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Abstract

Background: Fibromyalgia (FM) is a disabling chronic pain syndrome with unknown pathophysiology. Functional
magnetic resonance imaging studies on FM have suggested altered brain connectivity between the insula and the
default mode network (DMN). However, this connectivity change has not been characterized through direct neural
signals for exploring the embedded spectrotemporal features and the pertinent clinical relevance.

Methods: We recorded the resting-state magnetoencephalographic activities of 28 patients with FM and 28 age-
and sex-matched controls, and analyzed the source-based functional connectivity between the insula and the DMN
at 1–40 Hz by using the minimum norm estimates and imaginary coherence methods. We also measured the
connectivity between the DMN and the primary visual (V1) and somatosensory (S1) cortices as intrapatient negative
controls. Connectivity measurement was further correlated with the clinical parameters of FM.

Results: Compared with the controls, patients with FM reported more tender points (15.2±2.0 vs. 5.9±3.7) and
higher total tenderness score (TTS; 29.1±7.0 vs. 7.7±5.5; both p < 0.001); they also had decreased insula–DMN
connectivity at the theta band (4–8 Hz; left, p = 0.007; right, p = 0.035), but displayed unchanged V1–DMN and S1–
DMN connectivity (p > 0.05). When patients with FM and the controls were combined together, the insula-DMN
theta connectivity was negatively correlated with the number of tender points (left insula, r = −0.428, p = 0.001;
right insula, r = −0.4, p = 0.002) and TTS score (left insula, r = −0.429, p = 0.001; right insula, r = −0.389, p = 0.003).
Furthermore, in patients with FM, the right insula–DMN connectivity at the beta band (13–25 Hz) was negatively
correlated with the number of tender points (r = −0.532, p = 0.004) and TTS (r = −0.428, p = 0.023), and the bilateral
insula–DMN connectivity at the delta band (1–4 Hz) was negatively correlated with FM Symptom Severity (left: r = −0.
423, p = 0.025; right: r = −0.437, p = 0.020) and functional disability (Fibromyalgia Impact Questionnaire; left: r = −0.415,
p = 0.028; right: r = −0.374, p = 0.050).

Conclusions: We confirmed the frequency-specific reorganization of the insula–DMN connectivity in FM. The clinical
relevance of this connectivity change may warrant future studies to elucidate its causal relationship and potential as a
neurological signature for FM.
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Background
Fibromyalgia (FM) is a common chronic pain disorder,
with a prevalence of 2–4% in the general population [1].
FM is characterized by chronic, widespread pain along
with various clinical symptoms that reflect a centralized
pain state, including fatigue, insomnia, cognitive
dysfunction, headache, and depression [2]. Because of its
polysymptomatic nature, the prognosis of FM is highly
distressful for the patients and cost intensive for the
society [1].
The pathophysiology of FM remains unclear. Patients

with FM are hypersensitive to painful and nonpainful
stimuli and exhibit increased brain responses within the
so-called “pain network,” including the insular cortex,
anterior cingulate cortex (ACC), primary (S1) and sec-
ondary somatosensory cortices, and thalamus [3–5].
Functional magnetic resonance imaging (fMRI) studies
on FM have shown brain connectivity changes in this
pain network, along with some intrinsic connectivity
networks that exhibited synchronous activity in the
resting state (i.e., resting-state networks), such as the
default mode network (DMN) [6, 7], salience network
[8], and sensorimotor network [9]. Taken together, the
chronic and persistent pain of FM appears to change a
patient’s brain responses during the processing of both
externally driven information and internally generated
thoughts.
The DMN comprises a set of synchronous brain

regions such as the medial prefrontal and posterior
cingulate cortices that are active at rest and deactivated
during task performance [10]. This resting-state
network can modulate pain perception through
autonomic and antinociceptive descending modulation
networks [11]. A recent meta-analysis of voxel-based
morphometry studies indicated that patients with FM
exhibit gray matter atrophy in the left medial prefrontal
and right dorsal posterior cingulate cortices, both of
which are key regions within the DMN [12]. Moreover,
the DMN is disrupted in the activation–deactivation
dynamics in the presence of chronic pain, suggesting
that the DMN is a primary resting-state network af-
fected by chronic pain [13]. Thus far, the mechanism
underlying the interaction between the DMN and pain
network brain regions in the context of chronic pain
remains largely unknown [14]. Fallon et al. have used
fMRI to investigate the blood-oxygen-level-dependent
(BOLD) signal fluctuations in the DMN structures of
patients with FM and demonstrated altered connectiv-
ity with various regions associated with pain, cognitive
and emotional processing [15]. In other fMRI studies,
Napadow and colleagues [7] reported increased con-
nectivity between the DMN and insula, a pivotal region
of the pain network involved in multidimensional (sen-
sory, affective, and cognitive) pain processing [16–18].

Notably, the insula–DMN connectivity was correlated
with the individual level of spontaneous pain reported
at the time of scanning, and it presented a correspond-
ing decrease after the alleviation of pain following
pregabalin treatment [19] or acupuncture intervention
[6]. This altered insula–DMN connectivity could not be
confirmed by another fMRI study on FM [9]; nevertheless,
corroborating evidence of elevated coupling between the
DMN and insula has been noted for other pain disorders,
such as chronic back pain [20], diabetic neuropathic pain
[21], and acute migraine headache [22].
Given its potential to encode clinical pain and serve

as an objective measure of FM phenotypes, further
characterization of the insula–DMN connectivity is
rucial. The DMN and insula are critically involved in
pain perception and both structures may present corre-
lated activities in a variety of tasks such as attention or
self-recognition [14, 23, 24]. A previous resting-state
fMRI study in FM also reported an association between
individual ratings of pain sensitivity and the insula
connectivity with midline regions of the DMN (poster-
ior cingulate and medial prefrontal cortices) [9]. Thus,
characterization of the insula-DMN connectivity may
enhance our understanding towards the pathophysi-
ology of FM.
To date, most of the related fMRI studies in insula-

DMN connectivity have measured very-low-frequency
(<0.1 Hz) fluctuations of resting-state BOLD signals rather
than directly recording neural oscillatory changes through
a spectrotemporal analysis of a wide-frequency domain.
However, chronic pain potentially changes the dynamic
brain activities at specific frequency bands of >0.1 Hz [21,
25]. Some electroencephalography (EEG) studies on FM
have shown spectral power changes at higher brain oscil-
lation frequency bands (>1 Hz), especially within the theta
range (4–8 Hz) [26–28], but pertinent analysis for the
connectivity change between specific brain regions remain
inadequate, probably because of the constraint of EEG
spatial resolution. Therefore, this study investigated the
resting-state functional connectivity pattern between the
DMN and insula across different frequency bands through
magnetoencephalography (MEG), which enables the
visualization of explicit neural oscillatory features, similar
to traditional EEG but with finer spatial localization [29].
MEG has been used to characterize brain oscillatory
changes in various chronic pain conditions, including
chronic migraine [30], phantom limb pain [31] and com-
plex regional pain syndrome [32]. In FM, a resting-state
MEG study reported increased theta, beta and gamma
oscillations in the prefrontal cortex [33]. We hypothesized
that the insula–DMN connectivity is altered by the
chronic and persistent pain perception of FM, possibly
reflecting the clinical phenotype of FM in a frequency-
dependent manner.
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Methods
Patients
Consecutive patients with FM aged 20–60 years were
enrolled from the Neurological Institute of Taipei Vet-
erans General Hospital in Taiwan. All patients fulfilled the
modified 2010 American College of Rheumatology (ACR)
Fibromyalgia Diagnostic Criteria [2]; however, those with
any autoimmune rheumatic disease were excluded.
Healthy age- and sex-matched volunteers who did not
have past or family histories of FM and who had not
experienced any significant pain during the past year
were recruited as the controls. All participants were
right-handed, denied having any history of systemic or
major neuropsychiatric disease, and had normal phys-
ical and neurological examination results as well as
normal brain MRI results. Participants who were re-
ceiving any medication or hormone therapy on a daily
basis were excluded. To minimize the effects of hor-
mones on results, MEG was administered to women of
reproductive age only during the luteal phase, as esti-
mated by their last menstrual cycle and confirmed by
their next menstruation through telephone interviews.
The hospital’s institutional review board approved the
study protocol, and each participant provided written
informed consent.
Immediately before undergoing MEG, all patients with

FM completed a questionnaire on the distribution
(Widespread Pain Index [2]), intensity (0–10 on a
numerical rating scale), and duration (years) of their
pain and the accompanying somatic or psychiatric symp-
toms, including fatigue, unrefreshing sleep, cognitive
symptoms, headache, lower abdominal pain or cramps,
and depression (Symptom Severity Scale [2]). The
revised Fibromyalgia Impact Questionnaire (FIQR) was
administered to the patients with FM to assess their
FM-related functional disability [34]. To evaluate anxiety
and depression severity, the Hospital Anxiety and
Depression Scale (HADS) was administered to all partic-
ipants [35]. Each participant also completed a manual
tender-point survey on the 18 specific anatomical
positions defined by the 1990 ACR FM classification
[36]. In response to direct palpation with a dolorimeter
at a 4.0-kg/m2 force level, each participant reported the
level of tenderness (0: none; 1: mild; 2: moderate; 3:
severe) at each position. We determined the number of
tender points (range, 0–18) and the total tenderness
score (TTS = sum of tenderness level in the 18 posi-
tions; range 0–54) in each participant. The number of
tender points in patients with FM has been found to be
associated with FM-related variables (pain, fatigue, sleep,
anxiety, depression, and global severity) and the rheuma-
tology distress index, a composite measure of distress
constructed from scores of sleep disturbance, fatigue,
anxiety, depression, and global severity [37].

MEG recording
MEG data were obtained using a whole-scalp 306-
channel neuromagnetometer (Vectorview; Elekta
Neuromag, Helsinki, Finland), which is composed of
102 identical triple sensor elements; each sensor elem-
ent comprises one magnetometer and two orthogonal
planar gradiometers. The exact position of the head
with respect to the sensors was obtained by measuring
magnetic signals produced by current leads to four
head indicator coils at known sites on the scalp. Indi-
vidual Cartesian coordinates were then determined
using a three dimensional (3D) digitizer. To obtain
precise registration, approximately 50 additional scalp
points were also digitized. These landmarks of the head
position enabled further alignment of the MEG and
magnetic resonance (MR) imaging coordinate systems.
We began the MEG recording with a 3-min empty-

room recording to capture sensor and environmental
noise; the data were then applied to calculate the noise
covariance in a subsequent source analysis. During the
resting-state recording, participants sat comfortably with
their head supported by the helmet of the neuromagnet-
ometer. They were asked to close their eyes, but remain
awake, relaxed, and not perform any explicit task. Cortical
spontaneous activity data were collected for 3 min and
digitized at 600 Hz. The recording was repeated if a
participant fell asleep or had excessive within-run head
movement (displacement >5 mm in the x, y, or z plane of
the head position indicator). Electrooculography and
electrocardiography were performed simultaneously.

Data preprocessing
MEG data can become contaminated because of
patient-related or environmental factors. Therefore, we
visually inspected all data for segments the containing
artifacts from head movement or environmental noise
and discarded contaminated segments. To remove
powerline contaminations, notch filters (60 Hz and its
harmonics) were used. Moreover, Brainstorm’s ECG
and EOG detection functionality [38] automatically
identified heartbeat and eye blinking events; for these
event data segments, projectors were defined through
principal component analysis separately. The principal
components meeting the artifact’s sensor topography
were then manually selected and excluded through
orthogonal projection [39]. Individual brain MR images
were acquired by using a 3 T MR system (Siemens
Magnetom Tim Trio, Erlangen, Germany), with a TR of
9.4 ms, TE of 4 ms, recording matrix of 256 × 256
pixels, field of view of 256 mm, and slice thickness of
1 mm. The surface model was automatically recon-
structed from the T1-weighted structural volumetric
images (BrainVISA 4.5.0, http://brainvisa.info). The
detailed geometric reconstruction of the scalp, brain
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gray and white matter, and tessellations used to
estimate the gray and white matter border provided a
topographical 3D representation of the brain surface.

Data analysis
We analyzed resting-state functional connectivity in two
stages:
In the first part, the resting-state MEG recording of each

participant was analyzed using depth-weighted minimum
norm estimates to obtain the distributed and dynamic
cortical source model [40], which presented each cortical
vertex as a current dipole and included ~15,000 vertices
in the forward model. The cortical source model of each
participant was then morphed into a common source
space defined by the Colin27 anatomy [41]. For the
connectivity analysis, we defined regions of interest (ROIs)
in the structural T1 template volume by using Mindboggle
cortical parcellation [42], and selected 12 DMN-related
brain regions based on previous studies [10, 23, 43],
including the bilateral posterior cingulate cortex, precu-
neus, inferior parietal cortex, medial temporal cortex,
medial frontal cortex, and lateral temporal regions. The
time-varying source density of each ROI was obtained
from the averaged source activities of each vertex in the
ROI. Although this study focused on changes in the
insula–DMN connectivity between groups, the connectiv-
ity of the DMN with S1 and V1 was also investigated to
strengthen the specificity of our findings. S1 is a sensory-
discriminative region of the pain network, whereas V1
belongs to the medial visual network and generally unre-
lated to pain information processing. An fMRI study on
FM reported that both S1 and V1 do not exhibit an
altered resting-state functional connectivity with the
DMN [7]. The methodology of this part has been
published in our recent studies elsewhere [44–46].
The second part involved the analysis of functional

connectivity from the time-varying source density of each
ROI by using of the imaginary coherence method, which
essentially measures how the phases between two sources
are coupled to each other with minimum crosstalk effects
between sources [47]. This technique can effectively reveal
altered functional connectivity in patients with brain
lesions [48], brain tumors [49], and Alzheimer disease [50]
during the resting-state condition. Moreover, this tech-
nique rejects the spurious connectivity between two
cortical sources without time delay, which could be
attributed to a common source or volume conduction.
Thus, imaginary coherence represents the interactions
between brain regions with a specific time lag [47]. In
the present study, we computed the imaginary coher-
ence values between the 12 DMN regions and the
bilateral insula, S1, and V1 by using the FieldTrip
toolbox (http://fieldtrip.fcdonders.nl/) and obtained the
full 6×12 adjacency matrix. Then, the node strengths

(the sum of IC values connected to the node) of the 6
regions (bilateral insula, S1, and V1) were individually
estimated to represent the bilateral insula–DMN, S1–
DMN, and V1–DMN functional connectivity, respect-
ively. The results were categorized by frequency bands:
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–25 Hz), and gamma (25–40 Hz).

Statistical analysis
The demographics and clinical profiles of the control and
FM groups were compared using the Student t or chi-
square test, as appropriate. The group differences in the
insula–DMN, S1–DMN, and V1–DMN connectivity at
each frequency band were also examined using analysis of
covariance, with age, sex, anxiety (HADS anxiety score),
and depression (HADS depression score) regressed out as
covariates of no interest. Pearson’s correlation was used to
determine the correlation between MEG connectivity
measures and clinical FM profiles. The clinical correla-
tions were further verified using multiple regression ana-
lysis to adjust for age, sex, anxiety, and depression effects.
Throughout the statistical analyses, the Bonferroni correc-
tion was used for multiple comparisons and a p value of
<0.05 was considered statistically significant.

Table 1 Demographic and clinical profiles of patients with
fibromyalgia (FM) and controls

Groups P value

Control FM

Subject number (n) 28 28 -

Age (years) 42.5±7.6 42.1±10.6 0.886

Sex 26F/2M 26F/2M -

HADS total score
(0–42)

9.6±6.1 20.3±6.5 <0.001*

HADS anxiety score
(0–21)

4.6±3.4 11.6±3.5 <0.001*

<0.001*

HADS depression
score (0–21)

3.6±3.1 8.7±3.8 <0.001*

Number of tender
points (0–18)

5.9±3.7 15.2±2.0 <0.001*

Total Tenderness
Score (0–54)

7.7±5.5 29.1±7.0 <0.001*

Clinical pain intensity
(0–10)

- 5.28±2.4 -

Disease duration
(years)

- 7.3±9.2 -

Widespread Pain
Index (0–19)

- 9.9±4.3 -

Symptom Severity
(0–12)

- 7.9±1.7 -

Revised Fibromyalgia
Impact Questionnaire
(0–100)

- 50.6±20.6 -

HADS the hospital anxiety and depression scale
*p < 0.001
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Results
Demographics and clinical profiles
The demographics and clinical profiles of patients with
FM and the controls are summarized in Table 1. Age
and sex did not differ between the groups. However,
compared with the controls, patients with FM reported
more tender points and had higher TTS and HADS
scores (all p < 0.001).

Altered insula–DMN connectivity in FM
In general, the bilateral insula–DMN connectivity
tended to be decreased at all frequency bands in patients
with FM compared with the controls (Fig. 1); however,
the difference was significant only at the theta band on
the left (F(1,54) = 7.975, p = 0.007) and right
(F(1,54) = 4.719, p = 0.035) sides. The decreased theta
connectivity between insula and each area of the DMN

Fig. 1 Functional connectivity between the insula (Ins) and default mode network (DMN) at the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–25 Hz), and gamma (25–40 Hz) bands, assessed using resting-state magnetoencephalography brain activity and compared between controls and
patients with fibromyalgia (FM). L, left; R, right; MF, medial frontal; LT, lateral temporal; MT, medial temporal; PCC, posterior cingulate cortex; IP, inferior
parietal; PCu, precuneus. *, p < 0.05; **, p < 0.01

Fig. 2 Correlation of the insula–default mode network (DMN) connectivity at the theta band (4–8 Hz) with the (a) number of tender points (0–18) and
(b) total tenderness scores (0–54) in all participants (patients with FM and the controls)
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is shown in Additional file 1: Table S1 and Additional
file 2: Table S2. By contrast, no difference was noted in
the bilateral S1–DMN or V1–DMN connectivity at any
of the frequency bands (all p > 0.1).

Clinical correlation
In all participants, the theta connectivity was negatively
correlated with the number of tender points (left insula,
r = −0.428, p = 0.001; right insula, r = −0.4, p = 0.002) and
the TTS (left insula, r = −0.429, p = 0.001; right insula,
r = −0.389, p = 0.003) (Fig. 2). In patients with FM, the
right insula–DMN connectivity at the beta band also
showed a negative correlation with the number of tender
points (r = −0.532, p = 0.004) and the TTS (r = −0.428,
p = 0.023; Fig. 3). In addition, the bilateral insula–DMN
connectivity at the delta band was negatively correlated
with Symptom Severity Scale (left: r = −0.423, p = 0.025;
right: r = −0.437, p = 0.020) or the degree of functional

impairment (FIQR; left: r = −0.415, p = 0.028; right:
r = −0.374, p = 0.05; Fig. 4).
No clinical correlation of the insula–DMN connectivity

was noted at the alpha or gamma band. Moreover, the
clinical pain intensity and duration of FM were not corre-
lated with any MEG connectivity measure (all p > 0.05).
Adjustment for the individual differences in age, sex,

anxiety, and depression during multiple regression
analyses did not change the aforementioned clinical
correlation results.

Discussion
The main finding of this study is that patients with FM
had decreased resting-state bilateral insula–DMN
connectivity at the theta band. When patients with FM
and the controls were examined together, the insula-
DMN theta connectivity was negatively correlated with
tenderness. Moreover, in patients with FM, the insula–
DMN connectivity was also negatively correlated with
tenderness at the beta band and with centralized pain-
related symptoms (Symptom Severity Scale) and func-
tional impairment (FIQR) at the delta band.
Studies have reported the existence of intrinsic

connectivity between the insula and DMN in healthy
individuals [16, 51]. During pain processing, the insula
has been proposed to serve as a switching core that
relays sensory information into higher-order affective
and cognitive modulation [16–18], whereas the DMN
has been linked to pain modulation through descend-
ing inhibitory pathways [11]. Thus, the present finding
regarding disrupted insula–DMN connectivity may
implicate impaired pain modulation leading to the
chronic pain of FM. Similarly, MRI studies on FM
have reported that the DMN regions had decreased
gray matter volume [52, 53] and functional connectiv-
ity with specific regions of the pain network [54, 55].
Moreover, a quantitative EEG study on FM demon-
strated widespread hypocoherence in the frontal brain
regions [28]. Overall, these overlapping brain changes
may reflect the central sensitization mechanism
underlying FM [56].
The present finding of disrupted insula–DMN con-

nectivity in FM appears to contrast with previous fMRI
results demonstrating increased coupling of the BOLD
signals between the insula and DMN [6, 7]. However,
the discrepancy in the altered connectivity patterns
could be explained by the fundamental methodological
differences between fMRI and MEG [57–59], the
frequency-dependent oscillatory characteristics of the
underlying neural network [45, 60], and the effects of
autonomic regulation on BOLD responses [61], which
may be impaired in patients with FM [62, 63]. All of
these apparently contradictory connectivity changes at
different frequencies potentially characterize a

Fig. 3 Correlation of the right insula–default mode network (DMN)
connectivity at the beta band (13–25 Hz) with the (a) number of tender
points (0–18) and (b) total tenderness scores (0–54) of patients with FM
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common functional reorganization mechanism in FM.
In agreement with this, several studies using different
modalities to characterize the brain oscillatory change
in the same disease have yielded contrasting patterns
of connectivity change [45, 60, 61]. The present finding
of altered insula–DMN connectivity in FM is further
supported by the similarity in the findings of bilateral
insula-individual DMN areas (Additional file 1: Table S1
and Additional file 2: Table S2), absence of changes in
V1–DMN or S1–DMN connectivity, and clinical
relevance.
Our results demonstrate that the insula–DMN con-

nectivity in FM was significantly decreased at the theta
band. A recent review identified the theta oscillation as
the main change that occurs in brain rhythm during
chronic pain [64]. A quantitative EEG study that
included patients with FM showed widespread hypoco-
herence in the frontal brain regions at low to middle
frequencies, including the theta band [28]. In line,
recent resting EEG and MEG studies in FM also
showed altered theta oscillations in midline brain struc-
ture such as medial prefrontal cortex [26, 33]. Theta
oscillation has been linked to working memory, atten-
tion, emotional arousal, and fear conditioning, all of
which may be related to pain processing [65, 66]. More-
over, theta connectivity at the bilateral insula cortex has

been reported to be correlated with pain perception. In
a 64-channel EEG study using electrical stimulation at
the threshold level, trials perceived as painful were
characterized by a lower prestimulus theta connectivity,
compared with trials rated as nonpainful [67]. We also
found a negative correlation between tenderness and
insular-DMN theta connectivity. Thus, the present
findings of decreased theta connectivity between the in-
sula and the DMN may reflect persistent pain encoding
associated with the chronic pain state of FM.
Despite its lack of correlation with clinical pain inten-

sity, we also noted that the insula–DMN connectivity
was negatively correlated with tenderness at the beta
band in patients with FM. In pain processing, the beta
oscillation is associated with top-down attention modu-
lation [68, 69] and the perceptual integration of sensory
and contextual (cognitive, emotional, and motivational)
information [64, 70]. Therefore, the increased tender-
ness in patients with FM may be justified by an ineffi-
cient attentional modulation or impaired recruitment
of contextually appropriate brain networks, resulting in
the widespread body pain phenotype. By contrast, the
insula–DMN connectivity at the delta frequency was
negatively correlated with centralized pain-related
symptoms (Symptom Severity scale) and functional
impairment (FIQR) in patients with FM. The delta

Fig. 4 Correlation of insula–default mode network (DMN) connectivity at the delta band (1–4 Hz) with the (a) Symptom Severity Scale (0–12) and
(b) revised Fibromyalgia Impact Questionnaire (FIQR; 0–100) scores
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oscillation has been suggested to be the neuropatho-
logical hallmark of brain rhythm in mood disorders
[71, 72], cognitive impairment [50, 73], pain attack
[74], and fatigue [75, 76]. Therefore, our present
findings highlight the complex role of neural
synchrony between the insula and the DMN in pain,
emotional, and cognitive processing, as shown previ-
ously [16–18]. Future studies should elucidate
whether the delta synchrony of the insula–DMN
network serves as the common neural basis for the
polysymptomatic nosology and multidomain func-
tional disability in patients with FM.
This study has several limitations. First, the anterior

and posterior insula have been reported to be func-
tionally segregated regions with different connectivity
[16–18]; however, we could not differentiate these
subregions because of the constraint of the Colin27
anatomical labeling template. Nevertheless, the altered
insula–DMN connectivity in FM has been shown to
involve both the anterior and posterior insula [7].
Second, a prior study proposed that no one-to-one
correspondence occurs between any frequency compo-
nent of brain activity and pain [77]. Notably, brain ac-
tivity at different frequencies provides different and
complementary information regarding pain, and the
relationship between pain and brain activity may be
variable and context dependent [64]. Thus, the present
findings should be interpreted with caution when
being generalized to other clinical contexts or pain
disorders. Limited by its cross-sectional design, this
study could not clarify the causal relationship of the
connectivity changes in FM. Although we did not
observe a clinical correlation between connectivity
measures and disease duration (favoring the present
findings as the consequences of FM), additional
confirmatory longitudinal studies are warranted.
Finally, the present finding of connectivity change may
be problematic if such change is confounded by the
ongoing pain perceived in patients with FM, despite a
lack of correlation between the connectivity changes
and the clinical pain intensity. Additional longitudinal
studies controlling the intrasubject pain variation may
therefore help re-confirm the “true” resting-state
connectivity change.

Conclusion
The insula–DMN connectivity is associated with
frequency-specific functional reorganization in patients
with FM. The clinical relevance of this connectivity
change may provide an objective measure of FM
phenotypes and related functional disability. However,
the confirmation of its causal relationship and potential
as a neurological signature for FM requires further
research.
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