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Abstract

Background: Copy number variations (CNVs) are the main genetic structural variations in cancer genome.
Detecting CNVs in genetic exome region is efficient and cost-effective in identifying cancer associated genes. Many
tools had been developed accordingly and yet these tools lack of reliability because of high false negative rate,

which is intrinsically caused by genome exonic bias.

Results: To provide an alternative option, here, we report Anaconda, a comprehensive pipeline that allows flexible
integration of multiple CNV-calling methods and systematic annotation of CNVs in analyzing WES data. Just by one
command, Anaconda can generate CNV detection result by up to four CNV detecting tools. Associated with
comprehensive annotation analysis of genes involved in shared CNV regions, Anaconda is able to deliver a more
reliable and useful report in assistance with CNV-associate cancer researches.

Conclusion: Anaconda package and manual can be freely accessed at http://mcg.ustc.edu.cn/bsc/ANACONDA/.
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Background

Copy number variations (CNVs) are the main genetic struc-
tural variations in human cancer genome [1-4]. Accurate
inference of CNVs is necessary for identifying cancer-
causing genes, and has been of long-standing interest in
cancer-focused studies for investigating rules of tumor pro-
gression [5-7]. Meanwhile, the advent of next-generation
sequencing (NGS) has dramatically furthered our under-
standing of human diseases with an unprecedented depth,
as it allows high-throughput profiling of human genome in
nucleotide resolution. Compared to whole-genome sequen-
cing (WGS), whole-exome sequencing (WES) only captures
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and sequences exonic regions (referred as targets) and al-
lows relatively higher coverage given at the same cost. As
always, high efficiency comes with limitations. CNV detec-
tion in WES data is likely to has a high false negative rate
as a consequence of the uneven distribution of exons across
the cancer genome [8].

According to the recent reviews [8, 9], the existed tools
showed their specialties in detecting CN'Vs. However, when
analyzing clinical sequencing data, the performances of
current CNV detecting algorithms are far from satisfactory.
In clinical settings, integrative power in CNV detection is
likely to achieve the most stable performance [10]. It
should contain following features: 1) Adopted different
strategies, current tools show significant divergence in per-
formance. For instance, ADTEx is most likely to detect
medium-size CNVs [11], while EXCAVATOR tends to
identify CNVs between 1 Mb and 100 Mb [9]. Thus, a new
tool that incorporates different methods can deliver a more
comprehensive detection. 2) Parameters of the integrative
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approach should be extensive and easy to modify. CNV de-
tection results are greatly related to parameter settings [8],
thus optimal performance of each included method re-
quires the easy modification of parameters. 3) As high pre-
cision for CNV detection could not be easily achieved by
simply adopting the multiple algorithms, broad annota-
tions should be conducted as a guidance for users in the
analysis of datasets.

To these ends, we developed Anaconda (AN Automated
pipeline for somatic COpy Number variation Detection
and Annotation from tumor exome sequencing data),
which successfully satisfied the requirements: 1) Ana-
conda is designed to be compatible with ease of use and
rich features. Running Anaconda only needs one single
command “./bin/ANACONDA /path/to/configfile”. Users
could easily modify the parameters in config file. Detailed
explanation of each parameter could be found at
Anaconda website. 2) While utilizing different strategies,
users need to locally install and configure the respective
running environment for different tools, which sometime
is highly challenging for general users. After downloading
Anaconda package, by single command “/install’, Ana-
conda would automatically install and configure the run-
ning environment. When running, Anaconda will extract
the detected CNV results of the user-selected methods.
Consensus results are also generated if CNVs called by
multiple methods. 3) To further explore the biological
functions beneath shared CNVs, Anaconda can also
conduct annotation analysis for the genes that are in-
volved in all CNV regions called by selected tools.
Thus, we believe that Anaconda could assist users in a
comprehensive and effective manner with their CNV-
related projects.

Implementation

Choice of methods

At present, lots of calling tools are available and these
tools exhibited their specialties in CNV calling [8-10, 12].
To integrate the different tools into a single package,
several factors weighs heavily in our consideration: 1) Effi-
ciency: the efficiency of Anaconda depends on the per-
formance of the included methods. Based on previous
report [9], EXCAVATOR, ADTEx and Control-FREEC
ranked in the top 3 for processing duration. Tested on our
in-house input, ExomeCNV performed slightly slower
than EXCAVATOR and ADTEx but out-performed than
Control-FREEC. 2) Precision: we identified the precision
of each tool based on existing comparisons, especially
focus on the comparison conducted on clinical data.
When setting SNP array results as control, previous report
compared the performance of 6 tools on two major data-
sets: ADTEx and EXCAVATOR showed better perfor-
mances owing to their high precision and sensitivity [9]. 3)
Input: unified input format will facilitate the combination
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of different methods. Most caller tools, such as ADTEXx,
EXCAVATOR, ExomeCNV and Control-FREEC, allow
BAM input. Though ERDS-pe also allows BAM input, the
required single-nucleotide variation information (VCF for-
mat), limited its practicability. Additionally, the tools re-
vealed their preference on CNV size: EXCAVATOR often
recognizes larger CNVs, ADTEx tends to detect medium-
size CNVs, while ExomeCNV and Control-FREEC are in
favor of smaller CNVs [9]. Therefore, Anaconda integrates
4 algorithms: Control-FREEC [13], ADTEx [11], EXCAVA-
TOR [14] and ExomeCNV [15], other tools will be incorpo-
rated to Anaconda in future.

Fundamental framework of Anaconda is constructed
with Shell. Unix-like systems, R3.0+, Jdk8+, gcc and g++
are required before installing Anaconda. After fulfilling
all prerequisites, users could simply run a single com-
mand “/install” at the Anaconda unzipped folder to
install Anaconda.

Workflow

For convenience of users during setting the parameters,
Anaconda prepared a specific config file, at which users
could determine the following options: 1) softwares used
for CNV detection, 2) paths for input files and output
results; 3) gene coverage in CNV regions; 4) minimal
called methods in considering CNV as a common CNV;
5) parallel threads as well as all specific parameters for
each selected tool. After the setting progress, users could
simply run a command “./bin/ANACONDA /path/to/
configfile” to process their data. We highly recommend
users to access Internet when use Anaconda for the first
time, because Anaconda would double-check and down-
load the necessary packages automatically.

Anaconda takes paired tumor and normal bam files, gen-
ome reference fasta file, exome bed file as input, and output
detected CNVs and their annotations. Human genome
(hg18 and hg19) fasta file and exome bed file can be down-
loaded from Anaconda website. Workflow of Anaconda is
shown in Fig. 1. The pipeline contains five steps: 1) config-
ure the running environment; 2) detect somatic CNVs by
assigned tools; 3) extract the intersection of detected
CNVs; 4) retrieve and annotate genes located within
called CNVs; 5) generate a HTML-based report in-
cluding all the analyzed results.

General analysis for callers

For CNVs called by specific tool, Anaconda draws plot
of gain and loss CNVs on every chromosome using R
(Additional file 1: Figure S1A), and calculates overall loss
and gain of the CNV quantity. Detailed results of CNVs
are presented in tables including chromosome, exon start,
exon end and copy number information (Additional file 1:
Figure S1B).
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Fig. 1 Overall workflow of Anaconda
.

Venn diagrams are drawn to show the intersection of
called CNVs by selected tools and genes involved in
CNV regions (Additional file 1: Figure S1C). Detailed
CNV intersection results are showed in tables, including
CNV position, copy number quantity, caller information
and shared number information (Additional file 1: Figure
S1D). Anaconda also provides additional coverage and
detailed information for the genes involved in called
CNV regions.

Shared CNVs and genes

Method that Anaconda determines shared CNV region
and genes can be seen at Additional file 2: Figure S2. At
first, Anaconda gathers all merged CNV reads called by
selected tools, maps them with reference genome and
divides them as unique-caller reads, double-caller reads,
triple-caller reads and tetrad-caller reads. Mapping gene
to called CNV region is based on gene coverage. Our de-
fault coverage value is 0.7, i.e. if 70% of gene sequence is

-
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located inside this CNV, this gene will be retrieved with
caller information. Gene coverage value could be modi-
fied at Anaconda config file.

Functional annotation

To reveal gene function in called CNV regions, Anaconda
annotates these genes with Gene Ontology (GO), Online
Mendelian Inheritance in Man (OMIM), Clusters of Ortho-
logous Groups (COG), Pathway, Protein domain and terms
(Additional file 3: Figure S3). All term information are
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downloaded from Database for Annotation, Visualization
and Integrated Discovery (DAVID) V6.8 [16] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [17].
Anaconda applies fisher’s exact test to generate P-
value for all variants enriched to respective terms.
After assigning annotation categories, detailed table is
provided to present annotation results. On each anno-
tation page, search module and data sort function is
equipped for users with specific commands. For in-
stance, users could click the sort icon by P-value
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column to sort the P-value of all the terms in a low to high
or high to low manner.

Results and discussion

To evaluate the performance gain of Anaconda, we used
thirteen simulated samples to evaluate the performance
of Anaconda and the individual tool. Each simulated
sample contains ten CNVs regions range from one to
twenty copies (the size ranges from 500 kb to 4.5 Mb).
The definition of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) were
described in our previous work [18]. The statistical
measures of true positive rate (TPR), false discovery
rate (FDR) and precision were used to evaluate the
performance of individual or combined algorithms.
Compared with results from individual software, the
approach of integration of different algorithms has
more stable performance. The false discovery rate was
reduced from 0.0417%-17.7877% to 0.0011%—0.4854%,
and the precision was increased from 82.21%-99.96%
to 99.51%-100.00% (Additional file 4: Table S1).

To demonstrate the high practicability of Anaconda in
detecting and annotating somatic CNVs, and to evaluate
the function it presents, we applied Anaconda to analyze
a tumor WES dataset downloaded from European Gen-
ome Phenome Archive (EGA) with accession number
EGAS00001000132. We randomly picked 9 samples,
SA018, SA029, SA030, SA031, SA051, SA052, SA065,
SA069 and SA071 from this dataset. During the analysis,
all samples are conducted with the default parameters.
For each sample, all the four calling methods, Control-
FREEC, ADTEx, EXCAVATOR and ExomeCNV were
applied to call CNVs from WES data. Venn diagrams
were plotted (Fig. 2) to compare the overlapping results
of called CNVs and genes in called CNV regions.

Distribution of called CNVs and genes are shown in
Fig. 3a. Shared CNV regions by 4 callers (tetrad-caller
reads) are significantly decreased, ranging from 0.2% in
SA029 to 16.8% in SA071. Gene distribution in tetrad-
caller read regions is relatively higher than triple, double
or single caller reads, as the percentages of gene quantity
in tetrad-caller region, over the quantity of all genes is
two times higher than the percentage of tetrad-caller
CNVs quantity over all CNVs. CNVs called by each tool
(Fig. 3b) and gene quantity in accordance with the CNV
regions (Fig. 3c) demonstrated great divergence of the
performance of each tool. For example, ExomeCNV is
likely to call more CNVs than others. CNV regions
called by Control-FREEC tend to cover more genes.
ADTEx shows a moderate performance in calling CNVs
as well as the distribution of genes in its called CNV re-
gions. EXCAVATOR called the least in quantity of CNV
regions. These regions share the relatively higher over-
lapping rate with other tools. For example, in SA018,
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82.5% of CNVs called by EXCAVATOR are also the cal-
lers by other three tools.

Conclusion

Anaconda is an integrative tool in the detection and anno-
tation of CNVs from whole-exome sequencing data. Util-
izing four published tools, Anaconda is able to detect
CNVs in a comprehensive manner. Ease in installation
and application, Anaconda could satisfy the biologist’s de-
mands in data process. Additionally, pervasive annotation
of genes in called CNV regions could serve as a second
opinion during the analysis of datasets, compensating the
low preciseness caused by the unevenly distributed se-
quence data. In all, we believe Anaconda could be of great
help for users with their CNV-related cancer research.

Availability and requirements

The package and manual for Anacond a can be freely
accessed at http://mcg.ustc.edu.cn/bsc/ ANACONDA/.
Tools integrated in Anaconda could be find in the refer-
enced articles. WES test dataset is downloaded from
European Genome Phenome Archive (EGA) with acces-
sion number EGAS00001000132.

Additional files

Additional file 1: Figure S1. General analysis of Anaconda. (TIFF 1228 kb)

Additional file 2: Figure S2. Anaconda detected shared CNV regions
and genes. The region is considered as unique-caller read, only called by
ADTEX; b region is considered as double-caller read, called by ADTEx and
EXCAVATOR,; c region is considered as triple-caller read, called by EXCAVATOR,
Control-FREEC and ADTEX; d region is considered as tetrad-caller read, called
by all four tools. Mapping gene to CNV region is based on gene sequence
coverage in CNV region. (TIFF 70 kb)

Additional file 3: Figure S3. Functional annotations of Anaconda.
(TIFF 395 kb)

Additional file 4: Table S1. Evaluation of performance gain of
Anaconda. (DOCX 16 kb)
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