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Abstract

Background: Aldehyde-deformylating oxygenase (ADO) is a key enzyme involved in the biosynthetic pathway of
fatty alk(a/e)nes in cyanobacteria. However, cADO (cyanobacterial ADO) showed extreme low activity with the k.
value below 1 min~', which would limit its application in biofuel production. To identify the activity related key
residues of cADO is urgently required.

Results: The amino acid residues which might affect cADO activity were identified based on the crystal structures
and sequence alignment of cADOs, including the residues close to the di-iron center (Tyr39, Arg62, GIn110, Tyr122,
Asp143 of cADO-1593), the protein surface (Trp 178 of cADO-1593), and those involved in two important hydrogen
bonds (GIn49, Asn123 of cADO-1593, and Asp49, Asn123 of cADO-sll0208) and in the oligopeptide whose
conformation changed in the absence of the di-iron center (Leu146, Asn149, Phe150 of cADO-1593, and Thr146,
Leu148, Tyr150 of cADO-sl10208). The variants of cADO-1593 from Synechococcus elongatus PCC7942 and cADO-s110208
from Synechocystis sp. PCC6803 were constructed, overexpressed, purified and kinetically characterized. The k., values
of L146T, Q49H/N123H/F150Y and W178R of cADO-1593 and L148R of cADO-s110208 were increased by more than
two-fold, whereas that of R62A dropped by 91.1%. N123H, Y39F and D143A of cADO-1593, and Y150F of cADO-sl10208
reduced activities by < 20%.

Conclusions: Some important amino acids, which exerted some effects on cADO activity, were identified. Several
enzyme variants exhibited greatly reduced activity, while the k., values of several mutants are more than two-fold higher
than the wild type. This study presents the report on the relationship between amino acid residues and enzyme activity
of cADOs, and the information will provide a guide for enhancement of cADO activity through protein engineering.

Keywords: Aldehyde-deformylating oxygenase, Site-directed mutagenesis, Structure-activity relationship, Fatty alk(a/e)ne,
Synechococcus elongatus PCC7942, Synechocystis sp. PCC6803

Background

Fatty alk(a/e)nes, which can be produced by plants,
insects, birds, green algae, and cyanobacteria, are the
main components of conventional fuels, and have
been considered as the ideal replacement for fossil-
based fuels [1-5]. It has been accepted that a two-
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step pathway for fatty alk(a/e)ne biosynthesis exists,
involving reduction of fatty acyl-ACP or -CoA into
corresponding aldehyde by acyl-ACP reductase and
conversion of fatty aldehyde into alk(a/e)ne by aldehyde
decarbonylase. In 2010, Schirmer et al. identified two
genes involved in fatty alk(a/e)ne biosynthesis in cyano-
bacteria: acyl-ACP reductase and aldehyde decarbony-
lase (renamed as aldehyde-deformylating oxygenase,
ADO) [1, 6]. Since then cADO (cyanobacterial ADO)
has attracted particular interest due to the difficult
and unusual reaction it catalyses [7].
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The crystal structures of cADO revealed that cADO
belongs to the non-heme dinuclear iron oxygenase fam-
ily of enzymes exemplified by methane monoxygenase,
type I ribonucleotide reductase, and ferritin. The di-iron
center is contained within an antiparallel four-a-helix
bundle, where two histidines and four carboxylates
(aspartate or glutamate) supply the protein ligands to
the metal ions [1, 8-11]. The Cl-derived co-product
of the cADO-catalyzed reaction is formate (Fig. 1)
[12]. Oxygen is needed, and one O-atom is incorpo-
rated into formate [13]. The auxiliary reducing system
(biological or chemical) providing four electrons is re-
quired, and the endogenous electron transfer system
worked more effectively than the heterologous and chem-
ical ones in supporting cADO activity [1, 12, 14-16]. Self-
sufficient cADOs fused to homogenous ferredoxin and
ferredoxin-NADP" reductase could efficiently catalyze the
conversion of aldehydes into alk(a/e)nes [17]. It has been
found that cADO also produces n-1 aldehydes and alco-
hols in addition to alk(a/e)ne [18]. Mechanistic studies
have demonstrated that a radical intermediate is involved
in the cADO-catalyzed reaction, and a possible catalytic
process has been proposed based on the crystal structures
of cADO from Synechococcus elongates strain PCC7942
[9, 19-21]. Moreover, cADO was engineered to improve
specificity for short- to medium-chain aldehydes [22].
Recently, Hayashi et al. investigated the role of three
cysteine residues of cADO in the structure, stability
and alk(a/e)ne production [23].

However, cADO showed extreme low activity with
the k., value below 1 min~', which would present a
major barrier to its application in biofuel production
[8, 14-17, 22]. In order to address this issue, protein
engineering of cADO for improved activity including
rational design and/or directed evolution is urgently
needed. The knowledge about structure-function rela-
tionship of cADOs is the prerequisite for rational
protein engineering. Until now, no detailed studies to-
wards structure-function relationship of cADOs have
been carried out. Some crystal structures of cADOs
from P. marinus strain MIT9313 and Synechococcus
elongates strain PCC7942 have been resolved, which
have provided a base for identification of the residues
important for cADO activity [8, 9].
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In the current study, some amino acids which might
affect cADO activity were identified through analysis of
the cADO crystal structures and sequence alignment of
some cADOs. The corresponding enzyme variants were
made and characterized. We have found some essential
residues for the cADO-catalyzed reaction, which will
lay the foundation for improvement of cADO activity
through protein engineering.

Results

Identification of the target residues for mutagenesis

The following residues were identified and investigated
in the current study. Since the variants including muta-
tions of the residues involved in coordinating the di-iron
center negatively affected cADO activity, they were not
included in the current study [9].

Residues whose conformations have changed in the
absence of the di-iron center

Based on the structures of 1593 (cADO from Synechococ-
cus elongates PCC7942) (PDB code: 4RC5) and sl10208
(cADO from Synmechocystis sp. PCC6803) (PDB code:
4758S), the overall structures are similar with or without
the di-iron center, except the conformation change of the
helix H5 in the structure of metal-free cADO [9]. The
switch of the helix H5 from helix to loop resulted in con-
formational changes of a number of amino acids (residues
144 to 150), including the two iron-coordinating residues
Glul44 and His147. The observation suggests that the
residues involved in the oligopeptide may impact cADO
activity. The residues (144 to 150 for 1593) comprising of
that oligopeptide are conservable among cADOs (se-
quence alignment of more than 150 cADOs, which were
found by subjecting to a BLAST search of the sequence of
1593) (Additional files 1 and 2) [24]. For example, Glu144
and His147 (1593 used as a reference), two ligands of the
di-iron center, are completely conserved. Tyr145 is highly
conserved, and is Ser/Ala in several cADOs (Additional
files 1 and 2), and is also involved in a hydrogen bond with
Asnl123 (described in detail in the following part).
Residue 146 is variable, and is Leu/Thr/Ser/Glu, etc.
Residue 148 is Leu among more than around 140
cADOs, and is Arg in 4 cADOs. Residue Asnl49 is
highly conservable, and is Asp/Lys in a few cADOs.

3HY, 4¢", 0,

Q ADO

H,0

Fig. 1 cADO-catalyzed reaction [12-16]

» R-H + HCO,




Wang et al. BMC Biotechnology (2017) 17:31

Tyr150 shows high conservativeness among ~100 cADOs,
and is Phe in ~50 cADOs. As mentioned above, the
ligands of the di-iron center such as Glul44 and His147
were not investigated. The residues Leul46, Asn149 and
Phel50 of 1593, and Thrl46, Leul48 and Tyr150 of
sl10208, which might have some influence on cADO
activity due to the different properties of their side chains,
were chosen for mutagenesis (Figs. 2 and 3).

Residues involved in two hydrogen bonds

According to the crystal structures of sll0208 and
PMT1231 (ADO from Prochlorococcus marinus MIT9
313) (PDB code: 20C5), it was observed that residues
Tyr145 and Tyrl50 which are equivalent to Tyr158 and
Tyr163 of PMT1231 respectively were involved in two
hydrogen bonds (between s110208**P**/PMT1231"* and
s110208™"'%%/PMT1231™"'%%, and between s110208"*"'**/
PMT1231"51%¢ and s110208™**°/PMT1231""°%) (Fig. 4).
However, there is only one hydrogen bond between
Asnl123 and Tyrl45 in 1593, and the corresponding
residues forming the other hydrogen bond in sll0208
and PMT1231 are GIn49 and Phel50 in 1593 (Figs. 2
and 3). Residue 49 is variable, and is GIn/Asn/His/
Asp/Ser/Glu, etc., all containing the polar side chains
(Additional files 1 and 2). Residue Asnl23 is conser-
vable among ~120 cADOs, and is His in 32 cADOs.
Considering that these three cADOs showed different
activities against n-hexadecanal (unpublished results),
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these two hydrogen bonds may have some effects on
cADO activity. The residues GIn49, Asnl23 of 1593
and Asp49, Asnl23 of sll0208 were investigated.

Residues close to the di-iron center

The residues around the di-iron center provide con-
formational constraints that control the geometry of the
di-iron center. According to the structure of 1593, resi-
dues Tyr39, Arg62, GInll0, Tyrl22 and Aspl43 are
close to the di-iron center, which might interact with the
nearby residues including the ligands of di-iron: Tyr39
with Glu60 (ligand), His147 (ligand), GIn110 and Ser111;
Arg62 with Hisl47 (ligand) and Aspl43; GInl10 with
Glull5 (ligand), Asn38 and Tyr39; Tyr122 with Glu32
(ligand), Glul44 (ligand) and Val28 (Fig. 2); Asp143 with
Arg62 and His147 (ligand). Residue Tyr39 is highly con-
served, and is Phe in 8 cADOs (Additional files 1 and 2).
Arg62, GIn110, Tyr122 and Aspl43 show high conserva-
tiveness among ~150 cADO. Likewise, the residues
coordinating the di-iron center like Glu32, Glu44,
Glu60, Glull5, Glul44 and His147 were excluded in this
study. Residues Tyr39, Arg62, GInl10, Tyrl22 and
Aspl43 of 1593 were selected for investigation.

Residues located on the protein surface

Based on sequence alignment of 150 cADOs, Trpl78 of
1593 is highly conserved among ~120 cADOs, and is
Arg/Lys in ~30 cADOs. The side-chains of Trp and Arg/

Asni23

Fig. 2 Identified residues based on the crystal structure of ADO from Synechococcuselongatus PCC7942 (1593; PDB code:4RC5). The identified residues
include those close to the di-iron center (Tyr39, GIn110, Tyr122), the protein surface (Trp178), and involved in the hydrogen-bonding network (Arg62,
Asp143) and the oligopeptide whose conformation changed (Leu/Thr146, Leu148, Asn149 and Tyr/Phe150) in the absence of the diiron center
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Fig. 3 Sequence alignment of 1593, sll0208 and PMT1231. The residues investigated in this paper are labelled with black dots above the sequence
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Lys exhibited completely different properties: hydrophobi-
city versus hydrophilicity. Moreover, according to the
crystal structure of 1593, Trp178 is positioned at Helix 6
and exposed to the protein surface (Fig. 2). These facts
prompted us to presume that hydrophobicity or hydro-
philicity of this residue might have some influence on
cADO activity. Therefore, this residue was studied.

Site-directed mutagenesis, overexpression and purification

We have observed that 1593 is more active than s110208
against n-hexadecanal, so Thr146, Leul48 and Tyr150 of
s110208 were respectively mutated into the counterparts
of 1593 - Leu, Arg and Phe (Fig. 3). For comparison,
Leul46 and Phel50 of 1593 were also mutated into the
corresponding ones of sl10208 - Thr and Tyr respect-
ively. Since PMT1231 is more active than sl10208
towards n-hexadecanal under our assay conditions (un-
published results), Asp49 and Asnl23 of sll0208 were
mutated into the corresponding residues of PMT1231 -
His and His respectively (Fig. 3). In order to investigate

the effects of the polar side chains of some residues on
cADO activity, the single site-directed mutants Y39F,
R62A, QI110L, Y122F, D143A and N149A were con-
structed for 1593. In addition, N123H and W178R of
1593 were made based on the conservativeness.

Enzymatic activities of wild-type cADOs and variants
n-Hexadecanal and #n-heptanal were used as the sub-
strates to investigate the effects of mutations on enzym-
atic activities of 1593 and sll0208. When n-hexadecanal
was used as a substrate, the yields of n-pentadecane were
quantified. While #-heptanal was used as a substrate, the
apparent k_,, values were measured.

Compared with WT (the wild type) 1593, the apparent
k.., values of 1593178k 1593Q49M/NIZH/FIS0Y 1 5031146T
15937159 and 1593H/FISOY were enhanced by 226.7 +
10.3%, 93.3 £ 8.6%, 93.3+8.1%, 68.9 £ 6.2%, and 60 +5%
respectively (Table 1). 1593%°** exhibited significantly
reduced KZEP value, and dropped by 91.1 + 7.4% (Table 1).
1593Y1%%F and 1593"% displayed moderate activity,

24 A respectively

Fig. 4 Two hydrogen bonds in sl10208. The hydrogen-bond lengths between Asn123 and Tyr145 and between Tyr150 and Asp49 are 3.0 and
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Table 1 Apparent k., values and yields of n-pentadecane of
WT 1593, WT sll0208 and variants. The apparent k., values were
determined using 2 mM n-heptanal as the substrate

Kear &P Yield of n-pentadecane (uM)
(Min™")

1593  WT 045 +0.06 121+04
L146T 087+0.1 142+12
N149A 0.31+£0.04 87+0.7
F150Y 0.76 £0.08 122+06
N123H 043 +0.05 104+09
Q49H/F150Y 0.72+0.07 144+06
Q49H/N123H/F150Y 0.87 +0.09 150+0.1
Y39F 037 £0.05 104+08
Q110L 0.23+0.03 58+02
Y122F 0.15+0.02 2.1+£0.04
R62A 0.04 +0.001 04 +0.06
D143A 0.36+0.05 92+02
W178R 147 £0.1 17402

s110208  WT 044 £ 0.05 14+0.1
T146L 0.17+0.02 14+0.1
L148R 0.75+0.08 51+02
Y150F 042 +0.04 22+0.1
D49H 022 +£0.03 18+0.1
N123H 0.14£0.02 1.0£0.08
D49H/N123H 0.73£0.08 34+03

The yield of n-pentadecane was determined using 150 uM using n-hxadecanal
as the substrate

whereas the catalytic activities of 1593Y*%F, 1593N'*3H,
1593M19% and 1593°'**A were reduced by < 31.1 + 2.6%.
The yields of n-pentadecane of the enzyme variants showed
the same trend as the apparent &, values (Table 1).

Compared with WT sll0208, the apparent k,,; values
of s110208"**® and sl10208P**H/N123H yere increased
by 70.5+53% and 65.9 +4.4% respectively, whereas
those of sl10208”*H, s110208™"**" and s110208"*°" were
significantly reduced (Table 1). The activity of s110208""*°F
was not almost affected. The vyields of n-pentadecane of
the enzyme variants demonstrated similar trend to the
apparent k_,; values (Table 1).

The kinetic parameters towards n-heptanal were
also determined for some variants showing higher ac-
tivity than WT. The variants L148R and D49H/
N123H of sl10208, and W178R, Q49H/N123H/F150Y,
L146T and Q49H/F150Y of 1593 showed higher k..,
values than WT and comparable K, values to WT, in-
dicating that these mutations had significant effects on
activity, but no big impact on substrate binding (Table 2).
The observation that the k,, value of F150Y was higher
than that of WT 1593 and its K, value was much lower
than that of WT 1593 suggested that replacement of
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Table 2 Kinetic parameters of WT 1593, WT sll0208 and some

variants
Koy (MM) Kege (MIin™Y) kK (Min~'mM™")
1593 WT [17 030+£0.02 048+0.01 16+£0.2
L146T 034+008 094+008 276+03
F150Y 020+£004 0.75+004 375104
Q49H/F150Y  033+£005 0874004 264402
Q49H/N123H/ 035+0.02 1.04+0.02 297+03
F150Y
W178R 034+008 181+015 532+04
10208 WT 035+£007 059+004 169+0.2
[ 148R 032+0.08 091+008 284+03
D49H/N123H  038+0.08 0.83+0.08 218402

The kinetic parameters against n-heptanal were determined

phenylalanine 150 with tyrosine not only affected activity
but also substrate binding (Table 2).

Interestingly, the k., values of 1593
NI2SH/FISOY 5hd 15931467 close to or above 1 min?,
were obtained. Especially, 1593%'7®® showed 3.8-fold
improved k.,; value than WT 1593, and exhibited the
highest catalytic efficiency (k../K,,) among all variants,
3.3-fold higher than WT (Table 2).

WI78R 1 £3Q4oH/

Discussion

Although the conditions of the cADO-catalyzed reaction
have been optimized through different attempts, the
turnover numbers are still below ~1 min™! (8, 14-17,
22]. Therefore, the sluggish kinetics of cADO has be-
come a bottle-neck for biofuel production in cyanobac-
teria, and to identify the activity related key residues for
cADO is definitely required. Since it was observed that
cADO-1593 showed the highest activity under our assay
conditions among cADOs tested (unpublished results), it
was selected as the test sequence for BLAST. In the
current paper, we have identified some amino acid resi-
dues which impact the enzyme activity of cADO through
structure and sequence analysis of some cADOs.

Firstly, the results of 1593"'*¢T, 1593F15%Y 5110208 *¢"
and s110208™**® have clearly demonstrated that the side
chains of the residues consisting of the oligopeptide
(residues 144 to 150 for 1593) whose conformation
changed in the absence of the di-iron center had import-
ant effects on cADO activity. Crystal structures reveal
that these polar residues form important hydrogen bond
interactions with residues from other helices, which may
contribute to the local structural stability of the oligo-
peptide. In addition, the polar side chains of these
residues might interact with the nearby residues, for
example, in 1593 (Protein code: 4RC5) Argl48 with
Asn149 and Glul52, Asnl49 with Argl48 and Glul52;
in sll0208 (Protein code: 4Z5S) Thr146 with Asp143 and
Asn149, Asnl49 with Thr146 and Glul52, Tyr150 with



Wang et al. BMC Biotechnology (2017) 17:31 Page 6 of 9

GIn49; in PMT1231 (Protein code: 20C5) Thr159 with  the Y150F substitution of sll0208, in which the hydro-
Aspl56 and Asnl62, Asnl62 with Thr159 and Glul65, gen bond between Tyr150 and Asp49 is removed, had
Tyr163 with His62, which are equivalent to the residues negligible effect on the catalytic activity.
146, 143, 149, 152, 150 and 49 of 1593 and sll0208 Thirdly, replacement of the residues Arg62, GIn110
respectively. Thr159 of PMT1231 and the equivalent and, Tyrl22 of 1593 having the polar side chains by
one (Thrl46) of sll0208 are also involved in the those containing the nonpolar ones resulted in signifi-
hydrogen-bonding network close to the di-iron center. cantly decreased activity, which could be possibly due
Replacement of the residues containing the polar side to removal of the interaction with the nearby resi-
chains with ones containing the nonpolar side chains led  dues. These results confirmed that the residues close
to removal of the possible interaction with nearby resi- to the di-iron center impacted cADO activity and
dues, which might have severe influence on protein fold- their polar side chains are important for cADO.
ing, stability, even activity. In contrast, substitution of Finally, when the highly conserved residue Trpl78
amino acids with the nonpolar side chains by ones with  of 1593 was mutated into Arg, the W178Rvariant
the polar side chains gave the reverse impact, as observed  showed the highest cADO activity by far. Trp178 of
for 1593"1%¢T, s110208™**% and 1593'°°Y. The enhanced 1593 and the equivalent one (Argl91) of PMT1231
activities of these three variants are presumably due to are rightly located on the protein surface according
local stabilization caused by newly established interaction to the crystal structures of cADOs (PDB codes:
of three residues with the nearby amino acids. 20C5, 4KVQ, 4KVR and 4KVS). The enhanced activ-
Secondly, based on the structures of sll0208 and ity of W178R could be possibly due to increased pro-
PMT1231, a hydrogen bond is possibly established be-  tein stability resulting from mutation of exposed
tween Tyr150 and GIn49 in 1593 while Phel50 of 1593  hydrophobic amino acids into hydrophilic ones such
was substituted by Tyr. Activities of both F150Y and as arginine or the change of hydrophobicity into
Q49H/F150Y of 1593 were enhanced, suggesting that hydrophilicity of Trpl78 exposed to the solvent at
the hydrogen bond between these two residues is im-  the protein surface contributes to cADO activity [25].
portant for 1593. The triple mutant 1593¥*"/F5Y/  Moreover, according to the crystal structure of the
N123H chowed higher activity than WT 1593, 1593%*"  mutant L194A of PMT1231, the substrate might
F150Y and 15931°%%, and the double mutant sll0208°***"  enter the protein at Leul94. This mode of substrate
N123H  exhibited improved activity than WT sll0208, binding is different from previously determined
s110208°*°" and s110208™'**", Thus, some synergistic = cADO structures with long-chain fatty acids bound
effects were observed for 1593QH/EISOY/NIZBH o 4 [8]. In this structure, the side-chain of Argl9l,
s110208P*H/NI23H i blying  that these two hydrogen — equivalent to Trpl78 of 1593, points away from the
bonds are beneficial for cADO activity and the co- substrate, which may be beneficial for substrate entry
existence of two His in both hydrogen bonds is more im-  (Fig. 5). However, according to the structure of 1593
portant than the presence of only one His. Unexpectedly, (PDB code: 4QUW), the side-chain of Trpl78 points

s

S N

2 F3
<

Fig. 5 Structural superimposition of L194A of PMT1231 (palecyan, PDB code: 4PGl) and 1593 (light pink, PDB code: 4QUW). Arg191 of PMT1231,
Trp178 of 1593 and two substrate-binding modes were shown
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towards the substrate, which might interfere with
substrate entry (Fig. 5). Thus, mutation of Trp178 into
Arg might contribute to substrate entry and binding,
leading to enhanced activity observed for W178R.

Conclusions

Some amino acids which could affect cADO activity
were identified based on the crystal structures and
sequence alignment of cADOs. The residues close to
the di-iron center, the protein surface, and those in-
volved in the hydrogen-bonding network and the
oligopeptide whose conformation changed, exerted
great influence on cADO activity. Several mutations
led to significantly decreased activity. Some enzyme
variants showed improved activity than the wild type,
and the k., values of several of them close to or
above 1 min~' were achieved for the first time in
particular. We identified some important residues for
the catalytic activity of cADO. The study would be
helpful for establishing an efficient cell factory of
biofuel production in cyanobacteria.

Methods

Materials

Chemicals were from Sigma, Merck or Ameresco. Oligonu-
cleotides and the gene encoding ADO (aldehyde-deformyla
tingoxygenase) Synpcc7942_1593 from Synechococcus elon-
gates PCC7942 with codon optimization were synthesized
by Shanghai Sangon Biotech Co. Ltd (China) [16]. Pfu
DNA polymerase, restriction endonucleases EcoRI and Notl
were from Fermentas or Takara Biotechnology. Dpnl
was from New England BioLabs. The kits used for
molecular cloning were from Omega Bio-tek or Takara
Biotechnology. Nickel column and expression vector
pET-28a(+) were from Novagen. Amicon YM10 mem-
brane was from Millipore.

Bacterial strains, plasmids, and media

E. coli DH5a was used for routine DNA transformation
and plasmid isolation. E. coli BL21(DE3) was utilized for
overexpression of cADO. E. coli strains were routinely
grown in Luria-Bertani broth at 37 °C with aeration or
on LB supplemented with 1.5% (w/v) agar. 100 pg/ml
Kanamycin was added when required.

DNA manipulations

General molecular biology techniques were carried out by

standard procedures [26]. DNA fragments were purified

from agarose gels using the DNA gel extraction kit. Plas-

mid DNA was isolated using the plasmid miniprep kit.
The gene s/l0208 encoding ADO from Synechocystis

sp. PCC6803 (sll0208) was amplified with the forward
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primer (5- GCCTTACATATGATGCCCGAGCTTGC
TG-3', the Ndel 1 restriction site underlined) and the
reverse primer (5'- CAACTACTCGAGCTAGACTCC
GGCCAAACC-3’, the Xhol restriction site under-
lined) using genomic DNA as a template. The PCR
products were recovered, and digested with restriction
enzymes Ndel and Xhol respectively, and re-cloned
into the vector pET-28a(+) digested with Ndel and
Xhol, respectively.

Construction of site-directed mutants

Site-directed mutants were constructed according to the
standard QuikChange Site-Directed Mutagenesis proto-
col (Stratagene Ltd) using wild-type (WT) 1593 or
s110208 as templates and the primers listed in Table S1
(Additional file 3).

For construction of double and triple mutants, WT
1593 or sll0208 harboring single or double mutation(s)
was used as a template respectively following the same
protocol as above.

Protein overexpression and purification

WT cADOs and variants were overexpressed in E. coli
BL21(DE3) and purified on Nickel column as reported
[16]. The purity of protein was checked by SDS-PAGE
(Additional file 4). Apo-ADO was prepared according to
the published procedure, and the diferrous form of ADO
was reconstituted by the addition of the stoichiometric
amounts of ferrous ammonium sulfate to the apo-ADO
prior to assay [14—16]. Proteins were concentrated with
Amicon YM10 membrane (10 kDa cut-off). The protein
concentration was determined by the Bradford method
using bovine serum albumin as a standard.

Enzyme activity assay

All enzymatic assays were carried out in triplicate. Ac-
cording to the published procedure [16, 17], assays were
carried out in HEPES buffer, containing 100 mM KCI and
100 mM HEPES, pH 7.2. The reaction mixtures contain
NADH (750 pM), catalase (1 mg/ml), ferrous ammonium
sulfate (80 uM), PMS (Phenazine methosulfate)
(75 uM), appropriate amount of aldhydes (150 pM for
n-hxadecanal, 2 mM for n-heptanal), cADO (20 pM for
n-hxadecanal, 5 uM for n-heptanal). When n-hxadeca-
nal was used as the substrate, the yields of n-pentade-
cane were quantified by GC-MS. While n-heptanal was
used as substrate, the apparent k.,; values (2 mM of n-
heptanal was utilized) were measured. The control
using E. coli containing the vector pET-28a only didn’t
show any ADO activity (data not shown).
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K,, and V,,,, values of WT 1593, WT sll0208 and
some variants against n-heptanal were determined ac-
cording to the Michaelis-Menten equation of Graph-
Pad Prism 5 (Additional file 5). The k., values were
calculated from V,,,, on the basis of the molecular
weight of enzymes.
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