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Abstract 

This review, is a synopsis of advanced reproductive technologies in farm animals, including the discussion of their lim-
iting factors as revealed by the study of offspring derived from embryos produced in vitro and through cloning. These 
studies show that the problems of epigenetic mis-programming, which were reported in the initial stages of assisted 
reproduction, still persist. The importance of whole-genome analyses, including the methylome and transcriptome, 
in improving embryo biotechnologies in farm animals, are discussed. Genome editing approaches for the improve-
ment of economically-relevant traits in farm animals are also described. Efficient farm animal embryo biotechnologies, 
including cloning and the most recent technologies such as genome editing, will effectively complement the latest 
strategies to accelerate genetic improvement of farm animals.
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Background
Brief history of reproduction biotechnologies
Artificial insemination (AI) was first performed in dogs 
by Spallanzani in 1784, but this procedure only became 
routine in the mid 1900s when it was applied to a wide 
range of species. AI has had the greatest impact in dairy 
cattle breeding. While AI is an effective way to dis-
seminate the genetics of sires, the portfolio of embryo 
biotechnologies now available has expanded the oppor-
tunities to increase selection pressure on the female side. 
In the 1980s and 1990s, major advances were made in 
multiple ovulation and embryo transfer (MOET), ovum 
pick up (OPU) [1–3] and in vitro embryo production and 
freezing [4–7] (Fig.  1). In addition, embryo multiplica-
tion procedures, including embryo splitting [8–10] and 
cloning by nuclear transfer of embryonic cells, have been 
developed [11–14]. The long sought after goal of multi-
plying unique genotypes culminated with the produc-
tion of the first mammal cloned by nuclear transfer from 

a somatic cell [15–17] (Fig. 2). This triggered a negative 
reaction from those who feared potential applications of 
this technology. 

Paradoxically, although reproduction specialists and 
quantitative geneticists share the common goal of achiev-
ing genetic improvement, these two groups of scientists 
do not collaborate on a regular basis. With the exception 
of MOET, embryo biotechnologies have not been used 
extensively in breeding programs. Fuelled by advances in 
DNA sequencing and genotyping techniques and by fall-
ing costs, genomic selection, first mooted in 2001 [18], is 
now possible. This approach provides the opportunity to 
genetically select embryos and increase the use of in vitro 
methods to accelerate genetic improvement (see com-
panion reviews of the ISAFG meeting in this issue).

In vitro embryo production is not yet reliable, and still 
essentially uses protocols that were developed in the 
1990s. However, we are beginning to understand the 
molecular mechanisms that are at play during devel-
opment, and the factors that need to be improved. The 
techniques used for in  vitro production and culture of 
embryos can lead to alterations in epigenetic program-
ming, e.g. modifications of the DNA methylation pat-
terns. These changes have an effect on the expression of 
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imprinted genes and hence on developmental abnormali-
ties, resulting in foetal overgrowth [19] and failure [20, 
21]. Early studies on cloning showed that synchronisation 
of the nucleus from donor cells with that of the recipi-
ent is necessary to sustain the development of a viable 
embryo [15], most probably through epigenetic repro-
gramming. However, current cloning techniques are 
not significantly better than those of the initial cloning 
reports [22, 23] (Fig. 3), and the success rate of produc-
ing viable offspring is still less than 1  %. With this low 
success rate, cloning cannot be used in programs for the 
genetic improvement of farm animals, but is an approach 
that can be used for research. Cloning may also be used 
to create “back-up” individuals of animals with unique 
genetic features [24].

Advances are, however, being made in the field of 
oocyte recovery, culture and in  vitro fertilisation. For 
example, young lambs of 3 to 4 weeks of age have a large 
number of follicles and, after stimulation, up to 100 fol-
licles can be routinely produced, which yield 60  to  70 

oocytes by OPU. More than 50  % of these oocytes are 
competent and will develop into blastocysts following 
in vitro fertilisation [25]. This process of juvenile in vitro 
fertilisation and embryo transfer (JIVET) allows large 
numbers of full-sibs to be obtained from lambs at a few 
weeks of age, thus greatly reducing the generation period. 
Improvements in this approach could accelerate genetic 
progress by producing large numbers of lambs from elite 
ewes. JIVET can also be used to produce large numbers 
of embryos for genetic manipulation, as discussed below.

New technologies: from SNPs to whole‑genome 
sequencing
The last 10  to  15  years have witnessed rapid advances 
in approaches for the analyses of DNA sequence and 
structure. Genome sequence data from next-generation 
sequencing platforms have identified large numbers of 
single nucleotide polymorphisms (SNPs), high through-
put genotyping platforms have made SNPs the most 
widespread and efficiently genotyped genetic markers. 

Fig. 1  Timeline of the development of reproductive biotechnologies in farm animals

Fig. 2  Timeline of embryo multiplication technologies in farm animals
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High-density SNP data can be used in genomic selec-
tion (GS) [26] and in genome-wide association studies 
(GWAS) to identify quantitative trait loci (QTL) for pro-
duction related traits, such as meat and milk composi-
tion, fertility or disease response (see [27, 28]). These data 
can be used for both in vivo and in vitro breeding appli-
cations. SNP data can also be analysed to detect chromo-
somal regions with loss of heterozygosity (LOH). LOH 
haplotypes have a significantly reduced frequency, or 
are absent in the homozygous state. Such haplotypes are 
likely to contain recessive, deleterious or lethal genetic 
variants [29–33]. The combined use of SNPs, exome and 
whole-genome sequencing data from more than 25,000 
Fleckvieh cattle led to the detection of four LOH regions 
[34]. Combining LOH information with large whole-
genome sequence datasets, such as the 1000 bull genome 
project (http://www.1000bullgenomes.com) has identi-
fied candidate lethal mutations in genes such as SMC2 
(structural maintenance of chromosomes) and COL2A1 
(collagen, type II, alpha 1) [34, 35]. Interestingly, some of 
these deleterious variants are segregating at a significant 
frequency in the populations and contribute to negative 
genetic trends in fertility traits, and also likely affect the 
efficiency of in vitro embryo production.

Further advances in sequencing technologies include 
the development of long-read sequencing, yielding 20-kb 
sequence reads, which will improve existing livestock ref-
erence genome sequences which are still far from perfect. 
Once sequence data is available from a sufficient number 
of animals to define haplotypes in the population, it will be 
possible to predict high-density SNP genotypes from low-
density data by “imputation”, indeed prediction of whole-
genome sequence from high-density data will be possible. 
This high-resolution genome data will make the identifi-
cation of the variants responsible for phenotypic variation 
more rapid. Molecular breeding using high-density SNP 

and even genome sequence data promises to be a game 
changer, resulting in faster and more efficient genetic 
selection. In spite of the decreasing costs, whole-genome 
sequencing is still 5- to 10-time more expensive than SNP 
genotyping and, at low-sequence coverage, it gives low-
confidence genotype calls due to allelic drop-out in low-
coverage genomic regions. Whole-genome sequencing 
could be expected to replace other genotyping methods in 
the near future as costs fall further.

Functional genomics
Genome editing
Methods to introduce genetic variation into the genomes 
of animals have been used for many years, with the first 
transgenic mouse produced in 1981 [36]. However, the 
early transgenic approaches were unpredictable, unre-
peatable [37], and invariably resulted in the insertion of 
the exogenous DNA into the host genome at multiple 
sites and in multiple copies. In some cases, this led to dis-
ruption of gene function, undesired ectopic expression 
that was difficult to control, and over- or under-expres-
sion of the inserted gene. Very recently methods for site-
specific genetic modification have become available, and 
are now routinely used in research. These site-specific 
modifications are achieved by targeted cleavage of DNA 
and homologous recombination using zinc finger nucle-
ases (ZFN), which are chimeric molecules, composed of 
a nuclease domain and specifically-designed DNA-recog-
nition domains [38–40].

A more efficient molecular tool for genome editing is 
the clustered regularly interspaced short palindromic 
repeats (CRISPR)-associated 9 (Cas9) system. CRISPR/
Cas9 uses short, single-guide RNA (sgRNA) to recognize 
target sequences in the DNA for Cas9 nuclease cleavage 
to facilitate editing [41]. A further development is the 
transcription activator-like effector nucleases (TALEN) 
genome editing system. These are novel fusion proteins 
that originate from plant pathogens in the bacterial genus 
Xanthomonas and contain DNA-binding motifs, which, 
when coupled to the FokI nuclease, create efficient gene-
editing tools [42–44]. The TALEN and CRISPR/Cas9 
systems are easier to engineer and more reliable than the 
use of zinc finger nucleases [45]. In the presence of sin-
gle- or double-stranded DNA homologous to the target 
sequence, these systems can be used to introduce precise, 
targeted changes into the genome which may be dele-
tions or additions of a few base pairs. It is also possible to 
introduce, delete or invert sequences of the genome that 
range in size from a few to several hundred nucleotides. 
It is even possible to target multiple genomic sites simul-
taneously and therefore modify several genes controlling 
complex traits, although the efficiency of multiple edits is 
still low.

Fig. 3  Trend in publications on cloning using embryonic cells 
nuclear transfer (ECNT) and later somatic cell nuclear transfer (SCNT). 
Overall efficiency since the production of the first cloned sheep Dolly

http://www.1000bullgenomes.com
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Genome editing has the potential to accelerate genetic 
improvement of farm animals, by moving existing vari-
ations among populations, which up to now has been 
achieved by introgression through cross-breeding and suc-
cessive rounds of back-crossing. In contrast, to this lengthy 
introgression process, genome editing can move alleles 
into specific genetic backgrounds in one generation.

The effective application of genome editing requires 
improvements in in  vitro embryo methods, to provide 
large numbers of oocytes and increased efficiency of 
in vitro embryo production. Oocytes can be obtained by 
OPU and in vitro fertilisation followed by microinjection 
of the zygotes and then in  vitro culture until a transfer-
able embryo stage is reached, typically the blastocyst stage 
[41]. Improvements will include the production of oocytes 
from young females for a range of farm animal species 
using JIVET, which has been used successfully to create 
large numbers of viable embryos, but currently only in 
sheep. Improvements in in  vitro culture techniques are 
also required to ensure correct embryo development and 
maximise the number of live progeny produced.

Biotech for breeding
Genome editing has many applications for advanced 
breeding, from repairing defective genes, such as reces-
sive lethal or heritable disease variations in high genetic 
merit sires, to the introduction of genes that have a 
major effect on commercially important traits, such as 
resistance to disease and stress or polledness. An exam-
ple application is improving heat tolerance in European 
breeds for production in tropical environments. The 
SLICK mutation, which was discovered in the Senepol 
Caribbean cattle breed [46], improves heat tolerance 
since it is associated with short hair and increased sweat-
ing. The SLICK phenotype is under the control of a single 
gene [46]. There are several mutations in the prolactine 
receptor gene that cause the SLICK phenotype, one of 
which is a premature stop codon caused by a frameshift 
mutation [47]. Introgression of this mutation in differ-
ent breeds with recurrent backcross designs is possible, 
but is slow, since it requires several generations of back-
crosses to regain the genetic qualities of the recipient 
breed. Introduction of the SLICK variations into a breed 
could be achieved in a single generation by gene editing. 
The ability to get a rapid response by the introduction of 
alleles that help animals to adapt to new environments is 
important in the face of rapid climate changes that have 
been predicted.

Interactions between functional genomics, reproductive 
biotechnologies and breeding
Early developmental stages of in vitro produced embryos, 
up to blastocyst implantation, are associated with a high 

rate of failure. In sheep embryos, the period between 
day 20 and 30, during which there is the first functional 
interaction between the uterus and the extra-embryonic 
tissues leading to vascularisation, is a critical period. The 
success of this conceptus—mother interaction is affected 
by the epigenetic programming of the embryo, which in 
turn is affected by in vitro culture conditions. Compari-
son of the development of 89 naturally-conceived ovine 
conceptuses with 84 embryos produced in vitro revealed 
that a “foetal selection window”, specifically between day 
24 and 26, is the period during which an epigenetically-
compromised conceptus is most likely to die [48]. To bet-
ter understand this phenomenon, we have analysed the 
gross morphology, histology and gene expression profiles 
of the placenta from naturally-conceived and in  vitro 
produced embryos. Our results showed that in vitro pro-
duced conceptuses have defective cardiovascular devel-
opment and more frequent haemorrhages because of 
impaired blood vessel development and integrity. These 
defects are associated with a significant down-regulation 
of the expression of vascular and angiogenetic factors 
(FGF2, ANG2, TIE2 and HOXA13) detected in the pla-
centa. Although these abnormalities in in vitro produced 
conceptuses were not necessarily lethal [49], there are 
clear deleterious implications for the lambs born from 
IVF procedures. Similar effects have been described, by 
others, for sheep IVF models [50], and similar placen-
tal anomalies have been observed for in  vitro produced 
bovine embryos [51, 52].

It is likely that abnormalities associated with in  vitro 
protocols have a common cause and may be due to epi-
genetic errors that accumulate during early develop-
ment. These errors influence the establishment of the 
pregnancy, maternal-embryo communication and foe-
tal development. Our work identified dysfunction of the 
DNA methylation machinery in the chorio-allantoic pla-
centa from in vitro produced embryos [45]. During nor-
mal development, methylation of the gametic DNA is 
essentially lost shortly after fertilisation, and is then sys-
tematically re-established during early embryonic devel-
opment, to be completely re-established by the blastocyst 
stage. In mammals, there are three major DNA methyl-
transferases, DNMT3a and b, which are involved in de 
novo methylation of DNA after embryo implantation, 
and DNMT1, which is necessary for the maintenance of 
established methylation patterns. A reduced DNMT1 
activity may affect subsequent developmental processes. 
DNMT1 and cofactors (HDAC2, PCNA, DMAP1 and 
UHRF1) are significantly down-regulated in the pla-
centa of in vitro produced embryos at very early develop-
mental stages (day 20). As a consequence, expression of 
developmentally-important imprinted genes (IGF2, H19, 
PEG1/MEST and CDKN1C) are down-regulated. The 
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methylation status of the maternal transcription factor 
H19 was also perturbed. These findings are in line with 
previous observations that epigenetic defects in the pla-
centa result from in vitro embryo techniques, which are 
associated with growth arrest of the developing foetuses 
[53–55]. The expression profiles of imprinted genes var-
ied among samples in our study and differ across studies 
[56, 57]. This suggests that these epigenetic defects arise 
from stochastic processes.

Impairment of one-carbon metabolism (OCM) could 
be one of the factors affecting the methylation mecha-
nisms that underlie the observed developmental defects. 
OCM includes a series of biochemical reactions that are 
involved in the transfer one-carbon groups, and thus 
have a critical role in establishing and maintaining DNA 
methylation patterns (methyl or CH3 groups) [58]. Early 
pre-implantation development is characterized first by 
active, then passive genome demethylation during subse-
quent cleavages, followed by an increase in global DNA 
methylation. This methylation is associated with the con-
trol of gene expression during early differentiation and 
the formation of the inner cell mass and trophoblast at 
the blastocyst stage [59]. Hence, an impaired OCM met-
abolic pathway, and a deficiency in associated cofactors 
during in vitro early embryonic development, will result 
in epigenetic defects and early embryonic developmental 
abnormalities. These abnormalities include pregnancy 
loss, neural tube defects, intrauterine growth retardation, 
abnormal foetal brain development, and impaired car-
diovascular development in foetuses [60, 61]. In addition 
to these early effects, impaired OCM can also have long-
term consequences into post-natal life, such as metabolic 
diseases and impaired cognitive and motor function [61, 
62].

Cobalamin (also known as vitamin B12), which is one 
of the main cofactors involved in OCM, is not present 
in the commonly used culture media for in vitro embryo 
production. Cobalamin supplementation during in  vitro 
maturation of sheep oocytes has been shown to positively 
affect their developmental competence and the subse-
quent DNA methylation profile at the blastocyst stage 
[63], presumably through the OCM pathway. Cobalamin 
supplementation of the culture medium during in  vitro 
fertilisation of oocytes also resulted in improved pla-
cental vascularisation. The positive effect of cobalamin 
addition to culture medium appears to act at the molecu-
lar level by increasing expression of DNA methyltrans-
ferases, thus correcting epigenetic mis-programming and 
preventing vascular defects. Our data suggest that sim-
ple improvements to the culture media by the inclusion 
of factors, including cobalamin, are likely to increase the 
efficiency and reliability of in  vitro embryo production 
and reduce developmental abnormalities [64].

Conclusions
There are potential benefits and synergies between 
genomic and reproductive technologies for sheep and 
cattle to enhance breeding programs. Advanced female 
reproductive technologies, such as MOET and JIVET [65] 
can increase the female contribution to the rate of genetic 
progress. Combining functional genetics and embryology 
to understand the epigenetic and gene expression effects 
of in  vitro manipulation of gametes and embryos will 
contribute to optimising in  vitro procedures; moreover, 
in  vitro embryo biotechnologies, coupled with genome 
editing techniques, could provide the fittest phenotypes 
to withstand global climate changes [66]. Classically, 
modifications of protocols require validation through the 
production of offspring, which is time-consuming and 
expensive. However, molecular characterisation of in vitro 
produced embryos can provide information on the effects 
of changes in protocols, and indicate if these are beneficial 
or not. To conclude, improved in  vitro embryo produc-
tion is fundamental to enhance the genetic improvement 
of farm animals and the successful application of revolu-
tionary techniques such as genome editing.
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