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Abstract

The circadian clock is an important molecular mechanism that enables many organisms to anticipate and adapt to
environmental change. Pokhilko et al. recently built a deterministic ODE mathematical model of the plant circadian
clock in order to understand the behaviour, mechanisms and properties of the system. The model comprises

30 molecular species (genes, mRNAs and proteins) and over 100 parameters. The parameters have been fitted
heuristically to available gene expression time series data and the calibrated model has been shown to reproduce
the behaviour of the clock components. Ongoing work is extending the clock model to cover downstream effects,
in particular metabolism, necessitating further parameter estimation and model selection. This work investigates the

challenges facing a full Bayesian treatment of parameter estimation. Using an efficient adaptive MCMC proposed
by Haario et al. and working in a high performance computing setting, we quantify the posterior distribution
around the proposed parameter values and explore the basin of attraction. We investigate if Bayesian inference is
feasible in this high dimensional setting and thoroughly assess convergence and mixing with different statistical
diagnostics, to prevent apparent convergence in some domains masking poor mixing in others.

Introduction

The circadian clock is a molecular mechansism that syn-
chronises biological processes with the day/night cycle
and is found in many organisms [1]. The presence of a
clock enables an organism to anticipate and adapt to
environmental change and hence use energy sources
more efficiently. The mechanism includes interlocked,
transcriptional feedback loops. Pokhilko et al. built a
mathematical model of the plant circadian clock in
order to understand the behaviour, mechanisms and
properties of the system [2]. Recent experiments show
that three plant-specific proteins ELF3, ELF4 and LUX
form an evening complex (EC) which binds to the pro-
moters of target genes [3]. This has led to a revision of
the model [4]. The latest version of the clock model,
illustrated in Figure 1, represents interconnected morn-
ing and evening loops in a three loop structure. The
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morning loop comprises transcription factors LHY and
CCA1I, which activate the expression of PRR9 PRR7 and
PRR5/NI. The transcriptional co-regulators PRR9, PRR7
and PRR5 inhibit LHY and CCA1I expression by binding
to their promoters. The evening loop, previously repre-
sented by TOC and a hypothetical gene (Y), introduced
by Locke et al. [5] is now represented by TOC, LUX,
ELF3 and ELF4.

Parameter values used in these studies were either con-
strained (based on the available data) or fitted to multiple
time series data sets (for full details see Supplementary
Table S1 in [4]). Previously, Locke et al. constructed a cost
function to quantify the agreement between an earlier ver-
sion of the model and various key experimental features
[5]. They undertook an efficient global search of parameter
space and showed that this optimized solution fits several
but not all the experimental features.

The aim of this work is to set the scene for full Baye-
sian inference of the model parameters using state-of-
the-art MCMC techniques. We explore the landscape of
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Figure 1 Outline of the Arabidopsis circadian clock based on Figure 1 in [4]. The morning and evening loop elements are represented by
white and grey boxes respectively. The solid lines indicate transcriptional regulation and the short dashed lines indicate post-translational
regulation of TOC1 and EC by GI, ZTL and COP1. An arrow signifies activation and a block inhibition. The EC protein complex formation is
denoted by the short-long dashed line. Flashes represent acute light responses and asterisks post-translational regulation by light.

the posterior distribution around the model solution and
investigate the challenges in finding the posterior distri-
bution from increasingly distant initial starting positions
in parameter space. We consider the implications of our
findings on the design of efficient parameter estimation
schemes for components of the circadian clock.

Methods

Mathematical model and data

We apply the methods to synthetic data generated from
the model ODEs, described by Pokhilko et al. [4] where
the actual parameter values are known. We use the latest
version of the model which comprises the evening com-
plex and a light function mimicking 12 hours day and 12
hours night. The model comprises 28 species (i.e. mRNAs
and proteins) and an additional two species are used for
fitting purposes, in total 30 species. There are 103
unknown parameters. Typical differential equations for
the dimensionless concentrations of ELF4 mRNA, c}}},
suppressed by EC and LUX proteins, cgc and c¢zyx »
respectively; and EFL4 protein, cg4, modified by ELF3
nuclear protein, cg3,, and ELF3-ELF4 nuclear protein
complex, cgsq,, are:

m 2
dcgy B &2 &6 m 1
=Mns - Ty 9 T M3aCpy, 1)
dt 82 +Cec &+ 1
dCE4
m
a - P23Cpy — M35CE4 — P25CE4CE3n + P21CE34n 2)

where 713, M34,35, P21,2325 and g, ¢ represent the rate
constants of transcription, degradation, protein translation

/modification /complex formation /translocation between
nucleus and cytoplasm and Michaelis-Menton constants,
respectively. The full set of differential equations can be
found in the supplementary material in Pokhilko et al. [4].
The use of synthetic data in this way enables us to assess
the accuracy of the inference prediction. White Gaussian
noise was added to this time series data to obtain a signal
to noise ratio (SNR) of around 100. Fifty time points, one
every hour over a two day period was considered realistic
and suitably rich to capture key features of the data,
namely the oscillatory period, amplitude and phase.

Parameter estimation

We derived posterior distributions for the model para-
meters under a Bayesian framework using the efficient
adaptive Markov chain Monte Carlo (MCMC) algorithm
described by Haario et al., implemented using their
MATLAB code [6]. This method uses a multivariate Gaus-
sian proposal to move the exploratory chains through pos-
terior spaces which may contain ridges or other
challenging features - very likely when, as in our case, the
number of parameters is high and/or parameters are
correlated.

The algorithm described above requires a model defined
sum-of-squares function and assumes additive i.i.d. Gaus-
sian errors for the observations. Letting  (6) be the ODE
solution for a set of initial conditions and parameters, 6,
then, in our case, the sum of squares function is

N

Y Wal0) = 1)’ )

n=1
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where y,(0) is the model output corresponding to the
nth data point, y,. This score is equivalent to the nega-
tive log likelihood under a homoscedastic additive i.i.d.
Gaussian noise model [7]. For the prior, we assumed an
improper uniform distribution. This is the worst-case
scenario corresponding to the complete absence of com-
plementary biological information, which was chosen
deliberately so as to obtain a conservative lower bound
on both the parameter estimation accuracy as well as
the rate of convergence.

The MCMC chains should be run until they have satis-
factorily converged. A suitable number of steps is not
typically known in advance and hence convergence diag-
nostics are used to monitor convergence. Our chains
were run for approximately 10° iterations. Four sub
chains were used to establish the potential scale reduc-
tion factor (PSRF). The PSRF is a ratio reflecting the
between chain variance and the within chain variance.
This and other methods are discussed in [8]. If the PSRF
is large then either our estimate of variance can be
decreased by more simulations or the within chain var-
iance will increase since the simulated sequences have
not yet made a full tour of the target distribution. Gener-
ally a value of 1.1 is taken to indicate reasonable confi-
dence that the chains have converged. PSRF is estimated
in parameter space but we also use it to consider whether
the sum-of-squares function, equation 3 has converged in
data space. The multivariate analogue (MPSRF), essen-
tially an upper bound of PSRF, was used to consider con-
vergence at the higher order [8]. Posterior measures,
including mean and variance are based on every 100th
iteration of the last 10° iterations, pruned to reduce levels
of autocorrelation.

Obtaining the numerical solution of the ODE, y,,(6), is
an expensive component of the overall computational task
so we accelerated its calculation using high speed ODE
simulations available from SBTOOLBOX2 and SBPD [9].
On average this made the calculations between 10 and 20
times faster than those based on MATLAB’s built-in ODE
solvers. Computations were designed to run on a multi-
nodal cluster using MATLAB’s parallelization facilities.

Results

Quantification of parameter posteriors starting at true
parameter values

In our first test, denoted Experiment 1, we start the
MCMC exploratory chains at the model’s true values
and observe how far the chains will travel before they
reach a stationary phase. The Euclidean distance
between the posterior mean and the true value, for each
parameter, is indicative of the attractive pull of the
model solution. The variance of the posterior distribu-
tion summarizes the inherent uncertainty in the system.
Noise in the system, arising from measurement errors,
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may mean that the maximum a posteriori does not lie
directly over the true value.

After 10° iterations, the sum-of-squares plots, tracing
the fit of the model to the data, are indicated to have
converged (mean PSRF = 1.01), see Table 1. However the
multivariate statistic (MPSRF = 1.81) indicates that the
trace plots are still changing with implications for
the accuracy of the fit of the model between species.
Concerning parameter space, 99% of parameters show no
absence of convergence as indicated by PSRF<1.1 (mean
PSRF = 1.02) and all the posterior estimates lie within
the 5”-95" percentile of the posterior distribution. The
Euclidean distance in parameter space between the
MCMC chain start and the true value (denoted ED,) is
zero and the Euclidean distance between the posterior
mean and the true value is 0.25 (denoted ED,,). This is
our first indication of how far it is possible to perturb the
parameters before they lie outside the basin of attraction.

Perturbance of the starting position further defines
attraction of the posterior basin

Next, we perturbed the starting point of the exploratory
adaptive MCMC chains by sampling from a Normal dis-
tribution centred on the true value with variance
increasing in small steps from variance= 0.005> (corre-
sponding to EDy = 0.06) to variance= 0.1%2 (ED, = 0.98).
We denote these experiments as Experiments 2 to 10,
see Table 1. We then tried choosing initial starting para-
meters from a Gamma distribution, I" (1, 2) and T" (2, 4),
denoted Experiments 11 to 13. For all but two experi-
ments where variance were less than 0.015% (Experi-
ments 1 to 3) we took the initial start from inferring the
initial condition to be the observed level in our data, see
Table 1.

Generally as the initial starting value is perturbed the
mean PSRF value for the sum-of-squares trace plots
increases and the number of species converging reduces
(Columns 3 and 4, Table 1). Except for the first three
experiments, with no or little perturbation, ED,,, (Column
10, Table 1) is comparable with the ED, (Column 2,
Table 1), suggesting that the MCMC parameter chains
are not venturing far from the true values. However by
Experiment 9 the perturbation is such that over 10% of
the parameters are converging to posterior means that
are significantly far away from the true value (i.e. true
value lies outside the 5”-95™ percentile posterior distri-
bution). This could be indicative of alternative parameter
regimes giving rise to the observed data and can be tested
by inspecting the log likelihood.

Parameter convergence is not correlated to Euclidean
distance between starting value and true value

As mentioned above, convergence in data space at the
species level decreases with distance, most notably as



Table 1 Summary of convergence diagnostics in parameter and data space

Experiment Euclidean distance from  Species Analysis PSRF

true values at start ED, computed from sum-of-
squares trace plots in data

Parameter Analysis PSRF

computed from MCMC

chains in parameter space

Euclidean distance between true
values and posterior mean ED,,

%True parameter values lying outside 5 -

95™ percentile of posterior distribution

space

%Species Mean MPSRF % Mean MPSRF

PSRF <1.1 PSRF Parameters  PSRF

PSRF <1.1

1. No 0 100 1.01 1.81 99 1.02 2.69 0.25 0
perturbation
2. Perturbed 0.06 100 1.01 1.77 95 1.03 338 0.30 0.8
variance =
0.005°
3. Perturbed 0.12 97 1.01 1.80 90 1.03 3.07 022 15
variance = 0012
4. Perturbed 0.20 97 1.01 1.85 92 1.03 368 0.30 1.5
variance=
0.015°
5. Perturbed 024 97 1.02 212 96 1.03 347 033 038
variance= 0.02?
6. Perturbed 0.30 93 1.03 211 68 1.09 3.37 032 30
variance=
0025°
7. Perturbed 032 100 1.01 1.74 100 1.01 2.85 043 38
variance = 0.03?
8. Perturbed 038 87 1.05 250 62 .11 3.82 0.37 6.8
variance =
00357
9. Perturbed 051 57 1.10 226 45 1.21 348 0.49 10.5
variance = 0057
10. Perturbed 0.98 33 1.35 447 24 141 579 0.59 13
variance = 0.1°
11. Gamma(1,2) 87.66 7 1.98 847 18 214 10.29 0.70 211
12. Gamma(2,4) 39.86 7 2.31 9.14 5 2.04 10.73 16.03 21.1
13. Gamma(2,4) 88.12 3 2.36 581 2 1.82 6.89 40.90 158
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ED, crosses ED,,. Hence we checked whether conver-  0.05) with the PSRF for Experiments 1-7. Examination
gence in parameter space was correlated to initial start  of the marginal posterior distributions for the five para-
values. We found that neither EDy nor the percentage meters with the lowest PSRFs and the five highest in
of ED, to the true value is significantly correlated (P > Experiment 6 (Figure 2) illustrates that recovery of the
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Figure 2 Posterior probability density estimates for parameters with low end PSRFs (left column) and parameters with high end
PSRFs (right column). True parameter values are indicated by a cross on the x-axis.
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true parameter values may not be controlled directly by
convergence diagnostics.

The reason why some parameters are not converging
appears parameter specific and possibly related to indivi-
dual levels of inter-correlation with other parameters or
species. To test this hypothesis we investigated what hap-
pens if we remove highly correlated parameters from the
analysis. We saw a reduction in the MPSRF (e.g. removing
parameters with a correlation coefficient of 0.25 or above
would reduce the MPSRF from 3.38 to 1.02 in Experiment
2) but more work will be required to systematically expose
patterns of inter-correlations in this complex network of
30 species and over 100 parameters.

Conclusions

The aim of this work is to set the scene for full parameter
estimation and model comparison in a Bayesian context
for the circadian clock model. Previously, model para-
meters have been fitted heuristically [2,4,10]. Those model
calibration exercises reproduce features of the data but
cannot rule out other parameter regimes. As the clock
continues to be extended to other species and to down-
stream activities such as metabolism it becomes increas-
ingly important to evaluate competing scenarios, and the
Bayesian approach extends naturally to model comparison.
This work represents the first full Bayesian treatment of
parameter estimation for the circadian clock in Arabidop-
sis Thaliana and informs future work for tackling this
complex problem.

Our initial investigation highlights two main areas. First,
we have shown that modern MCMC techniques, when
implemented in a high performance computing environ-
ment, make it feasible to attempt Bayesian inference in
this high-dimensional setting.

Second, apparent convergence in either data or para-
meter space, using diagnostic techniques, may mask poor
mixing, both pairwise and at higher orders of the explora-
tory chains. This issue requires further investigation of the
proposal function but also better coverage of the prior
parameter space with a population of chains. For the
simulation experiments described in the present article,
we took the most unfavourable scenario of complete
absence of prior information about the chemical kinetic
parameter values, for which we chose improper uniform
prior distributions. For most practical applications, more
informative priors are usually available, derived from
expert elicitation, the biological literature, databases such
as KEGG (Kyoto Encyclopedia of Genes and Genomes),
and complementary experiments. We note that more
informative priors can not only potentially lead to an
improvement in the parameter estimation accuracy, but
also to an improvement in the convergence of the Markov
chains, due to the fact that they render the posterior distri-
butions less diffuse. The estimates presented in the present
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study can therefore be regarded as conservative, providing
performance indicators that, in practice, can potentially be
improved on. Exploration of the parameter space could
also be directed by introducing auxiliary information, in a
systematic fashion, specific to the circadian model, such as
period/amplitude or phase of the data. These considera-
tions will allow for greater confidence in the predictions
and fuller understanding of the model performance in dif-
ferent parameter regimes.
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