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Current approaches to the problem of inferring network
connectivity from spike data [1,2] make a stationarity
assumption, which is often not valid. Here we describe a
method for inferring both the connectivity of a network
in the presence of nonstationarity state and the time-
dependent external drive that causes it.
Consider an experiment in which the network is sub-

jected repeatedly to a potentially unknown external
input (such as would arise from sensory stimulation).
We assume the spikes to be binned in time and repre-
sented by a binary array: Si(t,r) = ±1, according to
whether neuron i fires or not in time bin t of repetition
r of the measurement. We fit these data to the simplest
kind of binary stochastic model: At time step t of repeti-
tion r, each formal neuron receives a net input, Hi(t,r) =
hi(t) + ∑jJijSj(t,r), and it takes the value +1 at the next
step with a probability given by a logistic sigmoidal
function 1/[1+exp(-2Hi(t,r))] of Hi(t,r). Maximizing the
likelihood of the data leads to learning rules
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for the model parameters – the couplings Jij and
external inputs hi(t). For weak coupling and/or densely
connected networks, we have developed faster alterna-
tive algorithms [3]. These are based on expanding the
learning rules around mean-field and TAP [4] equations
for mi(t) = ‹Si(t,r)›r. (TAP equations are a generalization
of the usual mean-field equations for highly connected
random networks.)
We have applied this method, as well as conventional

ones assuming stationarity, to data sets from (1) the

stochastic model itself, (2) a realistic computational
model of a small cortical network, and (3) salamander
retina under visual stimulation. In all three cases, we
find that if we perform the reconstruction assuming sta-
tionarity, the algorithms effectively invent fictitious cou-
plings to explain stimulus-induced correlations: The
couplings in the network are systematically overesti-
mated. The nonstationary treatment outlined above
enables us, for sufficient data, to find both the correct
(weaker) couplings and to extract the time-dependence
of the external input. To illustrate this, figure 1 shows
the Jijs found using the nonstationary algorithm plotted
against those found using the stationary one, based on
spike trains of 40 salamander retinal neurons stimulated
by 120 repetitions of a 26.5-second clip from a film..
The mean Jij is reduced, from 0.0471 to -0.0028, and the
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Figure 1 Couplings found assuming stationarity (y axis) plotted
against coupling found not assuming stationarity (x axis) for data
from salamander retina.
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large positive Jijs found assuming stationarity are
reduced by a facto of 2-3 when nonstationarity is taken
into account.
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