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Abstract

Background: Communities living in developing countries as well as populations affected by natural or man-made
disasters can be left at great risk from water related diseases, especially those spread through the faecal-oral route.
Conventional water treatments such as boiling and chlorination can be effective but may prove costly for
impoverished communities. Solar water disinfection (SODIS) has been shown to be a cheap and effective way for
communities to treat their water. The exposure to sunlight is typically carried out in small volume plastic beverage
bottles (up to 2 l). Given the water requirements of consumption and basic personal hygiene, this may not always
meet the needs of communities. Recent work has shown 19-L plastic water dispenser containers to be effective
SODIS reactors, comparable in efficacy to PET bottles. In this paper we outline the need for studying SODIS in large
volumes and discuss 4 main associated challenges.

Discussion: Apart from clean water needed for consumption, access to adequate water is essential for sanitation
and hygiene. Contamination of treated water through unwashed hands or vessels contributes heavily to the spread
of water borne pathogens in communities. Traditional water treatments such as boiling and chlorination can be
effective but may prove financially burdensome for low income communities. SODIS in large vessels could be used as
a simple method to meet water requirements in low income and disaster affected populations. However, there have
been some concerns associated with the conventional SODIS method; we identify the main ones to be: (1) cold or
cloudy weather; (2) the fear of leaching in plastic bottles; (3) water turbidity, and; (4) community acceptance.

Summary: The application of SODIS in large bottles like WDCs has the potential to be an efficient and cost effective
method of disinfecting water, either for consumption until more rigorous water treatments can be put in place, or for
sanitation and hygiene to curb the spread of fecal contamination. Further research is needed that can address some of
the limitations and challenges associated with the use of large bottles for SODIS.
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Background
The World Health Organization (WHO) estimates that
around 10 % of the global burden of disease can be at-
tributed to lack of adequate drinking water, poor hy-
giene, and inefficient sanitation [1]. Unsafe water is the
main reason for diarrheal diseases such as dysentery and
cholera, preventable and treatable disorders which claim
the lives of around 1.5 million people every year, around
760,000 of these being children under 5 years [2]. Water
treatment techniques such as filtration, boiling, chlorin-
ation and ultra violet radiation, while effective may be
too costly to use in developing countries or emergency
situations. Solar water disinfection (SODIS) is a simple
and cheap method which uses natural sunlight to treat
contaminated water filled into transparent plastic con-
tainers and exposed to direct sunlight for up to 6 h. SODIS
has conventionally been implemented using 1-2 L poly-
ethylene terephthalate (PET) bottles which have shown
good characteristics of microbiological inactivation in nat-
ural sunlight [3–6]. To date, most SODIS based research
has focused on using these 2 L PET bottles [5, 7, 8].
The aim of this debate article is to identify the

needs for SODIS in large volume bottles as well as to
debate their limitations. The findings of this article
will help to inform the global conversations around
access to clean and safe water in resource-limited set-
tings and to help develop appropriate and sustainable
strategies at community level to enhance compliance
with SODIS.

Discussion
What is the Need for SODIS in Large Volumes?
SODIS success stories are described from many groups
under various field conditions, all of which strengthen
solar water disinfection’s position as a sustainable, cost
effective method of acquiring clean drinking water in
developing countries [9–11]. The impact on health of
consumers of SODIS treated water has been closely
followed in several countries such as Kenya, India and
Cameroon and the data is encouraging with decreases in
prevalence of diarrhea and other water borne diseases
being reported among the intervention groups [12–14].
Unfortunately, the capacities of commercial PET bot-

tles, which usually come in sizes that can hold up to 2 L
of water, make them less suitable for disinfecting large
quantities of water unless a number are put to use at the
same time. This limits its sustained everyday use as a
water treatment method owing mainly to the time and
effort associated with setting up and keeping track of
multiple SODIS bottles. This is an unfortunate restric-
tion as SODIS holds several advantages over other treat-
ment interventions such as boiling and chlorination in
that apart from being low cost and easy to implement, it
also uses up a minimal amount of consumables [3].

According to humanitarian agencies, it has been esti-
mated that water requirements for consumption and
hygiene based on basic survival needs are 7.5–15 l per
person per day dependent on climate, sanitation facilities,
social and cultural norms etc. [15]. We recently showed
19 l polycarbonate (PC) Water dispenser containers
(WDCs) were as effective at SODIS treatment for E. coli
or E. faecalis as 2 L PET bottles [16]. These larger water
containers could be valuable in emergency settings as well
as to impoverished communities.

Community needs
A large body of research has highlighted the strong link
between improvements in sanitation, simple personal
hygiene and interventions to improve water quality at
point of use with a decrease in diarrhea and other
gastrointestinal diseases [17–20]. Boiling dominates the
household water treatment landscape in resource-
limited settings with data from a 67 country survey
reporting more than 21 % of households preferring this
method. Other practices included filtration, solar disin-
fection and the use of bleach or chlorine products [21].
In low-income communities, the improper handling and
storage of water post treatment plays a large part in
spreading water borne pathogens. In Peru for example,
researchers looked at the fecal contamination of drink-
ing water at different stages between the source and final
consumption point. This work was carried out in a peri
urban setting with chlorination at the main water outlets
and household boiling. It was found that despite water
at the source showing no microbiological contamination
and boiling water before storage, almost a third of
household samples from stored boiled water showed
fecal contamination. This makes sense in the light of the
fact that data collected on E.coli counts from the hands
of users as well as from the cups residents used to pour
water into before consumption showed high levels of
bacterial contamination [22]. This decrease in quality of
water between the collection at source and consumption
has been seen in other community studies in countries
like Brazil [23], Bolivia [24] and India [25] with factors
like scooping water from containers with dirty hands,
contamination during cleaning the storage vessel and
the type of vessel used implicated as contributors to
water contamination. Such studies highlight the import-
ance of practices such as hand washing when collecting,
handling and storing water. Obtaining enough quantities
of clean water for hygiene and sanitation through
methods like boiling or use of chlorine agents may prove
expensive as well as time consuming [25]. The exposure
of contaminated water to sunlight has consistently been
shown to improve its quality and SODIS has so far
primarily been used as a simple and cheap method to
disinfect water for drinking. SODIS water treated in
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large bottles such as in WDCs can also be used to carry
out hand and vessel washing in situations where the
needs of drinking water are being met by other costlier
methods. This can help to decrease the instances of re-
contamination of treated water in communities.

Emergency settings
In areas that have been struck by natural disasters or in
refugee and disaster relief camps, the burden of provid-
ing necessary amounts of clean water falls on the local
government and/or on aid organizations dealing with
the crisis. It has been well established that provision of
clean water for drinking is a critical factor in preventing
morbidity and mortality in emergency settings [26].
However, it is worth noting that an equally important
factor is an adequate quantity of clean water [27]. In
light of the increased risk of susceptibility to diseases,
the Sphere Project recommends that, following a disas-
ter the provision of adequate quantities of water to the
affected population takes precedence over access to high
quality water until arrangements can be made to fulfil all
minimum requirements [15].
According to the United Nations High Commissioner

for Refugees (UNHCR), at the end of 2015 there were an
estimated 21.3 million refugees worldwide [28]. A large
percentage of these people live for varying amounts of
time in over-crowded quarters in relief camps where
basic water, sanitation and hygiene (WASH) practices
can be severely compromised. As a result of such living
conditions where the quantity of clean water is limited, a
number of diarrheal disease causing pathogens including
E.coli can spread infections mainly through fecally con-
taminated water [2, 26, 29]. Diarrheal diseases caused by
contaminated water alone can be responsible for more
than 40 % of deaths in such settings [26]. Activities such
as maintaining personal hygiene, practicing good sanita-
tion, managing medical and solid waste etc. are critical
in preventing transmission of diseases caused by con-
tamination through the improper storage, handling and
transport of food and water and the sharing of cooking
utensils [17, 26].
However in conflict areas, roads, waterways and other

civil amenities may be disrupted thus making the trans-
port of bottled water or of water in tankers to afflicted
areas difficult, time consuming, unreliable and expen-
sive. Following the recent civil unrest in Syria, refugee
camps across the country were faced with acute water
shortages resulting from compromised existing water
supply systems. In the Yarmouk refugee camp near
Damascus, people have been forced to depend on un-
treated groundwater obtained from wells. UNWRA
medical staff reported that the severe water shortage
coupled with crowded living conditions in the camp
have led to increase in communicable diseases such as

typhoid, scabies and diarrhea [30, 31]. The cholera out-
break in Haiti following the 2010 earthquake is another
prime example of the importance of WASH conditions
following a natural disaster. The measures to curb the
rapid spread of the disease included transporting potable
water to temporary shelters through tankers, chlorin-
ation of municipal water supplies and distribution of
water treatment products [32, 33]. In disaster response as
in the case of communities, recontamination of treated
water following methods like boiling has been reported
[34]. The importance of hygiene and sanitation can again
be stressed in such circumstances - researchers investigat-
ing a Malawian refugee camp found that though the
source water was relatively clean, contamination of water
occurred by the hands of the women who collected the
water in open rim buckets [35].
Studies examining intervention techniques for water

treatment in refugee camps have previously reported
success in curbing diarrheal diseases [35, 36]. SODIS in
conventional containers is already a recommended
method of treating water for affected populations in the
wake of humanitarian crises or natural disasters [37].
Scaling up the volume of SODIS containers can prove
useful in such settings where water treatment is usually
done in bulk and not at a household level. Hence,
SODIS in large volumes has the potential to cheaply and
simply alleviate the problem related to water shortages
in emergency situations – either as a means of water
disinfection for consumption where costlier methods
cannot be safely implemented or as a means of improv-
ing sanitation and hygiene to minimize the spread of
fecal contamination.

What are the challenges expected with SODIS in large
volumes?
Based on an extensive literature review, we identified cer-
tain key concerns associated with the traditional SODIS
method which may likely be carried over into any at-
tempts to implement SODIS in large volumes. We discuss
the following four challenges:

� Cold or Cloudy Weather [38]
� The Fear of Leaching in Plastic Bottles [39]
� Water Turbidity [38]
� Community Acceptance [40]

Cold or cloudy weather
Exposure to sunlight renders pathogens inactive by three
possible mechanisms – optical inactivation, thermal in-
activation and a synergistic action of both stresses. The
synergistic effects that UV radiation and high tempera-
tures have on bacteria have been well documented and
this ‘combination therapy’ is seen to cause rapid drops in
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populations of viable bacteria when the temperature of
the water being treated reaches 45 °C or more [41, 42].
Previous work concentrating on the dynamics of

SODIS has looked at the effectiveness of small volume
reactors under a variety of climatic conditions either
through laboratory simulation of climatic conditions or
field data. A mathematical solar radiation model con-
structed using field data in Haiti looked at the practical-
ity of implementing SODIS all year round in the
country. This work was carried out in January when the
weather was colder and UV intensity less harsh when
compared to Haiti’s normally tropical climate. 1.5 L PET
bottles were used to evaluate the actual rate of bacterial
inactivation and it was seen that instead of 5–6 h, a
2 day exposure was necessary to ensure 100 % success in
microbial inactivation. The researchers saw no microbial
inactivation on days when the incident solar intensity
failed to meet the set threshold value, i.e. constant ir-
radiation of 500 W/m2 for at least 3 h [43]. Given the
synergistic activity of UV radiation and heat, the
temperature that the water being treated reaches during
exposure is critical. For instance, simulated sunlight ex-
periments carried out on cysts of the protozoa Acanth-
amoeba polyphaga showed no appreciable reduction in
cyst viability for water samples that reached a maximum
of 40 °C over the course of 6 h. Subsequent work carried
out by the same group reported a 3.6 log reduction in vi-
able cysts at 50 °C after 6 h of treatment whereas a 3.3
log reduction was observed in only 4 h following expos-
ure at 55 °C [44, 45].
When implementing SODIS, it is recommended that

for best possible results the water to be treated be ex-
posed to total solar irradiation of 500 W/m2 for about
5 h [6]. It is worth noting that several developing coun-
tries as well as most of the countries with the largest
number of refugees and displaced people lie in or close
to the global region perceived as being most favourable
for SODIS [6, 28, 46]. However, emergency situations
such as natural disasters can strike anywhere hence it
may hence be necessary to evaluate the daily and sea-
sonal variations in temperature and incident solar radi-
ation on a particular site before the application of
SODIS. In cloudy conditions, exposure times of up to
48 h are recommended for solar radiation levels to ad-
equately disinfect water and under heavy rainfall, the use
of SODIS is not recommended [6, 43]. Certain additives
have shown success in enhancing SODIS’ effectiveness
and reducing the overall time needed to disinfect water.
A combination of SODIS and lime juice added to E.coli
contaminated water in PET bottles showed a 5.6 log de-
crease in microbial cells within half an hour of solar ex-
posure while SODIS alone showed a 1.5 log decrease [7].
Such findings highlight the potential usefulness of using
additives to improve confidence in SODIS in situations

where the radiation and temperature thresholds are not
met. The study which determined the efficacy of WDCs
as dependable SODIS vessels was conducted without
any supplementation techniques, in the summer with
the UV irradiance and temperatures being expectedly
high. These conditions achieved a 5–6 log reduction in
inoculated bacteria with maximum exposure duration of
6 h [16]. Future research is required on the applicability
of WDCs and increased water volumes for SODIS treat-
ment under varying climatic conditions and the accom-
panying temperature and solar intensity variations.
Accordingly, the use of additives like limes or other sup-
plementation techniques such as blackening the bottles’
surfaces can then be developed [7, 38].

The fear of leaching in plastic bottles
In the past, there have been public concerns about leaching
of chemicals such as antimony and phthalates from plastic
containers into the food or water they contain [39, 47]. As
regards SODIS, Wegelin et al. filled PET bottles, exposed
them to sunlight for up to 6 h and showed no harmful
movement of photoproducts into the treated water under
temperature and UV exposure encountered in field and la-
boratory tests [48].
Unlike small volume PET bottles, WDCs are generally

made of polycarbonate (PC), a plastic whose main mono-
mer is bisphenol-A (BPA), a chemical that is a known
weakly estrogenic endocrine disruptor [49]. Studies have
found that high temperatures and reuse can affect the
rates of BPA migration from PC bottles into the water
they hold [50, 51]. Brede et al. tracked the rate of release
of BPA from PC baby bottles at elevated temperatures of
up to 100 °C and under conditions of vigorous simulated
use which included boiling, dishwashing and brushing at
different temperatures. After an observation period of
more than 20 h, a detectable amount of BPA was mea-
sured, though the levels did not exceed the then estab-
lished limits for BPA exposure (0.01 mg BPA/kg body
weight per day) [52]. This data taken together suggests
that holding water in PC bottles at elevated temperatures,
as would occur under SODIS treatment, would exacerbate
the rate of BPA release from the plastic. It is worth noting
however that these temperatures and time frames are
much higher than those recorded in normal SODIS use.
For instance, recent research on bacterial inactivation was
carried out using 19 L PC large bottles as well as small
volume PET bottles in the summer months in three coun-
tries - India, Bahrain and Spain. In each location, the bot-
tles were exposed to 5–6 h of uninterrupted natural
sunshine and temperatures recorded hourly. The water
temperature never crossed 55 °C in any of the bottles
under any of the experimental conditions [16].
Regulatory bodies have cleared the use of BPA in the

food and beverage industry because recorded human
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exposure levels are considered too low to be able to cause
any adverse health effects in any age group [53, 54]. Based
on most recent evidences, the tolerable daily intake (TDI)
for BPA from dietary exposure is 4 μg/kg body weight ac-
cording to the European Food Safety Authority (EFSA)
while the dietary intake in the highest exposure age groups
is estimated to be 0.857 μg/kg body weight per day [54].
Separate BPA metabolism studies in rats and humans have
shown that following oral exposure, BPA is efficiently ex-
pelled from the body and there is no evidence of any ap-
preciable build-up of the chemical in the bloodstream or
in the tissue. The human study examined serum BPA con-
centrations following dietary intake that was much higher
than that reported for the general adult U.S. public.
Nevertheless, no biologically active BPA was detected at
the time of assessment [55, 56]. In the previously men-
tioned study by Brede et al., the most extreme case of
leaching- with exposure to boiling water, multiple dish-
washer cycles and brushing, measured BPA at 8.4 ± 4 μg/L
(average from 12 bottles) [52]. In the light of the figures
above on the TDI established by the EFSA, a person
weighing 60 kg would have to consume around 28 l of the
BPA tainted water in a single day to cross the tolerable
limit (assuming no other dietary source of exposure).
A more recent study conducted using PET and PC

bottles found that leaching of antimony and bromine
into the water did occur and interestingly, the main con-
tributor to the escape of these chemicals was not range
of temperature or UV exposure, but number of times
the container was reused. PC bottles reused up to 27
times showed antimony leaching into the water at con-
centrations of around 17 ng/L while bromine was mea-
sured at around 15 ng/L. These levels were deemed
insufficient to cause health concerns in users, however it
was also suggested that larger volume bottles may be
subjected to harsh cleaning procedures involving high
temperatures, cleaning chemicals and mechanical scrub-
bing and that these factors together could influence the
rate of release of harmful additives into the water [57].
This is definitely an area that requires deeper study as it
is likely that users of SODIS will reuse the bottles either
due to economic reasons or because it would prove in-
convenient to procure fresh bottles. Research in this area
is of interest to the community as there is a general fear
associated with placing plastic bottles under direct sun-
light due to leaching of carcinogens that may occur.

Water turbidity
Turbidity is a factor that varies greatly in water sources
from region to region. Highly turbid water reduces the
efficiency of solar disinfection by decreasing the penetra-
tion of sunlight through the water thus protecting mi-
crobes from inactivation. The Swiss Federal Institute of
Aquatic Science and Technology (EAWAG) recommend

that raw water have a minimum turbidity of 30NTU be-
fore being subjected to SODIS treatment [6]. Studies in
Kenya have shown that in water samples having turbidity
more than 200NTU, around 1 % of the incident UV
radiation was able to penetrate the water samples and
disinfection occurred mainly by the thermal route when
the temperature of the water rose above 55 °C [4].
Recent investigations on the performance of WDCs

compared with PET bottles filled with turbid (100 NTU)
water have shown that satisfactory inactivation occurred
in both cases though the time of exposure needed for
the WDCs was slightly higher [16]. This is encouraging
and further work is needed that evaluates SODIS in
WDCs singly as well as coupled with turbidity treat-
ments as natural water turbidities can reach as high as
2000 NTU depending on factors such as rainfall [4].
There are several procedures recommended for re-

moval of turbidity in water, including simple settling and
filtration. Minerals like Alum (potassium sulphate) and
the seeds of plants like Moringa oleifera have been used
in water flocculation to reduce turbidity. Both these floc-
culants have been studied as pre-treatment options to
clarify water prior to the use of methods such as chlorin-
ation or SODIS and have shown promising results. How-
ever, consideration must be given to the fact that
addition of any pre-treatment step lengthens the overall
time required for disinfection and hence choosing a vi-
able pretreatment method depends very much on factors
like local availability of the resource, manpower and cost
[58, 59]. Other factors to consider are the changes in
physical characteristics of the water treated; for instance
unlike flocculation by alum, the use of M.oleifera seeds
does not affect the pH and conductivity of the water and
also generates an appreciably less amount of sludge [60].
However, a stumbling block in the uptake of this turbidity
removal method may be the increase in organic content
following treatment and the accompanying changes in
odour or taste to the water, particularly after storage [61].

Community acceptance
Barriers to the successful dissemination of SODIS can
include ignorance regarding the causes of diarrheal dis-
ease, reluctance to put in the time involved in addition
to that of a normal workday or during seasonal increases
in workloads, and an absence of water sources in close
proximity to the user [40, 62]. In developing countries,
12 % of households without piped water rely on children
below 15 years for collection of drinking water with girls
twice as likely to carry this burden as boys. In Sub-
Saharan Africa, more than 25 % of the population takes
longer than 30 min for a single round trip of water col-
lection. Globally, the percentages of households within
15 min of a source of water vary greatly with the most
recent data reporting 97 % in Eastern Europe and 54 %

Borde et al. BMC Public Health  (2016) 16:931 Page 5 of 8



in Sub-Saharan Africa. Rural households are less likely
than urban ones to have a source of water nearby [63].
Field data is needed before recommendations can be
made on the communities in which SODIS volume can
be scaled up. However, given the above figures on pri-
mary water collectors and considering the dimensions
and weight of filled WDCs, SODIS on large volumes
may prove inconvenient unless the bottles are filled and
exposed at or near to the site of use.
Cost of the larger bottles may also be a relevant factor

to their uptake in communities and the prices of large
plastic bottles vary around the world. In Uganda last
year, the unit price of a PET bottle (2 L) was 0.50€ while
that of a WDC (19 L) was 6.40€ [16]. Keeping in mind
15 L as the upper limit of water quantity needed per
person per day and assuming no other means of disin-
fecting water, a single person would spend 4€ and need
to fully fill and monitor 8 PET bottles to cross this
benchmark. A single WDC on the other hand would
provide 4 L more than the recommended volume within
a single SODIS treatment time.
Community studies on WDCs are vital because in

cases where compliance is high, strong links have been
seen between using SODIS and drops in incidences of
diarrhea; indeed there is a proven link between long
term, faithful adherence to any water treatment method
and associated health gains [64]. For instance, in an earl-
ier 6 month study in India, the closely controlled and
monitored group of children in the intervention arm
(compliance rate 78 %) showed a 40 % decrease in all
diarrheal episodes compared to the non-intervention group
[13]. Two other high compliance studies in Cambodia and
in South Africa with 95 % and 75 % user compliance,
respectively, reported reduced incidences of diarrhea
in the intervention groups and also stressed the import-
ance of participant motivation and choosing specific
methods of participant allotment into intervention and
control groups [65, 66].

Conclusions
Given the minimum requirements of 7.5-15 L of water/
person/day, disinfecting large volumes by methods such
as boiling or chlorination may not be cost or labour
effective in developing countries or in humanitarian
emergencies. Access to sufficient quantities of clean
water for hygiene and sanitation can be as important as
clean water for consumption when it comes to preven-
tion of communicable diseases. SODIS in large volumes
can potentially meet these needs.
We recommend that future research focus on address-

ing some of the concerns and gaps in research associated
with scaling up of SODIS volumes. These include the po-
tential for leaching of plastic additives into treated water,
temperature profiles and climatic conditions under which

WDCs perform well and the effectiveness of the method
when coupled with pretreatment techniques. Moreover,
close attention should be given to studying and developing
dissemination procedures that guarantee the highest rates
or compliance with SODIS. Social research is also needed
to look at acceptance and perceived benefit of the SODIS
at the community level, and the role it can play to improve
the resilience of communities to social and economic
shocks in conflict and post conflict settings.
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