterns

In the analysis of the previous section, one might won-
der whether W was just an extraneous variable: perhaps
ISE/ISS character and conservation bias are only corre-
lated because k-mer count and conservation enrichment
are themselves correlated. To rule out this possibility, we
generated 1000 random permutations of W values for
each exon, then recalculated the two properties and their
Spearman correlation. Upstream, the correlation was only
larger in magnitude than 0.059 for 144 of these 1000 tri-
als (p < 0.144); downstream, the correlation was larger
than 0.054 for 175 of 1000 trials (p < 0.175). Though
sub-significant, these results suggest that ¥ explains dif-
ferences in ISS and ISE conservation patterns and that
conserved intronic elements near splice sites are con-
served because they regulate splicing.

ISSs are more conserved than ISEs in new exons

We then compared the overall conservation of ISEs versus
ISSs for various regimes, using a Mann-Whitney test to
compare the distribution of conservation scores for every
base in every ISE with the comparable distribution for
ISSs (Table 6). Overall, upstream ISEs are more conserved
than ISSs and downstream ISSs are more conserved than
ISEs. Despite this difference, ISSs are more conserved
near new exons both upstream and downstream, suggest-
ing that intronic regulatory elements are at least partially
responsible for the low percent inclusion of this set of
exons.

Conclusions
There are several pathways by which alternative splic-
ing can evolve [23]: exonization from non-coding regions,
transition from constutitive splicing, and exon shuffling.
Lev-Maor et al. [24] argued that the evolutionary transi-
tion from constitutive to alternative splicing is triggered
by a weakening of the 5 splicing consensus sequence.
Our results suggest an additional mechanism for this tran-
sition: the emergence of conserved ISSs. Originally, old
constitutive exons would be situated in Old", with high
W and few conserved cis elements; if at some time it
became beneficial for the exon to be alternatively spliced
or have tissue-specific splicing patterns, conserved ISSs
would eventually emerge and the exon would migrate to
Oold*.

We have identified 6-mer ISREs that are associated with
W in the upstream and downstream introns flanking alter-
natively spliced exons, listed in the Additional files. The
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Table 6 ISS vs ISE conservation across various exon sets

Regime ISS med. ISE med. Diff More cons'd p
(a) Upstream (35 ISSs, 7 ISEs)

All 0.004 0.005 -0.001 ISEs 2e-39
Old" 0.001 0.003 -0.002 ISEs 4e-83
Old* 0.987 0.995 -0.008 ISEs 2e-5
New 0.007 0.002 0.005 ISSs Te-56
High w 0.001 0.004 -0.003 ISEs 1e-108
Low W 0.013 0.011 0.002 ISEs 3e-5

(b) Downstream (85 ISSs, 16 ISEs)
All 0.003 0.002 0.001 ISSs 4e-48
Old 0.001 0.001 0 ISEs le-5
Oold* 0.994 0.990 0.004 ISSs 0.0003
New 0.006 0.002 0.004 1SSs 4e-91
High W 0.001 0.001 0 ISEs 6e-16
Low W 0.007 0.006 0.001 - 04

Median of conservation scores across all bases that are part of any ISS/ISE, and
which distribution of scores is larger according to a Mann-Whitney test. Upstream
ISEs are more conserved than ISSs and downstream ISSs are more conserved than
ISEs. Despite this difference, ISSs are more conserved near new exons both
upstream and downstream, suggesting that intronic regulatory elements are at
least partially responsible for the low percent inclusion of this set of exons

relatively high predictive power of these ISREs suggests
the existence of novel RNA-binding proteins and/or novel
splicing roles for known RNA-binding proteins. Alter-
natively, some ISREs could influence splicing via RNA
secondary structure or effects on transcription rate. These
ISREs are promising candidates for future experimental
study.

Methods

The dataset used in this research consists of W values
across 16 tissues for 10689 cassette exons derived from
RNA-Seq data and mapped to the hg19/GRCh37 human
genome [25]. Low-confidence measurements (standard
deviation of ¥ > 0.1) were pruned from the dataset
when training and evaluating the models, leaving a total
of 56784 events (exon-tissue pairs) from 7982 exons with
at least one high-confidence measurement. See Additional
file 1: Sections 1 and 2 of [4] for details on data processing.

Some of the additional analysis used tissue-averaged W
values, which are calculated from the full 16 x 10689
measurements. Analysis of mammalian conservation used
phastCons basewise conservation scores [26] from 33 pla-
cental mammals; analysis of primate conservation used
phastCons scores from 10 primates.

Deep neural network (DNN) models were trained
using the Hebel Python/CUDA library [27]. This GPU-
accelerated library performs backpropagation [28] via
mini-batch stochastic gradient descent with Nesterov
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momentum [29] and L1 and L2 weight decay [30]. Hebel
incorporates two recent breakthroughs in deep learning,
dropout [31] and rectified linear units [32, 33], which have
enabled DNNs to achieve state-of-the-art performance
in a wide variety of problem domains, including speech
recognition [34] and computer vision [35]. The architec-
ture and training procedure of ConsNet (Additional file 1:
Figure S1) and the other neural network models are
described in Additional file 1: Section 4.

AUC, or area under the receiver-operating characteris-
tic [36], denotes the ability of each model to discriminate
between exons with W < 1/3 from those with ¥ > 2/3;
as shown in Fig. 3, these two groups collectively consti-
tute 98.8 % of all exons. (The remaining 1.2 % of exons
with intermediate W were excluded from the AUC calcu-
lation since only a small deviation from the experimental
value could cause these exons to be labelled as an incorrect
prediction).

Additional files

Additional file 1: Supplementary information. (PDF 183 kb)
Additional file 2: Upstream and downstream ISSs and ISEs. (CSV 1 kb)
Additional file 3: ISREs with high affinity for RBPs. (CSV 1 kb)
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DNN: Deep neural network; ISE: Intronic splicing enhancer; ISRE: Intronic
splicing regulatory element; ISS: Intronic splicing silencer; NMD:
Nonsense-mediated decay; RBP: RNA binding protein; W: Percent spliced-in
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