
Vol:.(1234567890)

Data Science and Engineering (2023) 8:292–305
https://doi.org/10.1007/s41019-023-00223-w

1 3

RESEARCH PAPER

Learning with Small Data: Subgraph Counting Queries

Kangfei Zhao1 · Zongyan He2 · Jeffrey Xu Yu2 · Yu Rong3

Received: 19 May 2023 / Revised: 5 July 2023 / Accepted: 7 August 2023 / Published online: 2 September 2023
© The Author(s) 2023

Abstract
Deep Learning (DL) has been widely used in many applications, and its success is achieved with large training data. A key
issue is how to provide a DL solution when there is no large training data to learn initially. In this paper, we explore a meta-
learning approach for a specific problem, subgraph isomorphism counting, which is a fundamental problem in graph analysis
to count the number of a given pattern graph, p, in a data graph, g, that matches p. There are various data graphs and pattern
graphs. A subgraph isomorphism counting query is specified by a pair, (g, p). This problem is NP-hard and needs large
training data to learn by DL in nature. We design a Gaussian Process (GP) model which combines Graph Neural Network
with Bayesian nonparametric, and we train the GP by a meta-learning algorithm on a small set of training data. By meta-
learning, we can obtain a generalized meta-model to better encode the information of data and pattern graphs and capture
the prior of small tasks. With the meta-model learned, we handle a collection of pairs (g, p), as a task, where some pairs may
be associated with the ground-truth, and some pairs are the queries to answer. There are two cases. One is there are some
with ground-truth (few-shot), and one is there is none with ground-truth (zero-shot). We provide our solutions for both. In
particular, for zero-shot, we propose a new data-driven approach to predict the count values. Note that zero-shot learning
for our regression tasks is difficult, and there is no hands-on solution in the literature. We conducted extensive experimental
studies to confirm that our approach is robust to model degeneration on small training data, and our meta-model can fast
adapt to new queries by few-shot and zero-shot learning.

Keywords  Subgraph isomorphism · Subgraph counting · Meta-learning

1  Introduction

Deep learning (DL) has achieved great success in data-
base systems to support query optimization [31], index
recommendation [12], view materialization [27], cardinal-
ity estimation [13, 25], and subgraph counting [28, 65].
The two main keys that lead to the success of deploying

DL effectively to deal with real problems are (1) to learn
an advanced model that meets the problem, and (2) to learn
with large training data. Almost all the works focus on
modeling techniques assuming that it is possible to collect
enough training data to learn. Take query optimization as an
example, training a feed-forward neural network consumes
20,000 unique queries over a fixed database schema [13].
A natural question that arises is what a system can do if
there are only a few training data to learn a model that can
be effectively used. The solution rules out learning a model
until the training dataset is large. This problem is important
because a system needs to support various needs from time
to time, and it is the last thing that the system responses
negative if there is no sufficient training data to learn. To
address this issue, it requires an approach by meta-learning.
That is to learn a model and refine the model with limited
or even no training data if any from time to time. We will
discuss it with a specific problem in database, as it is difficult
to come up with a general solution to deal with the require-
ment of sufficient training at this stage.

 *	 Kangfei Zhao
	 zkf1105@gmail.com

	 Zongyan He
	 zyhe@se.cuhk.edu.hk

	 Jeffrey Xu Yu
	 yu@se.cuhk.edu.hk

	 Yu Rong
	 yu.rong@hotmail.com

1	 Beijing Institute of Technology, Beijing, China
2	 The Chinese University of Hong Kong, Hong Kong, China
3	 Tencent AI Lab, Shenzhen, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00223-w&domain=pdf

293Learning with Small Data: Subgraph Counting Queries﻿	

1 3

As a specific problem, in this paper, we study a subgraph
isomorphism counting query that has been widely used in many
applications in bioinformatics, chemoinformatics, and social
network analysis [28]. Such a query is specified by a pair of
(g, p), where g is a data graph and p is a pattern graph, and is
to find the number of matches of p in g. This problem itself is
NP-hard [8] and is difficult to learn. In general, over a set of
data graphs, G = {g1, g2,… , gn} , there is a set of pattern graphs
P = ∪1≤i≤nP(gi) where P(gi) is a set of pattern graphs associ-
ated with gi . In [28], a DL model is trained by feeding a large
number of training pairs (g, p), aiming to be well generalized
on unseen test pairs (g∗, p∗) . The DL model consumes hundreds
of thousands of pairs, and for each graph gi , its P(gi) is large
enough. The issue that arises is how to collect a sufficiently
large training dataset to synthesize comprehensive features to be
learned. In real applications, the data graph may come from dif-
ferent domains, and the pattern graphs may be diverse regard-
ing the sizes, node/edge labels, and structures. For example, in
computational biology, the data graphs could be the molecules
in many drug banks, which have different scaffolds. The pattern
graphs are functional groups which are a large combination of
different numbers and types of atoms/bonds.

Hence, it is impractical to learn a model for given G and Q
with limited training pairs, and it is impractical to learn a model
for each data graph gi with its pattern graphs P(gi) . To deal with
such a dilemma, we construct a meta-model for given G and P ,
which learns the prior knowledge of subgraph counting across
multiple tasks. Consider an encountered task, i.e., a collection
of pairs, where some pairs may be with ground-truth (e.g., the
exact number of matchings), and some pairs need to answer.
With some possible pairs with ground-truth (known as shots),
the meta-model can be swiftly adapted to deal with the other
pairs in the task that need to answer. Inspired by deep kernel
learning and deep kernel transfer [39, 57], we devise a new
meta-model that warps a graph neural network (GNN) as a
special Gaussian Process (GP). For one thing, the graph neural
network preserves the powerful modeling capability of deep
learning for subgraph counting. For the other thing, Bayesian
nonparametric, inherited by GP, enables learning from scratch
over small samples with a distribution-free assumption, and
the prior of structural subgraph counting tasks are captured via
optimizing the prior of the GP. Furthermore, as there may be no
pair in a task with ground-truth (zero-shot), we adapt the ker-
nel-based meta-learning algorithm to support zero-shot cases
in a data-driven fashion. It is worth mentioning that zero-shot
learning for regression tasks is difficult, and there is no hands-
on solution in the literature. The contributions of this paper are
summarized as follows:

•	 We study a specific problem of subgraph isomorphism
counting in a paradigm of meta-learning to address the
initial small training data issue in DL. We propose a
Gaussian Process model, called RGIN-GP, that combines

graph neural network and kernel method, aiming to learn
over small training data.

•	 We employ a meta-learning algorithm to train a meta-
RGIN-GP model over a small set of training data. The
small training dataset is divided into tasks, where a task
is a collection of (g, p) pairs, for the purpose of predict-
ing a new counting task that may share the similar task
structure.

•	 We provide solutions for both few-shot and zero-shot
cases to deal with a new subgraph counting task. In
particular, for zero-shot, we propose a new data-driven
approach to predict the count values for a new task with-
out any ground-truth.

•	 We conduct extensive experiments for few-shot and zero-
shot learning, using real and synthetic graph datasets in
different scenarios. The experimental results verify that
the meta-learned RGIN-GP outperforms the supervised
learned neural network counterparts by small training
data and is effective to adapt to new tasks by few-shot/
zero-shot learning.

Roadmap: Section 2 gives the problem statement and a neu-
ral network framework for subgraph counting. In Sect. 3, we
introduce the RGIN-GP model, the meta training and testing
algorithms, and the feature encoding. Section 4 reports the
experimental results. Finally, we review the related works
in Sect. 5 and conclude the paper in Sect. 6.

2 � Preliminaries

We model both data graph g and pattern graph p as a labeled
undirected graph as a tuple G = (V ,E, LV , LE, ΣV ,ΣE) . Here,
V is a set of nodes, E is a set of undirected edges, and LV
( LE ) is a mapping function that maps a node u ∈ V (edge
e ∈ E ) to a node label (edge label) in ΣV ( ΣE ). We denote
neighbors of node u in G as N(u) = {v|(u, v) ∈ E}.

Subgraph Isomorphism : Given a data graph
g = (Vg, Eg, LV , LE, ΣV ,ΣE) and a pat tern graph
p = (Vp,Ep, LV , LE,ΣV ,ΣE) , subgraph isomorphism p
to g is an injective function f: Vp ↦ Vg such that (1) for
every u ∈ Vp , LV (u) = LV (f (u)) , (2) for every (u, v) ∈ Ep ,
(f (u), f (v)) ∈ Eg , and (3) for every e = (u, v) ∈ Ep and
e� = (f (u), f (v)) ∈ Eg , LE(e) = LE(e

�) . The injective func-
tion f imposes the constrain that f (u) ≠ f (v) for any pair of
u and v in Vp if u ≠ v . A subgraph isomorphism function f of
p induces a subgraph gf = (Vf ,Ef , LV , LE,ΣV ,ΣE) in g, where
Vf is the set of nodes by f(u) for every u in Vp , and Ef is the
set of edges by (f(u), f(v)) for every edge (u, v) in Ep . We say
gf is a subgraph isomorphism matching of p to g. Finding
the subgraph isomorphism matching for given p and g is

294	 K. Zhao et al.

1 3

computationally hard as the decision problem of subgraph
isomorphism is NP-complete [8].

Subgraph Isomorphism Counting Query: Given a pair of
data graph g and a pattern graph p, a subgraph isomorphism
counting query is to find the total number of subgraph iso-
morphism matchings of p to g, denoted as c(g, p). Here, a
node in p is allowed to be unlabeled. When a node in p is
unlabeled, a special label, interpreted as any, is assigned.

A graph database is a set of small/medium sized
graphs, G = {g1, g2,… , gn} , with a set of pattern
graphs P = ∪1≤i≤nP(gi) , where P(gi) is a set of pattern
graphs associated with gi . For simplicity, we also use
P = {p1, p2,… , pm} to denote the whole possible set of pat-
terns. A subgraph isomorphism counting query is a pair of
(g, p) such that g ∈ G , and p ∈ P(g).

A machine learning model can be built from a set of pairs
of data graph and pattern graph X = {x1, x2,… x|X|} , where
xi is a pair of data and pattern graphs, xi = (gi, pi) , with the
corresponding true count denoted as c(xi) (or c(gi, pi) ) for
all 1 ≤ i ≤ |X| . A true count is the exact count of subgraph
isomorphism matching of pi in gi . The model will take an
unseen pair x∗ = (g∗ , p∗) , and estimate its count ĉ(g∗, p∗) .
In estimation, the pair x∗ = (g∗, p∗) is not seen in the train-
ing set, where either g∗ or q∗ may appear in the training set.
We use the absolute error to evaluate the accuracy of the
estimated value.

Note that the model can answer the subgraph isomorphism
query, i.e., whether p∗ is subgraph isomorphism to g∗ by
ĉ(g∗, p∗) > 0.5.

Problem Statement: The problem is first to build a model
M to support subgraph isomorphism counting queries, when
the size of the training set is not large enough. Then, in test-
ing M , there are new tasks coming, where a task T∗ is the
union of two subsets, S∗ and Q∗ , denoted as T∗ = (S∗,Q∗) ,
where S∗ is a support set with ground-truth such that
S∗ = {(g∗

i
, p∗

i
)}l

i=1
 , where c(g∗

i
, p∗

i
) for each i is given, and Q∗

is a query set to be answered each such that
Q∗ = {(g∗

j
, p∗

j
)}k

j=1
 . Note that S∗ may be empty, i.e., l = 0

(called zero-shot), and is small in size when it is non-empty,
i.e., l < k (called few-shot). The problem is how to enhance
M to answer queries in Q∗ on-demand with the assistance
of S∗ which may be empty.

2.1 � A Model Learned with Large Data

Recently, a learning framework has been proposed for the
subgraph isomorphism counting of a pair of data and pattern
graphs in [28]. This neural network framework is composed

(1)���- �����(g∗, p∗) = |c(g∗, p∗) − ĉ(g∗, p∗)|

of graph representation layers, interaction layers, and Mul-
tilayer perceptron (MLP), to learn M with a large training
data X. The graph representation layers take the labeled data
and pattern graph as input and generate vector representa-
tion for the data graph and pattern graph, respectively. The
interaction layer combines the two representations into one
representation and the MLP finally outputs the estimated
count. [28] explores different options for the graph repre-
sentation layers (i.e., CNN [24], LSTM [20], Transformer-
XL [10], Graph Neural Networks (GNN) [47, 59]) and for
the interaction layers (i.e., sum/mean/max pooling, multi-
head attention [52] and dynamic intermedium attention).
Regarding the trade-off between prediction accuracy and
efficiency, a GNN variant, Relational Graph Isomorphism
Network (RGIN), coupled with sum pooling interaction
performs best in [28]. Below, we introduce RGIN which we
adopt to build a neural network.

RGIN Graph Representation. The K-layer GNN [18, 53,
59] follows a neighborhood aggregation paradigm to update
the representation of a node by aggregating the representa-
tions of its neighbors in K iterations. Let �(k)

v
 denote the rep-

resentation of a node v generated in the k-th iteration. In the
GNN k-th iteration (layer), for a node v, an aggregate func-
tion f (k)

A
(⋅) aggregates the representations of the neighbors

of v that are generated in the (k-1)-th iteration as Eq. (2).
Then, a combine function f (k)

C
(⋅) updates the representation

of v by the aggregated representation a(k)
v

 and the previous
representation �(k−1)

v
 itself as Eq. (3). The functions f (k)

A
(⋅)

and f (k)
C
(⋅) are neural networks, e.g., linear transformation

with nonlinearity and optional Dropout [49] for preventing
overfitting.

Take the RGIN layer as an example, for each node v, the
aggregate function in Eq. (4) distinguishes its neighbors by
the edge label, and aggregates the |ΣE| types of neighbors
respectively. W (k)

l
 is the weight matrix for the neighbors with

edge label l in the k-th layer and the |LE| types aggregation
are further summed up. In the combine function of Eq. (5),
the aggregated a(k)

v
 is summed up with the (k − 1)-layer repre-

sentation e(k−1)
v

 , which transformed by weigh W (k)

0
 , and finally

be transformed by an MLP layer.

(2)a(k)
v

= f
(k)

A
({�(k−1)

u
|u ∈ N(v)})

(3)�(k)
v

= f
(k)

C
(�(k−1)

v
, a(k)

v
)

(4)a(k)
v

=
∑

l∈ΣE

∑

u∈N(v),LE((u,v))=l

W
(k)

l
�(k−1)
u

(5)�(k)
v

= ���(W
(k)

0
�(k−1)
v

+ a(k)
v
)

295Learning with Small Data: Subgraph Counting Queries﻿	

1 3

For the data graph g and pattern graph p, there are two inde-
pendent K-layer RGIN models that generate the |Vg| × d-dim
data graph node embedding and |Vp| × d-dim pattern graph
node embedding of the K-th layer, respectively.

Sum Pooling Interaction. After obtaining the data graph
and pattern graph representations, the interaction layer is to
combine the two representations to one pair-wise representa-
tion. The sum pooling interaction sums up the node embed-
ding of the data and pattern graphs, respectively, and simply
concatenates the two vectors to a long vector, as shown in
Eq. (6).

The concatenated vector h will pass an MLP to generate the
prediction ĉ(g, p) . The experimental study in [28] shows that
although the sum pooling is simple, it is easy to train and
achieve the approaching accuracy of the dynamic interme-
dium attention memory interaction (DIAMNet) and is two
times faster than DIAMNet. In contrast, complex interaction
layer such as DIAMNet and multi-head attention are hard to
train and face the risk of overfitting. To train the DL models,
[28] adopts the mean-squared-error loss.

3 � A Meta‑Learning Approach

We explore a meta-learning approach to build a meta-
counting model M . Here, the main problem is to answer
each pair in Q∗ from a new coming task T∗ = (S∗,Q∗) by
M built with limited training data X = {x1, x2,… , x|X|} ,
where each xi = (gi, pi) in X is with the ground-truth c(xi) .
To capture the prior knowledge by the meta-model that is
persisted with task-common parameters, the initial training
data, X, is disjointly distributed into multiple training tasks,
D = {T1,… , Tn} . Here, a task Ti is also a pair, Ti = (Si,Qi) .
Different from T∗ , we have ground-truth for both Si and Qi .
A meta-learning algorithm is to learn the knowledge prior
over multiple tasks which may exhibit some specific task
structure.

Figure 1 presents the overview of the meta training
and testing procedures. In training, for each task Ti with
a small number of pairs to train, we use RGIN-GP (RGIN
Gaussian Process) to construct a kernel � , which is speci-
fied by a deep neural network parameter w and a sta-
tionary kernel with hyperparameter � . As illustrated in
(Fig. 1a), a task Ti is presented with multiple data graphs
( Gi ) and multiple pattern graphs ( Pi ), and the meta-model
is a Gaussian Process whose parameters are trained by
gradient descent task by task. With the kernel built with
w and � , in testing for a new incoming task T∗ = (S∗,Q∗) ,

(6)h = ������

(∑

v∈Vg

�(K)
v

,
∑

v�∈Vp

�
(K)

v�

)

there are two cases. One is few-shot where |S∗| is small
but is nonzero, and one is zero-shot where |S∗| = 0 . For
few-shot testing, the meta-model leverages the kernel
matrix of the whole task to make a prediction for the
query set (Fig. 1b). For zero-shot test, we take a data-
driven approach to build the kernel by making use of one
task, Ti  , drawn from the training data (Fig. 1c). In this
work, meta-testing is not to refine the meta-model built
with w and � . The meta-model built remains unaffected.
With a new task, T∗ = (S∗,Q∗) , it is to answer queries in
Q∗ by Bayesian inference with additional S∗ , which we
will discuss later.

The approach we take is based on an optimization-based
Bayesian meta-learning algorithm, Deep Kernel Trans-
fer [39], for four reasons, where two reasons are from the
perspective of training algorithms, and two are from the
perspective of model characteristics. From the perspective
of training, first, as an optimization-based approach, DKT
directly optimizes the task-common parameters by pro-
cessing one task at a time via stochastic gradient descent,
which is effective to learn the task-level prior knowledge.
Second, the model can be learned by one-level gradient
descent, which is more efficient and stable than classical
bi-level meta-learning algorithms, e.g., MAML [15]. From
the perspective of the model, third, by leveraging DKL, the
proposed GP model, RGIN-GP, is suitable for modeling
small data and naturally endorses regression tasks, exploit-
ing the main advantages of GP. Fourth, as a GP model
which adapts Bayesian inference for prediction, RGIN-GP
can provide robust prediction and principled uncertainty
quantification derived from Bayesian method.

Fig. 1   Meta-model train and test

296	 K. Zhao et al.

1 3

In the following, we present how to deploy a kernel for
a task, which exploits deep neural network transformation
(Sect. 3.1), how to train the kernel and test in the few-shot
and zero-shot scenarios (Sect. 3.2), and how to encode the
input pairs (Sect. 3.3).

3.1 � RGIN Gaussian Process (RGIN‑GP)

To learn over a small set of samples, nonparametric modeling
is an effective method in Bayesian learning. Deep Kernel
Learning (DKL) [45, 57] provides a way to integrate Bayes-
ian nonparametric into deep learning models. It constructs a
special GP model which has a conventional stationary kernel
function, e.g., the RBF kernel, but the input features space is
the embedding space of deep learning models. The hyperpa-
rameters of the kernel and the parameters of the deep learning
model can be jointly optimized by stochastic gradient descent.
Inspired by this, we adopt RGIN with sum pooling layer as the
deep learning model that transforms the data and pattern graph
into the input vector embedding for a stationary kernel, and the
RGIN-GP derives from the deep kernel function constructed
as follows. Given an input x = (g, p) as a pair of data and pat-
tern graphs, the deep kernel function � measures the similarity
of a pair of inputs xi, xj as

Here, F(x;w) is a nonlinear transformation specified by
a deep neural network with parameters w, i.e., the RGIN
together with the sum pooling interaction layer. And the
function K(hi, hj;�) is a stationary kernel function that is
invariant to input transformation with the hyperparameter � ,
e.g., the RBF kernel. In a nutshell, the neural network F(x;w)
is responsible for learning an effective intermediate repre-
sentation h to capture the non-stationary and hierarchical
features of the input. Then, the kernel K(hi, hj;�) discovery
stationary structure by an interpretable basis function.

Given n training inputs, X = {x1,… , xn} , the deep kernel
� defined in Eq. (7), the model f(X) is a Gaussian Process as
Eq. (8) [43] that we call RGIN-GP, where �X = [�]n is an
assumed constant mean and �X,X = [�(xi, xj;w, �)]

n×n is the
covariance function.

To make prediction for the testing inputs X∗ = {x∗
1
,…

x∗
m
} , we need to compute the conditional distribution

p(f (X∗)|f (X)) as the prediction, assuming the output is dis-
turbed by a Gaussian noise N(0, �2) . It is also proved to be
a Gaussian distribution as Eq. (9), where the expectation
and covariance of the predictive distribution can be solved
in closed form in Eqs. (10), (11).

(7)�(xi, xj;w, �) = K(F(xi;w),F(xj;w);�)

(8)f (X) = [f (x1),… , f (xn)]
T ∼ N(�X ,�X,X)

Here, c = [c(xi)]
n is the ground-truth vector of the input X.

The matrices �X,X = [�(xi, xj;w, �)]
n×n , �X,X∗ = [�(xi, x

∗
j
;

w, �)]n×m and �X∗,X∗ = [�(x∗
i
, x∗

j
; w, �)]m×m are the train-train,

train-test, test-test kernels, respectively. The expectation
�(c∗) will be treated as the explicit prediction counts ĉ , and
the diagonal element of matrix C in Eq. (11) measures the
variance of the prediction. Meanwhile, we can easily com-
p u t e t h e � - c o n f i d e n t i a l i n t e r va l o f ĉ a s
[ĉ − q�diag(C), ĉ + q�diag(C)] , where q� is the �-quantile of
N(0, 1).

The predictive distribution highly depends on the kernel
matrix � , which is determined by the neural network weight
w and the stationary kernel hyperparameter � . Training the
kernel is to infer these parameters to adapt to the training
data. The optimization is conducted by minimizing the nega-
tive marginal (log) likelihood of the training data X.

There is no analytical solution for optimizing the loss of
Eq. (12), but the objective is differentiable. To train an
RGIN-GP, the neural network weights w and the kernel
hyperparameter � are jointly optimized by stochastic gradi-
ent descent. We use the spectral mixtures base kernels [56]
as the stationary kernel function K since the kernel is able
to approximate continuous stationary kernels to an arbitrary
precision given sufficient number of mixtures.

3.2 � Meta‑Learning for RGIN‑GP

In this section, we discuss how to train an RGIN-GP as a
meta-model and test it in the few-shot and zero-shot sce-
narios. In real applications, new tasks may arrive in dif-
ferent ways, since the data graph may come from different
domains, and the pattern graphs may be diverse regarding
the sizes, node/edge labels, and structures. In this paper,
we firstly explore the following 5 task configurations
where a single variable (e.g., a data/pattern graph) is con-
trolled. Here, given a training data X, we have a set of data
graphs, G = {g1, g2,… , gn} , and a set of pattern graphs,

(9)f (X∗)|f (X) ∼ N(�(c∗),C)

(10)�(c∗) = �X + �T
X,X∗ [�X,X + �2I]−1(c − �X)

(11)C = �X∗,X∗ − �T
X,X∗ .[�X,X + �2I]−1�X,X∗

(12)

L��� = − log p(c|X) = ∫ p(c|f (X),X)p(f (X)|X)d(f (X))

∝ c
T [�X,X + �2I]−1c + log |�X,X + �2I|

297Learning with Small Data: Subgraph Counting Queries﻿	

1 3

P = {p1, p2,… , pm} . The graphs in G may come from dif-
ferent domains. Instead of specifying a task as Ti = (Si,Qi) ,
below, for the task structure configuration, we specify a
task Ti = (Gi,Pi) , where Gi ⊂ G and Pi ⊂ P , and we have
the ground-truth for any pair (g, p) for g ∈ Gi and p ∈ Pi.

•	 Same Graph Tasks ( ����� ): Data-pattern pairs are
from a single domain. The data graphs that appear in
training tasks will not appear in any testing task. The
pattern graphs P(gi) that are associated with a data
graph gi will appear together with gi in a task where
gi appears. Note that a pattern graph pj may appear in
both training and testing pairs.

•	 Same Pattern Tasks ( ����� ). Data-pattern pairs are
from a single domain. The pattern graphs that appear
in training tasks will not appear in any testing task. The
data graphs gi will appear in a task together with pj if
pj ∈ P(gi) appears in the task. Note that a data graph gi
may appear in both training and testing pairs.

•	 Hybrid Domains with Same Graph Tasks ( ������� ).
Data-pattern pairs are from multiple domains, whereas
pairs in one task are from the same domain. For one
domain, training and testing tasks follow �����.

•	 Hybrid Domains with Same Pattern Tasks ( ������� ).
Data-pattern pairs are from multiple domains, whereas
pairs in one task are from the same domain. For one
domain, training and testing tasks follow �����.

•	 Random Tasks ( ������ ). Data-pattern graph pairs are
from a single domain. Pairs are randomly and disjointly
distributed in all the tasks in the training and testing
task sets. A pair in a training task does not appear in
any testing tasks.

Here, ����� corresponds to the situations where the pat-
tern graphs are static and there may have new arrival data
graphs. ����� corresponds to the situations where the
data graphs are static and there may have new arrival pat-
tern graphs. ������� and ������� do similar like �����
and ����� in the same single domain, but are on multiple
domains. ������ is to test different possibilities in a single
domain.

Meta-Training: Algorithm 1 presents the meta-training
process for RGIN-GP. The algorithm is to learn (w, �) of the
kernel � that minimizes the negative marginal likelihood
across all the training tasks. As shown in Fig. 1a, for each
gradient step, a task T is sampled from the training tasks
(line 1), then the marginal likelihood L��� (Eq. (12)) is com-
puted over all the pairs in the task, i.e., S ∪Q (line 4), and
the parameters (w, �) are updated for that task (line 5). The
meta-training algorithm is different from training the ker-
nel from scratch, where marginalization of the likelihood is
over all data instead of a distinct task. The parameters (w, �)

learned by Algorithm 1 better leverage the structure of the
tasks, which are shared across all tasks as the task-common
parameters.

Few-shot Testing: Given a testing task T∗ = (S∗,Q∗) where
|S∗| ≠ 0 , the meta-model will adapt to the task based on its
support set and the task-common parameters learned. Algo-
rithm 2 shows the steps to compute the predictive distribu-
tion of Eq. (9) for the query set Q∗ . It is computed by con-
ditioning on the support set S∗ (line 1–2), which analytical
solution is given in Eqs. (10)–(11). The Bayesian inference
is essential to compute the integral

where w is the learned neural network weights, and �T∗ is the
task-specific parameters derived from the kernel hyperpa-
rameters � . Equation (13) ensembles all the models with all
possible configurations of the task-specific parameters �T∗ ,
weighted by the posterior of the parameters p(�T∗ |cS∗ ,XS∗)
given the support set S∗ . Equation (13) is known as Bayesian
model average [58].

Zero-shot Testing: Given a testing task T∗ = (S∗,Q∗)
where |S∗| = 0 , the meta-model cannot adapt to the task
based on its support set. In the literature [55, 60], zero-shot
learning is mainly done for classification where the classes
are limited. Different from classification, our problem here is
for subgraph isomorphism counting by regression. Perform-
ing zero-shot testing for a regression task is difficult as it is
to predict a value. To make predictions, we utilize training
tasks. The basic idea is to borrow one training task Ti as
the support set for the new coming task T∗ . The assump-
tions are that the training tasks and test tasks may be similar
regarding data/pattern graph, and they share some specific
task structures. The kernel � leverages the similarity. The
algorithm is given in Algorithm 3. First, a training task is
sampled randomly from the training data (line 1). Then, a
set of auxiliary data (X, c) is taken from the task to serve as
the support set (line 2), and is used to compute the posterior
of the parameters p(�T∗ |c,X) (line 3-4).

The discrepancy between the two posterior densities
p(�T∗ |c,X) and p(�T∗ |cS∗ ,XS∗) determines the difference
between the few- and zero-shot testing, which is further
determined by the discrepancy of p(c, X) and p(cS∗ ,XS∗) .
As the shape of p(c, X) is delineated by p(X) and p(c|X),
the higher the similarity between p(X) and p(XS∗) , and
p(c|X) and p(cS∗ |XS∗) , the well the auxiliary task works in
the zero-shot testing [60].

For the subgraph counting tasks, it is difficult to make
practical assumptions for both p(X) and p(c|X), for the 5
task configurations. The zero-shot testing will also have

(13)
p(cQ∗ |XQ∗ , cS∗ ,XS∗ ,w, �) = ∫ p(cQ∗ |XQ∗ , �T∗ ,w)

p(�T∗ |cS∗ ,XS∗)d(�T∗)

298	 K. Zhao et al.

1 3

different effects on different task configurations. It is worth
noting that, for ������� and ������� tasks, the auxiliary
task sampled should be the same domain/database with
the testing task to pursue a high similarity between p(c, X)
and p(cS∗ ,XS∗) . We also explore adding the auxiliary data
(c, X) in the few-shot testing, together with (cS∗ ,XS∗) to
approximate the posterior of �T ∗ . Bayesian model aver-
age marginalizes all possible �T ∗ and gives a smooth and
robust prediction.

Algorithm 1: RGIN-GP Meta Train
Input : Training Task Set D = {T1, · · · ,Tn},

learning rates αw and αθ

Output: neural network parameter w, kernel
hyperparameter θ

1 repeat
2 Sample a task T = (S,Q) from D

3 X ← XS ∪XQ; c ← cS ∪ cQ
4 Compute marginal loglikihood loss Lmll by

Eq. (12)
5 w ← w − αw∆w; θ ← θ − αθ∆θ

6 until stop criterion

Algorithm 2: RGIN-GP Few-shot Test
Input : One Test Task T∗ = (S∗,Q∗), neural

network parameter w, kernel
hyperparameter θ

Output: prediction cQ∗ for Q∗

1 X ← XS∗ ; c ← cS∗ ; X∗ ← XQ∗ ;
2 Compute the conditional distribution of cQ∗ by

Eq. (10)-(11)

Algorithm 3: RGIN-GP Zero-shot Test
Input : One Test Task T∗ = (Q∗), Training

Task Set D = {T1, · · · ,Tn}, neural
network parameter w, kernel
hyperparameter θ

Output: prediction cQ∗ for Q∗

1 Sample a task T = (S,Q) from D

2 Sample (X, c) ∼ (XS ∪XQ, cS ∪ cQ)
3 X∗ ← XQ∗ ;
4 Compute the conditional distribution of cQ∗ by

Eq. (10)-(11)

3.3 � Feature Encoding

Encoding initial node representation �(0)
v

 for RGIN-GP in
the neural network mapping F is important in learning. The
one-hot encoding is widely used to represent the attribute
features in GNN models for node classification, link predic-
tion [26, 59] and subgraph counting [28]. However, such
sparse encoding is lack of insight for the analytical subgraph
counting. It is worth noting that the labels of a pattern node
serve as the predicates of the pattern, and are used to filter
nodes in the data graph. We explore frequency-based encod-
ing and pre-trained embedding-based encoding to encode
label information and topological structure.

Frequency − based Encoding. T h e f r e q u e n c y -
based features encode the filter capability of a pattern
node regarding the data graph. For a data graph gi , we
denote the number of occurrence of a node label l as
ϝ(l) = |{v | l ∈ LV (v) for v ∈ Vgi

}| . The node representation
for v in a pattern graph q, �(0)

v
 , is encoded as a |ΣV |-dimen-

sional vector, �(0)
v

∈ ℝ
|ΣV | , where ΣV is the universal set of

the node labels on data graphs, and the i-th dimension cor-
responds to the i-th node label li ∈ ΣV . The value of �(0)

v
[i] is

the fraction of the nodes in g can be matched to v. In detail,
if node v is associated with a node label li , �(0)v

[i] will be set
to ϝ(li)∕|V| , otherwise �(0)

v
[i] will be set to 1.0. It is worth

noting that for one query, its frequency-based encoding for
different data graphs is different.

Embedding − based Encoding. The frequency-based
encoding takes the attribute frequency of the data graph
into account, but fails to leverage the topology of the data
graphs. An encoding to encode the topological structure of
the data graph together with its labels is needed. As feeding
GNN a pre-trained and unsupervised embedding as node
features can boost the performance, we pre-train a node
label embedding for the data graphs to enhance the pattern
graph encoding. To preserve the topological property of
the training data graphs {g1,… , gn} together with the uni-
versal node label set ( ΣV ), we construct a label-augmented
graph GL = (V ∪ VL,E ∪ EL) . Here, V = Vg1

∪⋯Vgn
 and

E = Eg1
∪⋯Egn

 , which means the data graphs are treated
as connected components of a large graph with node V and
E. VL is a set of nodes where a node represents a label in ΣV ,
and there are |ΣV | nodes in VL . EL is a set of edges where
an edge is between a node, v, in V with a node, l, in VL , if v
has the node label l that the node l corresponds to. We use a
scalable, task-independent graph embedding algorithm (e.g.,
DeepWalk [40], node2vec [17], ProNE [62]) to pre-train a
node embedding for the label-augmented graph GL . With the
pre-trained label embedding, we encode every node in a pat-
tern graph q. For a node v in q, we set �(0)

v
 to be

∑
l∈LV (v)

��(l) ,

299Learning with Small Data: Subgraph Counting Queries﻿	

1 3

where ��(l) is the pre-trained embedding of the label l in GL
if v has the label l. A node v will have an all-zero vector if it
does not have any labels.

4 � Experimental Studies

In this section, we give the experimental setting (Sect. 4.1)
and report our experiments in the facets: ① compare RGIN-
GP with the neural network counterpart (Sect. 4.2), ②
investigate the prediction performance under different task
configurations (Sect. 4.3), ③ compare the meta-RGIN-GP
with other optimization-based meta-learning approaches
(Sect. 4.4), ④ compare RGIN-GP with subgraph counting
algorithms (Sect. 4.5).

4.1 � Experimental Setup

Implementation and Setting. We give the settings of RGIN-
GP. For the neural network transformation F  , the number
of RGIN layers is 3, where each hidden layer has 64 units
and a Dropout probability of 0.2. For the stationary kernel
function K , we use the spectral mixtures based kernels [56],
whose loss is consistently easy to converge than the widely
used RBF kernel for our learning task. For the embedding-
based encoding, we try 4 scalable task-independent node
embedding approaches, i.e., DeepWalk [40], node2vec [17],
ProNE [62], NRP [61] and finally choose ProNE as the
embedding algorithm for the label-augmented graph due to
its efficiency and stable performance. Following the setting
in [62], the dimension of the embedding is 128.

The learning framework is built on PyTorch with PyTorch
Geometric and GPyTorch [16]. We use the Adam optimizer
with a decaying learning rate to train our models via 200
epochs. The initial learning rates for the neural network
parameters and kernel hyperparameters ( �w and �� in Algo-
rithm 1) are set to 5e-4 and 1e-3 empirically, respectively.
Both training and prediction are performed on a Linux server
with a Tesla V100 with 16GB memory.

Datasets. We use one real graph database ����� , and
two synthetic graph databases ���-����� and ���-����� .
����� collection [11] has 188 unique nitroaromatic

compounds where nodes represent atoms and edges repre-
sent bonds. The node (edge) label represents the atom (bond)
type. The 24 patterns are from [28]. The two synthetic data-
sets ���-����� and ���-����� are generated by the genera-
tor of [28]. ���-����� follows the same scale of �����
for the data graphs and pattern graphs. ���-����� enlarges
the scale of the ����� data and pattern graphs two times.
Here, the data graphs are generated from patterns by adding
nodes and edges to the patterns. Table 1 lists the profile of
the three datasets.

Baseline Approaches. From the perspective of the model,
we compare meta-learned RGIN-GP ( ���� − �� ) with
its neural network counterpart in [28], ���� + �������
and the model in [28] with the best prediction accuracy,
���� + ������� . From the perspective of the learning
algorithm, we compare our meta-learned ���� − �� with
���� + ������� trained by a classical meta-learning algo-
rithm Model-Agnostic Meta-Learning ( ����) [15] and
transfer learning under the linear protocol ( ��������� ).
���� optimizes the task parameters end-to-end by a bi-level
back propagation. Specifically, the algorithm optimizes the
task-specific parameters in one inner loop and the task-com-
mon parameters in the outer loop. ��������� treats each
training task as one batch to optimize the task-common
parameters. For a testing task, the parameters of the final
layer in the MLP are finetuned by one gradient step. For
the two algorithms, the model is the neural network model
���� + �������.

EvaluationMetrics : We use the mean of ���-����� , i.e.,
MAE (Eq. (1)), of the counts and the accuracy of the sub-
graph isomorphism query to evaluate the model perfor-
mance. The two metrics do not have a direct correlation. The
well performed model should achieve small MAE and high
accuracy simultaneously on the test set. Small MAE but low
accuracy indicates all the estimations are over-smoothed to
the mean of the true counts. Large MAE but high accuracy
indicates the model can only distinguish zero and nonzero
counts but cannot predict well for nonzero counts.

4.2 � RGIN‑GP versus Neural Network Models

We first compare our ���� − �� with its neural network
counterpart ���� + ������� , and a more powerful model

Table 1   Profile of datasets

Dataset Data graphs Pattern graphs # (g, p) c(g, p)

|Vg| |Eg| |ΣV | |ΣE| # g |Vp| |Ep| |ΣV | |ΣE| # p

����� [10, 28] [20, 66] [3, 7] [3, 4] 188 [3, 4] [2, 3] [1, 2] [1, 2] 24 4,512 [0, 156]
���-����� [10, 28] [20, 66] [3, 7] [3, 4] 30,681 [3, 4] [2, 3] [1, 2] [1, 2] 240 30,681 [0, 126]
���-����� [10, 56] [22, 132] [3, 7] [3, 4] 102,057 [3, 8] [2, 12] [1, 2] [1, 2] 1,680 102,057 [0, 128]

300	 K. Zhao et al.

1 3

���� + ������� on ����� dataset. For ���� − �� , we
organize the training and testing pairs as ������ tasks with
128 pairs in each task. Testing is conducted in the zero-
shot mode (Algorithm 3) with 128 auxiliary pairs drawn
from the training data. For the two neural network models,
they are trained by standard supervised learning. Table 2
shows the testing performance on 20% testing pairs when
the training pairs are set to 60%, 40%, and 20% of the overall
4,512 pairs, respectively. In general, the 3 ���� − �� vari-
ants remarkably outperform the two neural network models
w.r.t. MAE. When the training ratio is 60% and 40%, the test
MAE of ���� − �� models is below 1.0. When the training
ratio declines to 20%, the MAE only arises to about 1.2.
The neural network ���� + ������� and ���� + �������
suffer from model degradation. We observed the loss con-
verges slowly during training, and the test performance has
a large variance w.r.t. multiple training, particularly for the
complicated model ���� + ������� . The implication of
this experiment is our ���� − �� is robust, data-efficient
and much easier to train than its neural network counter-
part. This is because of its nature as a GP whose prediction
is conducted by Bayesian model average.

4.3 � Influence of Task Configuration

We investigate how task configurations influence the perfor-
mance of ���� − �� . For the 5 types of tasks, i.e., ������ ,
����� , ����� , ������� , ������� , by default, we use
���� − ��(�����) as the model and use 7 training tasks
from ����� database with 128 pairs and 16 shots for one
task. For ������� and ������� , 239 tasks from the domain
of ���-����� are added into the training task set. First, we
vary the number of shots in {1, 4, 16, 64} , and the prediction

MAE and accuracy are shown in Fig. 2a and b. The number
of shots has a large influence on the testing MAE and accu-
racy. The larger the support set in each task, the better the
performance, which is consistent with our intuition. As the
number of shots grows exponentially, the performance gain
improves marginally. Second, we vary the number of pairs in
each task in {32, 64, 128, 256} by fixing the number of shots
to 16 and ����� training tasks to 7. The testing results are
shown in Fig. 2c and d. In general, varying the task size will
not incur a large influence as varying the number of shots.
However, we observe ������� , ������� are more sensi-
tive to the task size compared with the other 3 task types.
The reason would be when varying the MUTAG task size,
the task structure between synthetic tasks and MUTAG task
becomes different, e.g., the percentage of pairs with ground-
truth in one task. And this difference brings greater per-
formance variation. Third, we vary the number of �����
training tasks in {7, 14, 21, 28} by fixing the task size to 128

Table 2   MAE and accuracy on �����

Train ratio Model MAE Accuracy

0.6 ���� + ������� 10.41 ± 6.25 0.89 ± 0.02

���� + ������� 3.29 ± 0.82 0.83 ± 0.06

���� − ��(������) 0.96 ± 0.15 0.92 ± 0.07

���� − ��(����) 0.92 ± 0.18 0.94 ± 0.04

���� − ��(�����) 0.87 ± 0.13 0.93 ± 0.02

0.4 ���� + ������� 8.78 ± 9.14 0.88 ± 0.03

���� + ������� 7.72 ± 1.21 0.85 ± 0.36

���� − ��(������) 0.94 ± 0.14 0.92 ± 0.06

���� − ��(����) 0.87 ± 0.12 0.91 ± 0.05

���� − ��(�����) 0.82 ± 0.13 0.89 ± 0.04

0.2 ���� + ������� 8.65 ± 5.12 0.87 ± 0.02

���� + ������� 8.66 ± 5.11 0.87 ± 0.02

���� − ��(������) 1.19 ± 0.23 0.84 ± 0.02

���� − ��(����) 1.21 ± 0.07 0.87 ± 0.05

���� − ��(�����) 1.21 ± 0.08 0.84 ± 0.01

Fig. 2   Test results on ����� over various task configurations

301Learning with Small Data: Subgraph Counting Queries﻿	

1 3

and the number of shots to 16. The corresponding MAE and
accuracy on ����� task is presented in Fig. 2e and f. We
conjecture that here the performance change of 21 training
tasks is that some new task introduces inconsistent noise
when training together with the synthetic dataset.

Furthermore, we investigate the effect of adding sampled
data from the training tasks to the support set of the test task
in the zero-shot and few-shot scenarios for the 5 task types.
For ����� , ����� and ������ , 7 tasks from ����� are
used for training. For ������� and ����� , 239 tasks from
���-����� are added to the training tasks. We test 28 �����
tasks by varying the number of shots and the auxiliary pairs
in {0, 1, 4, 16, 64} , {0, 16, 32, 64, 128} , respectively. The size
of all the train and test tasks is 128. The testing performance
over the 5 task configurations is shown in Table 3. For ����� ,
������� , and ������ , the upper-left cell of the table is the
worst performance for zero-shot without auxiliary data and
the lower-right cell is the best performance for 64 shots with
128 auxiliary. As the number of shots or auxiliary pairs
increases, the test performance improves from the upper-left
to the upper-right, lower-left and upper-right, which is con-
sistent with intuition. In addition, we find when the number
of shots or the auxiliary pairs is sufficiently large, e.g., 64

shots or 128 auxiliary pairs, increasing the amount of auxil-
iary data or shot only contributes to marginal improvement.
For a fixed size support set, the more data from the shot,
the better the performance. For example, 16 shots without
auxiliary pairs is better than zero-shot with 16 pairs. This
is because the support set in a test task exhibits more task-
specific features than the sampled training data. However,
we find for tasks with the type ����� and ������� , add-
ing auxiliary data from training tasks will degrade the MAE
and accuracy. Recall that ����� and ������� task is one
new pattern p∗ for different data graphs G in a database. We
observe that, for different patterns p1 and p2 , their true count
distributions of G are rather different, because of the different
topology between p1 and p2 . For example, p1 in G has most
zero counts and p2 in G has most nonzero counts. A large
discrepancy between the ground-truth distribution makes the
knowledge transfer difficult. Under this circumstance, few-
shot for the new pattern is important.

4.4 � Comparison with Meta‑Algorithms

We compare the meta-learned ���� − �� with the meta-
learned ���� + ������� by ���� and ��������� for

Table 3   Test MAE/accuracy for
zero-shot

MAE/Acc. # Auxiliary data

0 16 32 64 128

����� # shots 0 8.06/0.72 4.01/0.82 3.13/0.84 2.37/0.84 2.24/0.86
1 6.97/0.74 3.5/0.83 2.84/0.82 2.29/0.84 1.73/0.87
4 6.22/0.77 3.14/0.83 2.71/0.85 2.28/0.85 1.81/0.87
16 3.65/0.82 2.68/0.83 2.24/0.85 2.04/0.86 1.79/0.87
64 1.80/0.85 1.67/0.86 1.67/0.86 1.49/0.87 1.48/0.87

����� # shots 0 7.08/0.75 15.02/0.57 15.78/0.50 15.00/0.54 14.92/0.48
1 6.10/0.77 11.11/0.52 12.45/0.54 16.45/0.40 14.54/0.42
4 4.54/0.80 11.84/0.51 11.65/0.52 11.27/0.55 11.01/0.53
16 2.51/0.84 6.48/0.54 6.68/0.63 6.51/0.64 10.09/0.57
64 1.34/0.88 2.61/0.76 2.57/0.76 3.89/0.70 3.68/0.69

������� # shots 0 10.92/0.28 3.68/0.86 3.02/0.88 2.23/0.89 1.67/0.91
1 8.51/0.49 3.76/0.86 2.69/0.87 2.01/0.90 1.81/0.90
4 4.91/0.81 3.61/0.86 2.44/0.89 2.13/0.90 1.71/0.91
16 3.71/0.87 2.89/0.88 1.88/0.89 1.77/0.90 1.59/0.91
64 1.49/0.89 1.35/0.90 1.29/0.90 1.21/0.91 1.11/0.92

������� # shots 0 10.22/0.23 11.35/0.27 10.60/0.30 10.93/0.32 9.62/0.37
1 7.67/0.32 7.77/0.36 9.54/0.36 8.32/0.36 9.34/0.42
4 4.67/0.49 5.94/0.48 5.96/0.46 6.79/0.48 5.41/0.50
16 1.95/0.78 2.50/0.72 2.45/0.71 2.54/0.69 2.62/0.70
64 0.86/0.90 1.00/0.84 1.08/0.85 1.05/0.85 1.02/0.88

������ # shots 0 8.05/0.73 4.38/0.81 2.72/0.84 1.79/0.85 1.41/0.85
1 7.17/0.76 3.83/0.82 3.45/0.83 1.74/0.84 1.43/0.87
4 6.00/0.78 3.49/0.82 2.39/0.84 1.84/0.85 1.46/0.86
16 3.98/0.79 2.21/0.82 2.06/0.81 1.45/0.84 1.26/0.85
64 1.81/0.86 1.61/0.86 1.51/0.86 1.35/0.86 1.23/0.88

302	 K. Zhao et al.

1 3

few-shot learning. For ������ , ����� , ����� , 7 tasks
from ����� are used as the training task set. For
������� and ������� , except for the 7 ����� tasks,
either 239 tasks from ���-����� or 797 tasks from ���
-����� are added. By default, the task size is 128 and the
number of shots is 16. The MAE and accuracy on 28 test
tasks from ����� are shown in Table 4. Only ���� − ��
achieves both low MAE and high accuracy consistently
over all the 5 task types. Both ���� and ��������� fail
to distinguish zero/nonzero counts as the test accuracy
is low. ���� conducts the inner and outer loop gradient
update end-to-end, differentiating through the inner loop
to obtain the gradients for the outer loop, which will
cause instability problems [1]. For the subgraph count-
ing task, training loss of ���� converges slow. ���� is
also resource consuming as it runs out of GPU memory
on Hybrid tasks from ����� and ���-����� . ���������
finetunes the final layer of ���� + ������� one gradient
step for each task by freezing the parameters of the former
feature transformation layers. The one gradient step may
underfit the task data, whereas more gradient steps will
overfit the task data.

4.5 � Comparison with Algorithmic Approaches

We compare our meta-learned ���� − �� with traditional
subgraph counting algorithms, including 7 approximate
algorithms in the GCARE benchmark [38], and an exact
counting algorithm ��� [9] implemented by NetworkX.

The MAE, quantiles of the error and the total counting
time are presented in Table 5. The prediction results of
���� − �� are collected by fivefold cross-validation where
one ���� − ��(�����) model is trained over 20% �����
pairs that are organized in 7 tasks with type of ������
and size of 128. The prediction is conducted by zero-shot
testing with 128 auxiliary pairs. In Table 5, ���� − ��
achieves the lowest MAE among the 8 approximate
approaches and its prediction is 6× faster than the exact
algorithm ��� . Most of the approximate baselines have
the problem of underestimation due to sampling failure.

5 � Related Work

Subgraph Counting. There are exact and approximate sub-
graph counting algorithms [44]. For exact counting, exist-
ing approaches in the literature are categorized into enumer-
ation-based [19, 22, 37] and analytical approaches [32, 36,
41]. For approximate subgraph counting, various estimation
strategies have been explored, such as path sampling [23, 54],
color coding [3, 4], random walk [6], and graph summariza-
tion [34, 50]. Most of the above approaches are designed to
count graphlets [42], a.k.a. graph motifs, small, unlabeled graph
queries, over a simple undirected graph. Recently, ML/DL-
based approaches have been proposed to estimate the subgraph
counting. [64, 65] devise a GNN based model as the counting
sketch to estimate the subgraph isomorphism/homomorphism
count over a large data graph, but the model cannot generalize
to unseen data graphs. [28] proposes DL models to count que-
ries specified by a pair of data graph and pattern graph. Both
of the two models need training by a large number of training
data. [7] analyzes the ability of GNNs in detecting subgraph
isomorphism, and proposes a Local Relational Pooling model
for counting both subgraphs and induced subgraphs. However,
the model is specific to a given query pattern.

Meta-Learning on Graphs. There are three types of
meta-learning algorithms, i.e., black-box adaption [33, 46],
optimization-based [15, 35] and metric-based [48, 51] meta-
learning algorithms. Black-box adaption relies on specific
neural network architecture, e.g., RNN to learn each task
one by one. These approaches have the powerful expressive

Table 4   Test MAE/accuracy for different algorithms

 Task type ���� − �� ���� ���������

������ 3.64/0.84 6.90/0.41 3.47/0.56
����� 3.56/0.81 6.70/0.40 3.54/0.47
����� 2.72/0.85 4.34/0.71 6.63/0.62
������� ( ���-�����) 3.71/0.87 6.85/0.53 2.26/0.67
������� ( ���-�����) 1.74/0.82 4.60/0.74 9.65/0.47
������� ( ���-�����) 3.09/0.86 OOM 2.01/0.81
������� ( ���-�����) 3.19/0.86 OOM 5.70/0.74

Table 5   Comparison with
subgraph counting algorithms

 Method ���� − �� �� �� ���� ���� ���� ��� ������ ���

MAE 1.32 8.05 25.35 7.87 40.28 7.69 156.15 6.48 0
5% −4.66 −48 −56 −56 −24 −48 0 −45 0
25% 0.01 −4 −4 −4 0 −4 0 0 0
50% 0.01 0 0 0 0 0 0 0 0
75% 0.35 0 0 0 0 0 66 0 0
95% 3.68 0 0 0 252.96 0 932 2.21 0
Time (s) 0.14 0.59 0.98 0.55 0.82 0.61 693.02 40.55 0.89

303Learning with Small Data: Subgraph Counting Queries﻿	

1 3

power to model the task prior but are data inefficient and
challenging for optimization. The optimization-based algo-
rithms learn a hierarchical model by gradient-based back
propagation. These algorithms are effective regarding learn-
ing the meta-model but are time and memory consuming
in computation due to the hierarchical optimization para-
digm. The metric-based algorithms borrow the idea from
the clustering algorithms that learn an embedding for the
input. The algorithms are applicable for small data but only
classification tasks.

These meta-learning approaches have been adopted
over graph data to deal with various graph learning tasks,
including node classification [21, 66], link prediction [2, 21],
graph classification [5, 29]. [14] proposes a meta-learning
framework, conditional graph neural process, for community
search. A survey summarizes the applications and methods
can be found in [30]. Here, GNN is widely used as the base
model or core component of these approaches. However, all
the existing approaches are oriented to few-shot graph learn-
ing tasks and cannot be directly applied to zero-shot learning
or the subgraph counting task, where the input is specified
by a data graph and a pattern graph.

6 � Conclusion

In this paper, we study an NP-complete problem, subgraph
isomorphism counting, by DL techniques. To alleviate the
reliance on a large volume of training data, we devise a
Gaussian Process, called RGIN-GP, which warps a neu-
ral network layer. The model is trained end-to-end by a
meta-learning algorithm, which aims to exploit the knowl-
edge prior of training tasks. Compared with the baseline
approach, the meta-trained RGIN-GP reduces the MAE
from 8 to 1, with only one thousand training samples. In
addition, in our extensive experiments, the meta-learned
RGIN-GP can fast adapt to new tasks by few-shot and
zero-shot learning.

Acknowledgements  The conference version of this paper appears
in [63]. Jeffrey Xu Yu was supported by the Research Grants Council
of Hong Kong, China, under Nos. 14202919 and 14205520. This work
was supported by the Research Grants Council of Hong Kong, China,
under Nos. 14203618, 14202919 and 14205520. The conference ver-
sion of this work appears in DASFAA 2023 “Learning with Small
Data: Subgraph Counting Queries”.

Author Contributions  KZ methodology, implementation, presentation
ZH data preparation, presentation JXY methodology, presentation YR
testing.

Fundings  Research Grants Council of Hong Kong, No. 14203618
Research Grants Council of Hong Kong, No. 14202919 Research
Grants Council of Hong Kong, No. 14205520.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Antoniou A, Edwards H, Storkey AJ (2019) How to train your
MAML. In: Proc. of ICLR. OpenReview.net

	 2.	 Bose AJ, Jain A, Molino P, Hamilton, WL (2019) Meta-graph:
few shot link prediction via meta learning. CoRR. arXiv:​abs/​
1912.​09867

	 3.	 Bressan M, Chierichetti F, Kumar R, Leucci S, Panconesi A
(2017) Counting graphlets: space vs time. In: Proceedings of
the WSDM’17, pp 557–566

	 4.	 Bressan M, Leucci S, Panconesi A (2019) Motivo: fast motif
counting via succinct color coding and adaptive sampling. Proc
VLDB 12(11):1651–1663

	 5.	 Chauhan J, Nathani D, Kaul, M (2020) Few-shot learning on
graphs via super-classes based on graph spectral measures. In:
Proceedings of the CLR 2020. OpenReview.net

	 6.	 Chen X, Lui JCS (2016) Mining graphlet counts in online social
networks. In: Proceedings of the ICDM’16, pp 71–80

	 7.	 Chen Z, Chen L, Villar S, Bruna J (2020) Can graph neural
networks count substructures? In: Proceedings of the NeurIPS

	 8.	 Cook SA (1971) The complexity of theorem-proving proce-
dures. In: Proceedings of the STOC, pp 151–158

	 9.	 Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)
graph isomorphism algorithm for matching large graphs. IEEE
Trans Pattern Anal Mach Intell 26(10):1367–1372

	10.	 Dai Z, Yang Z, Yang Y, Carbonell JG, Le QV, Salakhutdinov
R (2019) Transformer-xl: attentive language models beyond a
fixed-length context. In: Proceedings of the ACL, pp 2978–2988

	11.	 Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman
AJ, Hansch C (1991) Structure-activity relationship of muta-
genic aromatic and heteroaromatic nitro compounds. Correla-
tion with molecular orbital energies and hydrophobicity. J Med
Chem 34(2):786–797

	12.	 Ding B, Das S, Marcus R, Wu W, Chaudhuri S, Narasayya VR
(2019) AI meets AI: leveraging query executions to improve
index recommendations. In Proceedings of SIGMOD, pp
1241–1258

	13.	 Dutt A, Wang C, Nazi A, Kandula S, Narasayya VR, Chaudhuri
S (2019) Selectivity estimation for range predicates using light-
weight models. Proc VLDB 12(9):1044–1057

	14.	 Fang S, Zhao K, Li G, Yu JX (2023) Community search: a meta-
learning approach. In: Proceedings of the ICDE’23. IEEE, pp
2358–2371

	15.	 Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learn-
ing for fast adaptation of deep networks. In: Proceedings of
ICML, vol 70, pp 1126–1135

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/1912.09867
http://arxiv.org/1912.09867

304	 K. Zhao et al.

1 3

	16.	 Gardner JR, Pleiss G, Weinberger KQ, Bindel D, Wilson AG
(2018) Gpytorch: blackbox matrix-matrix gaussian process
inference with GPU acceleration. In: Proceedings of the Neu-
rIPS, pp 7587–7597

	17.	 Grover A, Leskovec J (2016) node2vec: scalable feature learn-
ing for networks. In: Proceedings of the KDD’16, pp 855–864

	18.	 Hamilton WL, Ying Z, Leskovec J (2017) Inductive represen-
tation learning on large graphs. In: Proceedings of the Neu-
rIPS’17, pp 1024–1034

	19.	 Hocevar T, Demsar J (2016) Combinatorial algorithm for count-
ing small induced graphs and orbits. CoRR arXiv:​abs/​1601.​
06834

	20.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

	21.	 Huang K, Zitnik M (2020) Graph meta learning via local sub-
graphs. In: Proceedings of the NeurIPS

	22.	 Jain S, et al (2017) Impact of memory space optimization tech-
nique on fast network motif search algorithm. In: Advances in
computer and computational sciences. Springer, pp 559–567

	23.	 Jha M, Seshadhri C, Pinar A (2015) Path sampling: a fast and
provable method for estimating 4-vertex subgraph counts. In: Pro-
ceedings of the WWW’15, pp 495–505

	24.	 Kim Y (2014) Convolutional neural networks for sentence clas-
sification. In: ACL. ACL, pp 1746–1751

	25.	 Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Kemper A (2019)
Learned cardinalities: estimating correlated joins with deep learn-
ing. In Proceedings of the CIDR’19

	26.	 Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: Proceedings of the ICLR’17

	27.	 Liang X, Elmore AJ, Krishnan S (2019) Opportunistic view mate-
rialization with deep reinforcement learning. CoRR arXiv:​abs/​
1903.​01363

	28.	 Liu X, Pan H, He M, Song Y, Jiang X, Shang L (2020) Neural
subgraph isomorphism counting. In: Proceedings of the KDD ’20,
pp 1959–1969

	29.	 Ma N, Bu J, Yang J, Zhang Z, Yao C, Yu Z, Zhou S, Yan X (2020)
Adaptive-step graph meta-learner for few-shot graph classifica-
tion. In Proceedings of the CIKM 2020. ACM, pp 1055–1064

	30.	 Mandal D, Medya S, Uzzi B, Aggarwal C (2021) Meta-learning
with graph neural networks: methods and applications. CoRR
arXiv:​abs/​2103.​00137

	31.	 Marcus RC, Negi P, Mao H, Zhang C, Alizadeh M, Kraska T,
Papaemmanouil O, Tatbul N (2019) Neo: a learned query opti-
mizer. Proc VLDB Endow 12(11):1705–1718

	32.	 Melckenbeeck I, Audenaert P, Colle D, Pickavet M (2018) Effi-
ciently counting all orbits of graphlets of any order in a graph
using autogenerated equations. Bioinformatics 34(8):1372–1380

	33.	 Munkhdalai T, Yu H (2017) Meta networks. In: Proceedings of
the ICML. PMLR, pp 2554–2563

	34.	 Neumann T, Moerkotte G (2011) Characteristic sets: accurate
cardinality estimation for RDF queries with multiple joins. In:
Proceedings of the ICDE’11, pp 984–994

	35.	 Nichol A, Achiam J, Schulman J (2018) On first-order meta-learn-
ing algorithms. CoRR arXiv:​abs/​1803.​02999

	36.	 Ortmann M, Brandes U (2017) Efficient orbit-aware triad and
quad census in directed and undirected graphs. Appl Netw Sci
2:13

	37.	 Paredes P, Ribeiro PMP (2013) Towards a faster network-cen-
tric subgraph census. In: Proceedings of the ASONAM ’13, pp
264–271

	38.	 Park Y, Ko S, Bhowmick SS, Kim K, Hong K, Han W (2020)
G-CARE: a framework for performance benchmarking of cardi-
nality estimation techniques for subgraph matching. In: Proceed-
ings of the SIGMOD’20, pp 1099–1114

	39.	 Patacchiola M, Turner J, Crowley EJ, Storkey A (2020) Bayesian
meta-learning for the few-shot setting via deep kernels. In: Pro-
ceedings of the NeurIPS

	40.	 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learn-
ing of social representations. In: Proceedings of the KDD’14, pp
701–710

	41.	 Pinar A, Seshadhri C, Vishal V (2017) ESCAPE: efficiently count-
ing all 5-vertex subgraphs. In: Proceedings of the WWW’17, pp
1431–1440

	42.	 Przulj N (2007) Biological network comparison using graphlet
degree distribution. Bioinformatics 23(2):177–183

	43.	 Rasmussen CE, Williams CKI (2006) Gaussian processes for
machine learning. MIT Press, New York

	44.	 Ribeiro P, Paredes P, Silva MEP, Aparício D, Silva F (2019) A
survey on subgraph counting: Concepts, algorithms and appli-
cations to network motifs and graphlets. CoRR arXiv:​abs/​1910.​
13011

	45.	 Salakhutdinov R, Hinton GE (2007) Using deep belief nets to
learn covariance kernels for gaussian processes. In: Proceedings
of NIPS, pp 1249–1256

	46.	 Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap TP
(2016) Meta-learning with memory-augmented neural networks.
In: Proceedings of ICML, vol 48. JMLR.org, pp 1842–1850

	47.	 Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I,
Welling M (2018) Modeling relational data with graph convo-
lutional networks. In: Proceedings of the ESWC vol 10843, pp
593–607

	48.	 Snell J, Swersky K, Zemel RS (2017) Prototypical networks for
few-shot learning. In: Proceedings of the NIPS, pp 4077–4087

	49.	 Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdi-
nov R (2014) Dropout: a simple way to prevent neural networks
from overfitting. J Mach Learn Res 15(1):1929–1958

	50.	 Stefanoni G, Motik B, Kostylev EV (2018) Estimating the car-
dinality of conjunctive queries over RDF data using graph sum-
marisation. In: Proceedings of the WWW’18, pp 1043–1052

	51.	 Sung F, Yang Y, Zhang L, Xiang T, Torr PHS, Hospedales TM
(2018) Learning to compare: relation network for few-shot learn-
ing. In: Proceedings of the CVPR, pp 1199–1208

	52.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In:
Proceedings of the NeurIPS, pp 5998–6008

	53.	 Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio
Y (2018) Graph attention networks. In: Proceeings of the ICLR

	54.	 Wang P, Zhao J, Zhang X, Li Z, Cheng J, Lui JCS, Towsley D, Tao
J, Guan X (2018) MOSS-5: a fast method of approximating counts
of 5-node graphlets in large graphs. IEEE Trans Knowl Data Eng
30(1):73–86

	55.	 Wang W, Zheng VW, Yu H, Miao C (2019) A survey of zero-shot
learning: settings, methods, and applications. ACM Trans Intell
Syst Technol 10(2):13:1-13:37

	56.	 Wilson AG, Adams RP (2013) Gaussian process kernels for pat-
tern discovery and extrapolation. In: Proceedings of the ICML,
vol 28, pp 1067–1075

	57.	 Wilson AG, Hu Z, Salakhutdinov R, Xing EP (2016) Deep kernel
learning. In: Proceedings of the AISTATS, vol 51, pp 370–378

	58.	 Wilson AG, Izmailov P (2020) Bayesian deep learning and a
probabilistic perspective of generalization. In: Proceedings of
the NeurIPS

	59.	 Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are
graph neural networks? In: Proceedings of the ICLR’19

	60.	 Yang Q, Zhang Y, Dai W, Pan SJ (2020) Transfer learning. Cam-
bridge University Press, Cambridge

	61.	 Yang R, Shi J, Xiao X, Yang Y, Bhowmick SS (2020) Homo-
geneous network embedding for massive graphs via reweighted
personalized pagerank. Proc VLDB 13(5):670–683

http://arxiv.org/1601.06834
http://arxiv.org/1601.06834
http://arxiv.org/1903.01363
http://arxiv.org/1903.01363
http://arxiv.org/2103.00137
http://arxiv.org/1803.02999
http://arxiv.org/1910.13011
http://arxiv.org/1910.13011

305Learning with Small Data: Subgraph Counting Queries﻿	

1 3

	62.	 Zhang J, Dong Y, Wang Y, Tang J, Ding M (2019) Prone: fast and
scalable network representation learning. In: Proceedings of the
IJCAI’19, pp 4278–4284

	63.	 Zhao K, Yu JX, He Z, Rong Y (2023) Learning with small data:
subgraph counting queries. In: Proceedings of the DASFAA 2023.
Springer, pp 308–319

	64.	 Zhao K, Yu JX, Li Q, Zhang H, Rong Y (2023) Learned sketch
for subgraph counting: a holistic approach. VLDB J 1–26

	65.	 Zhao K, Yu JX, Zhang H, Li Q, Rong Y (2021) A learned sketch
for subgraph counting. In: Proceedings of the SIGMOD’21

	66.	 Zhou F, Cao C, Zhang K, Trajcevski G, Zhong T, Geng J (2019)
Meta-gnn: on few-shot node classification in graph meta-learning.
In: Proceedings of the CIKM 2019. ACM, pp 2357–2360

	Learning with Small Data: Subgraph Counting Queries
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 A Model Learned with Large Data

	3 A Meta-Learning Approach
	3.1 RGIN Gaussian Process (RGIN-GP)
	3.2 Meta-Learning for RGIN-GP
	3.3 Feature Encoding

	4 Experimental Studies
	4.1 Experimental Setup
	4.2 RGIN-GP versus Neural Network Models
	4.3 Influence of Task Configuration
	4.4 Comparison with Meta-Algorithms
	4.5 Comparison with Algorithmic Approaches

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

