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Abstract
Deep Learning (DL) has been widely used in many applications, and its success is achieved with large training data. A key 
issue is how to provide a DL solution when there is no large training data to learn initially. In this paper, we explore a meta-
learning approach for a specific problem, subgraph isomorphism counting, which is a fundamental problem in graph analysis 
to count the number of a given pattern graph, p, in a data graph, g, that matches p. There are various data graphs and pattern 
graphs. A subgraph isomorphism counting query is specified by a pair, (g, p). This problem is NP-hard and needs large 
training data to learn by DL in nature. We design a Gaussian Process (GP) model which combines Graph Neural Network 
with Bayesian nonparametric, and we train the GP by a meta-learning algorithm on a small set of training data. By meta-
learning, we can obtain a generalized meta-model to better encode the information of data and pattern graphs and capture 
the prior of small tasks. With the meta-model learned, we handle a collection of pairs (g, p), as a task, where some pairs may 
be associated with the ground-truth, and some pairs are the queries to answer. There are two cases. One is there are some 
with ground-truth (few-shot), and one is there is none with ground-truth (zero-shot). We provide our solutions for both. In 
particular, for zero-shot, we propose a new data-driven approach to predict the count values. Note that zero-shot learning 
for our regression tasks is difficult, and there is no hands-on solution in the literature. We conducted extensive experimental 
studies to confirm that our approach is robust to model degeneration on small training data, and our meta-model can fast 
adapt to new queries by few-shot and zero-shot learning.
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1  Introduction

Deep learning (DL) has achieved great success in data-
base systems to support query optimization  [31], index 
recommendation [12], view materialization [27], cardinal-
ity estimation [13, 25], and subgraph counting  [28, 65]. 
The two main keys that lead to the success of deploying 

DL effectively to deal with real problems are (1) to learn 
an advanced model that meets the problem, and (2) to learn 
with large training data. Almost all the works focus on 
modeling techniques assuming that it is possible to collect 
enough training data to learn. Take query optimization as an 
example, training a feed-forward neural network consumes 
20,000 unique queries over a fixed database schema [13]. 
A natural question that arises is what a system can do if 
there are only a few training data to learn a model that can 
be effectively used. The solution rules out learning a model 
until the training dataset is large. This problem is important 
because a system needs to support various needs from time 
to time, and it is the last thing that the system responses 
negative if there is no sufficient training data to learn. To 
address this issue, it requires an approach by meta-learning. 
That is to learn a model and refine the model with limited 
or even no training data if any from time to time. We will 
discuss it with a specific problem in database, as it is difficult 
to come up with a general solution to deal with the require-
ment of sufficient training at this stage.
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As a specific problem, in this paper, we study a subgraph 
isomorphism counting query that has been widely used in many 
applications in bioinformatics, chemoinformatics, and social 
network analysis [28]. Such a query is specified by a pair of 
(g, p), where g is a data graph and p is a pattern graph, and is 
to find the number of matches of p in g. This problem itself is 
NP-hard [8] and is difficult to learn. In general, over a set of 
data graphs, G = {g1, g2,… , gn} , there is a set of pattern graphs 
P = ∪1≤i≤nP(gi) where P(gi) is a set of pattern graphs associ-
ated with gi . In [28], a DL model is trained by feeding a large 
number of training pairs (g, p), aiming to be well generalized 
on unseen test pairs (g∗, p∗) . The DL model consumes hundreds 
of thousands of pairs, and for each graph gi , its P(gi) is large 
enough. The issue that arises is how to collect a sufficiently 
large training dataset to synthesize comprehensive features to be 
learned. In real applications, the data graph may come from dif-
ferent domains, and the pattern graphs may be diverse regard-
ing the sizes, node/edge labels, and structures. For example, in 
computational biology, the data graphs could be the molecules 
in many drug banks, which have different scaffolds. The pattern 
graphs are functional groups which are a large combination of 
different numbers and types of atoms/bonds.

Hence, it is impractical to learn a model for given G and Q 
with limited training pairs, and it is impractical to learn a model 
for each data graph gi with its pattern graphs P(gi) . To deal with 
such a dilemma, we construct a meta-model for given G and P , 
which learns the prior knowledge of subgraph counting across 
multiple tasks. Consider an encountered task, i.e., a collection 
of pairs, where some pairs may be with ground-truth (e.g., the 
exact number of matchings), and some pairs need to answer. 
With some possible pairs with ground-truth (known as shots), 
the meta-model can be swiftly adapted to deal with the other 
pairs in the task that need to answer. Inspired by deep kernel 
learning and deep kernel transfer [39, 57], we devise a new 
meta-model that warps a graph neural network (GNN) as a 
special Gaussian Process (GP). For one thing, the graph neural 
network preserves the powerful modeling capability of deep 
learning for subgraph counting. For the other thing, Bayesian 
nonparametric, inherited by GP, enables learning from scratch 
over small samples with a distribution-free assumption, and 
the prior of structural subgraph counting tasks are captured via 
optimizing the prior of the GP. Furthermore, as there may be no 
pair in a task with ground-truth (zero-shot), we adapt the ker-
nel-based meta-learning algorithm to support zero-shot cases 
in a data-driven fashion. It is worth mentioning that zero-shot 
learning for regression tasks is difficult, and there is no hands-
on solution in the literature. The contributions of this paper are 
summarized as follows:

•	 We study a specific problem of subgraph isomorphism 
counting in a paradigm of meta-learning to address the 
initial small training data issue in DL. We propose a 
Gaussian Process model, called RGIN-GP, that combines 

graph neural network and kernel method, aiming to learn 
over small training data.

•	 We employ a meta-learning algorithm to train a meta-
RGIN-GP model over a small set of training data. The 
small training dataset is divided into tasks, where a task 
is a collection of (g, p) pairs, for the purpose of predict-
ing a new counting task that may share the similar task 
structure.

•	 We provide solutions for both few-shot and zero-shot 
cases to deal with a new subgraph counting task. In 
particular, for zero-shot, we propose a new data-driven 
approach to predict the count values for a new task with-
out any ground-truth.

•	 We conduct extensive experiments for few-shot and zero-
shot learning, using real and synthetic graph datasets in 
different scenarios. The experimental results verify that 
the meta-learned RGIN-GP outperforms the supervised 
learned neural network counterparts by small training 
data and is effective to adapt to new tasks by few-shot/
zero-shot learning.

Roadmap: Section 2 gives the problem statement and a neu-
ral network framework for subgraph counting. In Sect. 3, we 
introduce the RGIN-GP model, the meta training and testing 
algorithms, and the feature encoding. Section 4 reports the 
experimental results. Finally, we review the related works 
in Sect. 5 and conclude the paper in Sect. 6.

2 � Preliminaries

We model both data graph g and pattern graph p as a labeled 
undirected graph as a tuple G = (V ,E, LV , LE, ΣV ,ΣE) . Here, 
V is a set of nodes, E is a set of undirected edges, and LV 
( LE ) is a mapping function that maps a node u ∈ V  (edge 
e ∈ E ) to a node label (edge label) in ΣV ( ΣE ). We denote 
neighbors of node u in G as N(u) = {v|(u, v) ∈ E}.

Subgraph Isomorphism :  Given a data graph 
g = (Vg, Eg, LV , LE, ΣV ,ΣE) and a pat tern graph 
p = (Vp,Ep, LV , LE,ΣV ,ΣE) , subgraph isomorphism p 
to g is an injective function f: Vp ↦ Vg such that (1) for 
every u ∈ Vp , LV (u) = LV (f (u)) , (2) for every (u, v) ∈ Ep , 
(f (u), f (v)) ∈ Eg , and (3) for every e = (u, v) ∈ Ep and 
e� = (f (u), f (v)) ∈ Eg , LE(e) = LE(e

�) . The injective func-
tion f imposes the constrain that f (u) ≠ f (v) for any pair of 
u and v in Vp if u ≠ v . A subgraph isomorphism function f of 
p induces a subgraph gf = (Vf ,Ef , LV , LE,ΣV ,ΣE) in g, where 
Vf  is the set of nodes by f(u) for every u in Vp , and Ef  is the 
set of edges by (f(u), f(v)) for every edge (u, v) in Ep . We say 
gf  is a subgraph isomorphism matching of p to g. Finding 
the subgraph isomorphism matching for given p and g is 
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computationally hard as the decision problem of subgraph 
isomorphism is NP-complete [8].

Subgraph Isomorphism Counting Query: Given a pair of 
data graph g and a pattern graph p, a subgraph isomorphism 
counting query is to find the total number of subgraph iso-
morphism matchings of p to g, denoted as c(g, p). Here, a 
node in p is allowed to be unlabeled. When a node in p is 
unlabeled, a special label, interpreted as any, is assigned.

A graph database is a set of small/medium sized 
graphs, G = {g1, g2,… , gn} , with a set of pattern 
graphs P = ∪1≤i≤nP(gi) , where P(gi) is a set of pattern 
graphs associated with gi . For simplicity, we also use 
P = {p1, p2,… , pm} to denote the whole possible set of pat-
terns. A subgraph isomorphism counting query is a pair of 
(g, p) such that g ∈ G , and p ∈ P(g).

A machine learning model can be built from a set of pairs 
of data graph and pattern graph X = {x1, x2,… x|X|} , where 
xi is a pair of data and pattern graphs, xi = (gi, pi) , with the 
corresponding true count denoted as c(xi) (or c(gi, pi) ) for 
all 1 ≤ i ≤ |X| . A true count is the exact count of subgraph 
isomorphism matching of pi in gi . The model will take an 
unseen pair x∗ = (g∗ , p∗) , and estimate its count ĉ(g∗, p∗) . 
In estimation, the pair x∗ = (g∗, p∗) is not seen in the train-
ing set, where either g∗ or q∗ may appear in the training set. 
We use the absolute error to evaluate the accuracy of the 
estimated value.

Note that the model can answer the subgraph isomorphism 
query, i.e., whether p∗ is subgraph isomorphism to g∗ by 
ĉ(g∗, p∗) > 0.5.

Problem Statement: The problem is first to build a model 
M to support subgraph isomorphism counting queries, when 
the size of the training set is not large enough. Then, in test-
ing M , there are new tasks coming, where a task T∗ is the 
union of two subsets, S∗ and Q∗ , denoted as T∗ = (S∗,Q∗) , 
where S∗ is a support set with ground-truth such that 
S∗ = {(g∗

i
, p∗

i
)}l

i=1
 , where c(g∗

i
, p∗

i
) for each i is given, and Q∗ 

is a query set to be answered each such that 
Q∗ = {(g∗

j
, p∗

j
)}k

j=1
 . Note that S∗ may be empty, i.e., l = 0 

(called zero-shot), and is small in size when it is non-empty, 
i.e., l < k (called few-shot). The problem is how to enhance 
M to answer queries in Q∗ on-demand with the assistance 
of S∗ which may be empty.

2.1 � A Model Learned with Large Data

Recently, a learning framework has been proposed for the 
subgraph isomorphism counting of a pair of data and pattern 
graphs in [28]. This neural network framework is composed 

(1)���- �����(g∗, p∗) = |c(g∗, p∗) − ĉ(g∗, p∗)|

of graph representation layers, interaction layers, and Mul-
tilayer perceptron (MLP), to learn M with a large training 
data X. The graph representation layers take the labeled data 
and pattern graph as input and generate vector representa-
tion for the data graph and pattern graph, respectively. The 
interaction layer combines the two representations into one 
representation and the MLP finally outputs the estimated 
count. [28] explores different options for the graph repre-
sentation layers (i.e., CNN [24], LSTM [20], Transformer-
XL [10], Graph Neural Networks (GNN) [47, 59]) and for 
the interaction layers (i.e., sum/mean/max pooling, multi-
head attention [52] and dynamic intermedium attention). 
Regarding the trade-off between prediction accuracy and 
efficiency, a GNN variant, Relational Graph Isomorphism 
Network (RGIN), coupled with sum pooling interaction 
performs best in [28]. Below, we introduce RGIN which we 
adopt to build a neural network.

RGIN Graph Representation. The K-layer GNN [18, 53, 
59] follows a neighborhood aggregation paradigm to update 
the representation of a node by aggregating the representa-
tions of its neighbors in K iterations. Let �(k)

v
 denote the rep-

resentation of a node v generated in the k-th iteration. In the 
GNN k-th iteration (layer), for a node v, an aggregate func-
tion f (k)

A
(⋅) aggregates the representations of the neighbors 

of v that are generated in the (k-1)-th iteration as Eq. (2). 
Then, a combine function f (k)

C
(⋅) updates the representation 

of v by the aggregated representation a(k)
v

 and the previous 
representation �(k−1)

v
 itself as Eq. (3). The functions f (k)

A
(⋅) 

and f (k)
C
(⋅) are neural networks, e.g., linear transformation 

with nonlinearity and optional Dropout [49] for preventing 
overfitting.

Take the RGIN layer as an example, for each node v, the 
aggregate function in Eq. (4) distinguishes its neighbors by 
the edge label, and aggregates the |ΣE| types of neighbors 
respectively. W (k)

l
 is the weight matrix for the neighbors with 

edge label l in the k-th layer and the |LE| types aggregation 
are further summed up. In the combine function of Eq. (5), 
the aggregated a(k)

v
 is summed up with the (k − 1)-layer repre-

sentation e(k−1)
v

 , which transformed by weigh W (k)

0
 , and finally 

be transformed by an MLP layer.

(2)a(k)
v

= f
(k)

A
({�(k−1)

u
|u ∈ N(v)})

(3)�(k)
v

= f
(k)

C
(�(k−1)

v
, a(k)

v
)

(4)a(k)
v

=
∑

l∈ΣE

∑

u∈N(v),LE((u,v))=l

W
(k)

l
�(k−1)
u

(5)�(k)
v

= ���(W
(k)

0
�(k−1)
v

+ a(k)
v
)
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For the data graph g and pattern graph p, there are two inde-
pendent K-layer RGIN models that generate the |Vg| × d-dim 
data graph node embedding and |Vp| × d-dim pattern graph 
node embedding of the K-th layer, respectively.

Sum Pooling Interaction. After obtaining the data graph 
and pattern graph representations, the interaction layer is to 
combine the two representations to one pair-wise representa-
tion. The sum pooling interaction sums up the node embed-
ding of the data and pattern graphs, respectively, and simply 
concatenates the two vectors to a long vector, as shown in 
Eq. (6).

The concatenated vector h will pass an MLP to generate the 
prediction ĉ(g, p) . The experimental study in [28] shows that 
although the sum pooling is simple, it is easy to train and 
achieve the approaching accuracy of the dynamic interme-
dium attention memory interaction (DIAMNet) and is two 
times faster than DIAMNet. In contrast, complex interaction 
layer such as DIAMNet and multi-head attention are hard to 
train and face the risk of overfitting. To train the DL models, 
[28] adopts the mean-squared-error loss.

3 � A Meta‑Learning Approach

We explore a meta-learning approach to build a meta-
counting model M . Here, the main problem is to answer 
each pair in Q∗ from a new coming task T∗ = (S∗,Q∗) by 
M built with limited training data X = {x1, x2,… , x|X|} , 
where each xi = (gi, pi) in X is with the ground-truth c(xi) . 
To capture the prior knowledge by the meta-model that is 
persisted with task-common parameters, the initial training 
data, X, is disjointly distributed into multiple training tasks, 
D = {T1,… , Tn} . Here, a task Ti is also a pair, Ti = (Si,Qi) . 
Different from T∗ , we have ground-truth for both Si and Qi . 
A meta-learning algorithm is to learn the knowledge prior 
over multiple tasks which may exhibit some specific task 
structure.

Figure 1 presents the overview of the meta training 
and testing procedures. In training, for each task Ti  with 
a small number of pairs to train, we use RGIN-GP (RGIN 
Gaussian Process) to construct a kernel � , which is speci-
fied by a deep neural network parameter w and a sta-
tionary kernel with hyperparameter � . As illustrated in 
(Fig. 1a), a task Ti  is presented with multiple data graphs 
( Gi ) and multiple pattern graphs ( Pi ), and the meta-model 
is a Gaussian Process whose parameters are trained by 
gradient descent task by task. With the kernel built with 
w and � , in testing for a new incoming task T∗ = (S∗,Q∗) , 

(6)h = ������

(∑

v∈Vg

�(K)
v

,
∑

v�∈Vp

�
(K)

v�

)

there are two cases. One is few-shot where |S∗| is small 
but is nonzero, and one is zero-shot where |S∗| = 0 . For 
few-shot testing, the meta-model leverages the kernel 
matrix of the whole task to make a prediction for the 
query set (Fig. 1b). For zero-shot test, we take a data-
driven approach to build the kernel by making use of one 
task, Ti  , drawn from the training data (Fig. 1c). In this 
work, meta-testing is not to refine the meta-model built 
with w and � . The meta-model built remains unaffected. 
With a new task, T∗ = (S∗,Q∗) , it is to answer queries in 
Q∗ by Bayesian inference with additional S∗ , which we 
will discuss later.

The approach we take is based on an optimization-based 
Bayesian meta-learning algorithm, Deep Kernel Trans-
fer [39], for four reasons, where two reasons are from the 
perspective of training algorithms, and two are from the 
perspective of model characteristics. From the perspective 
of training, first, as an optimization-based approach, DKT 
directly optimizes the task-common parameters by pro-
cessing one task at a time via stochastic gradient descent, 
which is effective to learn the task-level prior knowledge. 
Second, the model can be learned by one-level gradient 
descent, which is more efficient and stable than classical 
bi-level meta-learning algorithms, e.g., MAML [15]. From 
the perspective of the model, third, by leveraging DKL, the 
proposed GP model, RGIN-GP, is suitable for modeling 
small data and naturally endorses regression tasks, exploit-
ing the main advantages of GP. Fourth, as a GP model 
which adapts Bayesian inference for prediction, RGIN-GP 
can provide robust prediction and principled uncertainty 
quantification derived from Bayesian method.

Fig. 1   Meta-model train and test
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In the following, we present how to deploy a kernel for 
a task, which exploits deep neural network transformation 
(Sect. 3.1), how to train the kernel and test in the few-shot 
and zero-shot scenarios (Sect. 3.2), and how to encode the 
input pairs (Sect. 3.3).

3.1 � RGIN Gaussian Process (RGIN‑GP)

To learn over a small set of samples, nonparametric modeling 
is an effective method in Bayesian learning. Deep Kernel 
Learning (DKL) [45, 57] provides a way to integrate Bayes-
ian nonparametric into deep learning models. It constructs a 
special GP model which has a conventional stationary kernel 
function, e.g., the RBF kernel, but the input features space is 
the embedding space of deep learning models. The hyperpa-
rameters of the kernel and the parameters of the deep learning 
model can be jointly optimized by stochastic gradient descent. 
Inspired by this, we adopt RGIN with sum pooling layer as the 
deep learning model that transforms the data and pattern graph 
into the input vector embedding for a stationary kernel, and the 
RGIN-GP derives from the deep kernel function constructed 
as follows. Given an input x = (g, p) as a pair of data and pat-
tern graphs, the deep kernel function � measures the similarity 
of a pair of inputs xi, xj as

Here, F(x;w) is a nonlinear transformation specified by 
a deep neural network with parameters w, i.e., the RGIN 
together with the sum pooling interaction layer. And the 
function K(hi, hj;�) is a stationary kernel function that is 
invariant to input transformation with the hyperparameter � , 
e.g., the RBF kernel. In a nutshell, the neural network F(x;w) 
is responsible for learning an effective intermediate repre-
sentation h to capture the non-stationary and hierarchical 
features of the input. Then, the kernel K(hi, hj;�) discovery 
stationary structure by an interpretable basis function.

Given n training inputs, X = {x1,… , xn} , the deep kernel 
� defined in Eq. (7), the model f(X) is a Gaussian Process as 
Eq. (8) [43] that we call RGIN-GP, where �X = [�]n is an 
assumed constant mean and �X,X = [�(xi, xj;w, �)]

n×n is the 
covariance function.

To make prediction for the testing inputs X∗ = {x∗
1
,… 

x∗
m
} , we need to compute the conditional distribution 

p(f (X∗)|f (X)) as the prediction, assuming the output is dis-
turbed by a Gaussian noise N(0, �2) . It is also proved to be 
a Gaussian distribution as Eq. (9), where the expectation 
and covariance of the predictive distribution can be solved 
in closed form in Eqs. (10), (11).

(7)�(xi, xj;w, �) = K(F(xi;w),F(xj;w);�)

(8)f (X) = [f (x1),… , f (xn)]
T ∼ N(�X ,�X,X)

Here, c = [c(xi)]
n is the ground-truth vector of the input X. 

The matrices �X,X = [�(xi, xj;w, �)]
n×n , �X,X∗ = [�(xi, x

∗
j
;

w, �)]n×m and �X∗,X∗ = [�(x∗
i
, x∗

j
; w, �)]m×m are the train-train, 

train-test, test-test kernels, respectively. The expectation 
�(c∗) will be treated as the explicit prediction counts ĉ , and 
the diagonal element of matrix C in Eq. (11) measures the 
variance of the prediction. Meanwhile, we can easily com-
p u t e  t h e  � - c o n f i d e n t i a l  i n t e r va l  o f  ĉ  a s 
[ĉ − q�diag(C), ĉ + q�diag(C)] , where q� is the �-quantile of 
N(0, 1).

The predictive distribution highly depends on the kernel 
matrix � , which is determined by the neural network weight 
w and the stationary kernel hyperparameter � . Training the 
kernel is to infer these parameters to adapt to the training 
data. The optimization is conducted by minimizing the nega-
tive marginal (log) likelihood of the training data X.

There is no analytical solution for optimizing the loss of 
Eq.  (12), but the objective is differentiable. To train an 
RGIN-GP, the neural network weights w and the kernel 
hyperparameter � are jointly optimized by stochastic gradi-
ent descent. We use the spectral mixtures base kernels [56] 
as the stationary kernel function K since the kernel is able 
to approximate continuous stationary kernels to an arbitrary 
precision given sufficient number of mixtures.

3.2 � Meta‑Learning for RGIN‑GP

In this section, we discuss how to train an RGIN-GP as a 
meta-model and test it in the few-shot and zero-shot sce-
narios. In real applications, new tasks may arrive in dif-
ferent ways, since the data graph may come from different 
domains, and the pattern graphs may be diverse regarding 
the sizes, node/edge labels, and structures. In this paper, 
we firstly explore the following 5 task configurations 
where a single variable (e.g., a data/pattern graph) is con-
trolled. Here, given a training data X, we have a set of data 
graphs, G = {g1, g2,… , gn} , and a set of pattern graphs, 

(9)f (X∗)|f (X) ∼ N(�(c∗),C)

(10)�(c∗) = �X + �T
X,X∗ [�X,X + �2I]−1(c − �X)

(11)C = �X∗,X∗ − �T
X,X∗ .[�X,X + �2I]−1�X,X∗

(12)

L��� = − log p(c|X) = ∫ p(c|f (X),X)p(f (X)|X)d(f (X))

∝ c
T [�X,X + �2I]−1c + log |�X,X + �2I|
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P = {p1, p2,… , pm} . The graphs in G may come from dif-
ferent domains. Instead of specifying a task as Ti = (Si,Qi) , 
below, for the task structure configuration, we specify a 
task Ti = (Gi,Pi) , where Gi ⊂ G and Pi ⊂ P , and we have 
the ground-truth for any pair (g, p) for g ∈ Gi and p ∈ Pi.

•	 Same Graph Tasks ( ����� ): Data-pattern pairs are 
from a single domain. The data graphs that appear in 
training tasks will not appear in any testing task. The 
pattern graphs P(gi) that are associated with a data 
graph gi will appear together with gi in a task where 
gi appears. Note that a pattern graph pj may appear in 
both training and testing pairs.

•	 Same Pattern Tasks ( ����� ). Data-pattern pairs are 
from a single domain. The pattern graphs that appear 
in training tasks will not appear in any testing task. The 
data graphs gi will appear in a task together with pj if 
pj ∈ P(gi) appears in the task. Note that a data graph gi 
may appear in both training and testing pairs.

•	 Hybrid Domains with Same Graph Tasks ( ������� ). 
Data-pattern pairs are from multiple domains, whereas 
pairs in one task are from the same domain. For one 
domain, training and testing tasks follow �����.

•	 Hybrid Domains with Same Pattern Tasks ( ������� ). 
Data-pattern pairs are from multiple domains, whereas 
pairs in one task are from the same domain. For one 
domain, training and testing tasks follow �����.

•	 Random Tasks ( ������ ). Data-pattern graph pairs are 
from a single domain. Pairs are randomly and disjointly 
distributed in all the tasks in the training and testing 
task sets. A pair in a training task does not appear in 
any testing tasks.

Here, ����� corresponds to the situations where the pat-
tern graphs are static and there may have new arrival data 
graphs. ����� corresponds to the situations where the 
data graphs are static and there may have new arrival pat-
tern graphs. ������� and ������� do similar like ����� 
and ����� in the same single domain, but are on multiple 
domains. ������ is to test different possibilities in a single 
domain.

Meta-Training: Algorithm 1 presents the meta-training 
process for RGIN-GP. The algorithm is to learn (w, �) of the 
kernel � that minimizes the negative marginal likelihood 
across all the training tasks. As shown in Fig. 1a, for each 
gradient step, a task T  is sampled from the training tasks 
(line 1), then the marginal likelihood L��� (Eq. (12)) is com-
puted over all the pairs in the task, i.e., S ∪Q (line 4), and 
the parameters (w, �) are updated for that task (line 5). The 
meta-training algorithm is different from training the ker-
nel from scratch, where marginalization of the likelihood is 
over all data instead of a distinct task. The parameters (w, �) 

learned by Algorithm 1 better leverage the structure of the 
tasks, which are shared across all tasks as the task-common 
parameters.

Few-shot Testing: Given a testing task T∗ = (S∗,Q∗) where 
|S∗| ≠ 0 , the meta-model will adapt to the task based on its 
support set and the task-common parameters learned. Algo-
rithm 2 shows the steps to compute the predictive distribu-
tion of Eq. (9) for the query set Q∗ . It is computed by con-
ditioning on the support set S∗ (line 1–2), which analytical 
solution is given in Eqs. (10)–(11). The Bayesian inference 
is essential to compute the integral

where w is the learned neural network weights, and �T∗ is the 
task-specific parameters derived from the kernel hyperpa-
rameters � . Equation (13) ensembles all the models with all 
possible configurations of the task-specific parameters �T∗ , 
weighted by the posterior of the parameters p(�T∗ |cS∗ ,XS∗ ) 
given the support set S∗ . Equation (13) is known as Bayesian 
model average [58].

Zero-shot Testing: Given a testing task T∗ = (S∗,Q∗) 
where |S∗| = 0 , the meta-model cannot adapt to the task 
based on its support set. In the literature [55, 60], zero-shot 
learning is mainly done for classification where the classes 
are limited. Different from classification, our problem here is 
for subgraph isomorphism counting by regression. Perform-
ing zero-shot testing for a regression task is difficult as it is 
to predict a value. To make predictions, we utilize training 
tasks. The basic idea is to borrow one training task Ti  as 
the support set for the new coming task T∗ . The assump-
tions are that the training tasks and test tasks may be similar 
regarding data/pattern graph, and they share some specific 
task structures. The kernel � leverages the similarity. The 
algorithm is given in Algorithm 3. First, a training task is 
sampled randomly from the training data (line 1). Then, a 
set of auxiliary data (X, c) is taken from the task to serve as 
the support set (line 2), and is used to compute the posterior 
of the parameters p(�T∗ |c,X) (line 3-4).

The discrepancy between the two posterior densities 
p(�T∗ |c,X) and p(�T∗ |cS∗ ,XS∗ ) determines the difference 
between the few- and zero-shot testing, which is further 
determined by the discrepancy of p(c, X) and p(cS∗ ,XS∗ ) . 
As the shape of p(c, X) is delineated by p(X) and p(c|X), 
the higher the similarity between p(X) and p(XS∗ ) , and 
p(c|X) and p(cS∗ |XS∗ ) , the well the auxiliary task works in 
the zero-shot testing [60].

For the subgraph counting tasks, it is difficult to make 
practical assumptions for both p(X) and p(c|X), for the 5 
task configurations. The zero-shot testing will also have 

(13)
p(cQ∗ |XQ∗ , cS∗ ,XS∗ ,w, �) = ∫ p(cQ∗ |XQ∗ , �T∗ ,w)

p(�T∗ |cS∗ ,XS∗ )d(�T∗ )
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different effects on different task configurations. It is worth 
noting that, for ������� and ������� tasks, the auxiliary 
task sampled should be the same domain/database with 
the testing task to pursue a high similarity between p(c, X) 
and p(cS∗ ,XS∗ ) . We also explore adding the auxiliary data 
(c, X) in the few-shot testing, together with (cS∗ ,XS∗ ) to 
approximate the posterior of �T ∗ . Bayesian model aver-
age marginalizes all possible �T ∗ and gives a smooth and 
robust prediction.

Algorithm 1: RGIN-GP Meta Train
Input : Training Task Set D = {T1, · · · ,Tn},

learning rates αw and αθ

Output: neural network parameter w, kernel
hyperparameter θ

1 repeat
2 Sample a task T = (S,Q) from D

3 X ← XS ∪XQ; c ← cS ∪ cQ
4 Compute marginal loglikihood loss Lmll by

Eq. (12)
5 w ← w − αw∆w; θ ← θ − αθ∆θ

6 until stop criterion

Algorithm 2: RGIN-GP Few-shot Test
Input : One Test Task T∗ = (S∗,Q∗), neural

network parameter w, kernel
hyperparameter θ

Output: prediction cQ∗ for Q∗

1 X ← XS∗ ; c ← cS∗ ; X∗ ← XQ∗ ;
2 Compute the conditional distribution of cQ∗ by

Eq. (10)-(11)

Algorithm 3: RGIN-GP Zero-shot Test
Input : One Test Task T∗ = (Q∗), Training

Task Set D = {T1, · · · ,Tn}, neural
network parameter w, kernel
hyperparameter θ

Output: prediction cQ∗ for Q∗

1 Sample a task T = (S,Q) from D

2 Sample (X, c) ∼ (XS ∪XQ, cS ∪ cQ)
3 X∗ ← XQ∗ ;
4 Compute the conditional distribution of cQ∗ by

Eq. (10)-(11)

3.3 � Feature Encoding

Encoding initial node representation �(0)
v

 for RGIN-GP in 
the neural network mapping F  is important in learning. The 
one-hot encoding is widely used to represent the attribute 
features in GNN models for node classification, link predic-
tion [26, 59] and subgraph counting [28]. However, such 
sparse encoding is lack of insight for the analytical subgraph 
counting. It is worth noting that the labels of a pattern node 
serve as the predicates of the pattern, and are used to filter 
nodes in the data graph. We explore frequency-based encod-
ing and pre-trained embedding-based encoding to encode 
label information and topological structure.

Frequency − based Encoding.  T h e  f r e q u e n c y -
based features encode the filter capability of a pattern 
node regarding the data graph. For a data graph gi , we 
denote the number of occurrence of a node label l as 
ϝ(l) = |{v | l ∈ LV (v) for v ∈ Vgi

}| . The node representation 
for v in a pattern graph q, �(0)

v
 , is encoded as a |ΣV |-dimen-

sional vector, �(0)
v

∈ ℝ
|ΣV | , where ΣV is the universal set of 

the node labels on data graphs, and the i-th dimension cor-
responds to the i-th node label li ∈ ΣV . The value of �(0)

v
[i] is 

the fraction of the nodes in g can be matched to v. In detail, 
if node v is associated with a node label li , �(0)v

[i] will be set 
to ϝ(li)∕|V| , otherwise �(0)

v
[i] will be set to 1.0. It is worth 

noting that for one query, its frequency-based encoding for 
different data graphs is different.

Embedding − based Encoding. The frequency-based 
encoding takes the attribute frequency of the data graph 
into account, but fails to leverage the topology of the data 
graphs. An encoding to encode the topological structure of 
the data graph together with its labels is needed. As feeding 
GNN a pre-trained and unsupervised embedding as node 
features can boost the performance, we pre-train a node 
label embedding for the data graphs to enhance the pattern 
graph encoding. To preserve the topological property of 
the training data graphs {g1,… , gn} together with the uni-
versal node label set ( ΣV ), we construct a label-augmented 
graph GL = (V ∪ VL,E ∪ EL) . Here, V = Vg1

∪⋯Vgn
 and 

E = Eg1
∪⋯Egn

 , which means the data graphs are treated 
as connected components of a large graph with node V and 
E. VL is a set of nodes where a node represents a label in ΣV , 
and there are |ΣV | nodes in VL . EL is a set of edges where 
an edge is between a node, v, in V with a node, l, in VL , if v 
has the node label l that the node l corresponds to. We use a 
scalable, task-independent graph embedding algorithm (e.g., 
DeepWalk  [40], node2vec  [17], ProNE  [62]) to pre-train a 
node embedding for the label-augmented graph GL . With the 
pre-trained label embedding, we encode every node in a pat-
tern graph q. For a node v in q, we set �(0)

v
 to be 

∑
l∈LV (v)

��(l) , 
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where ��(l) is the pre-trained embedding of the label l in GL 
if v has the label l. A node v will have an all-zero vector if it 
does not have any labels.

4 � Experimental Studies

In this section, we give the experimental setting (Sect. 4.1) 
and report our experiments in the facets: ① compare RGIN-
GP with the neural network counterpart (Sect.  4.2), ② 
investigate the prediction performance under different task 
configurations (Sect. 4.3), ③ compare the meta-RGIN-GP 
with other optimization-based meta-learning approaches 
(Sect. 4.4), ④ compare RGIN-GP with subgraph counting 
algorithms (Sect. 4.5).

4.1 � Experimental Setup

Implementation and Setting. We give the settings of RGIN-
GP. For the neural network transformation F  , the number 
of RGIN layers is 3, where each hidden layer has 64 units 
and a Dropout probability of 0.2. For the stationary kernel 
function K , we use the spectral mixtures based kernels [56], 
whose loss is consistently easy to converge than the widely 
used RBF kernel for our learning task. For the embedding-
based encoding, we try 4 scalable task-independent node 
embedding approaches, i.e., DeepWalk  [40], node2vec  [17], 
ProNE  [62], NRP  [61] and finally choose ProNE as the 
embedding algorithm for the label-augmented graph due to 
its efficiency and stable performance. Following the setting 
in [62], the dimension of the embedding is 128.

The learning framework is built on PyTorch with PyTorch 
Geometric and GPyTorch [16]. We use the Adam optimizer 
with a decaying learning rate to train our models via 200 
epochs. The initial learning rates for the neural network 
parameters and kernel hyperparameters ( �w and �� in Algo-
rithm 1) are set to 5e-4 and 1e-3 empirically, respectively. 
Both training and prediction are performed on a Linux server 
with a Tesla V100 with 16GB memory.

Datasets. We use one real graph database ����� , and 
two synthetic graph databases ���-����� and ���-����� . 
����� collection  [11] has 188 unique nitroaromatic 

compounds where nodes represent atoms and edges repre-
sent bonds. The node (edge) label represents the atom (bond) 
type. The 24 patterns are from [28]. The two synthetic data-
sets ���-����� and ���-����� are generated by the genera-
tor of [28]. ���-����� follows the same scale of ����� 
for the data graphs and pattern graphs. ���-����� enlarges 
the scale of the ����� data and pattern graphs two times. 
Here, the data graphs are generated from patterns by adding 
nodes and edges to the patterns. Table 1 lists the profile of 
the three datasets.

Baseline Approaches. From the perspective of the model, 
we compare meta-learned RGIN-GP ( ���� − �� ) with 
its neural network counterpart in [28], ���� + ������� 
and the model in [28] with the best prediction accuracy, 
���� + ������� . From the perspective of the learning 
algorithm, we compare our meta-learned ���� − �� with 
���� + ������� trained by a classical meta-learning algo-
rithm Model-Agnostic Meta-Learning ( ����)  [15] and 
transfer learning under the linear protocol ( ��������� ). 
���� optimizes the task parameters end-to-end by a bi-level 
back propagation. Specifically, the algorithm optimizes the 
task-specific parameters in one inner loop and the task-com-
mon parameters in the outer loop. ��������� treats each 
training task as one batch to optimize the task-common 
parameters. For a testing task, the parameters of the final 
layer in the MLP are finetuned by one gradient step. For 
the two algorithms, the model is the neural network model 
���� + �������.

EvaluationMetrics : We use the mean of ���-����� , i.e., 
MAE (Eq. (1)), of the counts and the accuracy of the sub-
graph isomorphism query to evaluate the model perfor-
mance. The two metrics do not have a direct correlation. The 
well performed model should achieve small MAE and high 
accuracy simultaneously on the test set. Small MAE but low 
accuracy indicates all the estimations are over-smoothed to 
the mean of the true counts. Large MAE but high accuracy 
indicates the model can only distinguish zero and nonzero 
counts but cannot predict well for nonzero counts.

4.2 � RGIN‑GP versus Neural Network Models

We first compare our ���� − �� with its neural network 
counterpart ���� + ������� , and a more powerful model 

Table 1   Profile of datasets

Dataset Data graphs Pattern graphs # (g, p) c(g, p)

|Vg| |Eg| |ΣV | |ΣE|  # g |Vp| |Ep| |ΣV | |ΣE| # p

����� [10, 28] [20, 66] [3, 7] [3, 4] 188 [3, 4] [2, 3] [1, 2] [1, 2] 24 4,512 [0, 156]
���-����� [10, 28] [20, 66] [3, 7] [3, 4] 30,681 [3, 4] [2, 3] [1, 2] [1, 2] 240 30,681 [0, 126]
���-����� [10, 56] [22, 132] [3, 7] [3, 4] 102,057 [3, 8] [2, 12] [1, 2] [1, 2] 1,680 102,057 [0, 128]
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���� + ������� on ����� dataset. For ���� − �� , we 
organize the training and testing pairs as ������ tasks with 
128 pairs in each task. Testing is conducted in the zero-
shot mode (Algorithm 3) with 128 auxiliary pairs drawn 
from the training data. For the two neural network models, 
they are trained by standard supervised learning. Table 2 
shows the testing performance on 20% testing pairs when 
the training pairs are set to 60%, 40%, and 20% of the overall 
4,512 pairs, respectively. In general, the 3 ���� − �� vari-
ants remarkably outperform the two neural network models 
w.r.t. MAE. When the training ratio is 60% and 40%, the test 
MAE of ���� − �� models is below 1.0. When the training 
ratio declines to 20%, the MAE only arises to about 1.2. 
The neural network ���� + ������� and ���� + ������� 
suffer from model degradation. We observed the loss con-
verges slowly during training, and the test performance has 
a large variance w.r.t. multiple training, particularly for the 
complicated model ���� + ������� . The implication of 
this experiment is our ���� − �� is robust, data-efficient 
and much easier to train than its neural network counter-
part. This is because of its nature as a GP whose prediction 
is conducted by Bayesian model average.

4.3 � Influence of Task Configuration

We investigate how task configurations influence the perfor-
mance of ���� − �� . For the 5 types of tasks, i.e., ������ , 
����� , ����� , ������� , ������� , by default, we use 
���� − ��(�����) as the model and use 7 training tasks 
from ����� database with 128 pairs and 16 shots for one 
task. For ������� and ������� , 239 tasks from the domain 
of ���-����� are added into the training task set. First, we 
vary the number of shots in {1, 4, 16, 64} , and the prediction 

MAE and accuracy are shown in Fig. 2a and b. The number 
of shots has a large influence on the testing MAE and accu-
racy. The larger the support set in each task, the better the 
performance, which is consistent with our intuition. As the 
number of shots grows exponentially, the performance gain 
improves marginally. Second, we vary the number of pairs in 
each task in {32, 64, 128, 256} by fixing the number of shots 
to 16 and ����� training tasks to 7. The testing results are 
shown in Fig. 2c and d. In general, varying the task size will 
not incur a large influence as varying the number of shots. 
However, we observe ������� , ������� are more sensi-
tive to the task size compared with the other 3 task types. 
The reason would be when varying the MUTAG task size, 
the task structure between synthetic tasks and MUTAG task 
becomes different, e.g., the percentage of pairs with ground-
truth in one task. And this difference brings greater per-
formance variation. Third, we vary the number of ����� 
training tasks in {7, 14, 21, 28} by fixing the task size to 128 

Table 2   MAE and accuracy on �����

Train ratio  Model  MAE  Accuracy

0.6 ���� + ������� 10.41 ± 6.25 0.89 ± 0.02

���� + ������� 3.29 ± 0.82 0.83 ± 0.06

���� − ��(������) 0.96 ± 0.15 0.92 ± 0.07

���� − ��(����) 0.92 ± 0.18 0.94 ± 0.04

���� − ��(�����) 0.87 ± 0.13 0.93 ± 0.02

0.4 ���� + ������� 8.78 ± 9.14 0.88 ± 0.03

���� + ������� 7.72 ± 1.21 0.85 ± 0.36

���� − ��(������) 0.94 ± 0.14 0.92 ± 0.06

���� − ��(����) 0.87 ± 0.12 0.91 ± 0.05

���� − ��(�����) 0.82 ± 0.13 0.89 ± 0.04

0.2 ���� + ������� 8.65 ± 5.12 0.87 ± 0.02

���� + ������� 8.66 ± 5.11 0.87 ± 0.02

���� − ��(������) 1.19 ± 0.23 0.84 ± 0.02

���� − ��(����) 1.21 ± 0.07 0.87 ± 0.05

���� − ��(�����) 1.21 ± 0.08 0.84 ± 0.01

Fig. 2   Test results on ����� over various task configurations
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and the number of shots to 16. The corresponding MAE and 
accuracy on ����� task is presented in Fig. 2e and f. We 
conjecture that here the performance change of 21 training 
tasks is that some new task introduces inconsistent noise 
when training together with the synthetic dataset.

Furthermore, we investigate the effect of adding sampled 
data from the training tasks to the support set of the test task 
in the zero-shot and few-shot scenarios for the 5 task types. 
For ����� , ����� and ������ , 7 tasks from ����� are 
used for training. For ������� and ����� , 239 tasks from 
���-����� are added to the training tasks. We test 28 ����� 
tasks by varying the number of shots and the auxiliary pairs 
in {0, 1, 4, 16, 64} , {0, 16, 32, 64, 128} , respectively. The size 
of all the train and test tasks is 128. The testing performance 
over the 5 task configurations is shown in Table 3. For ����� , 
������� , and ������ , the upper-left cell of the table is the 
worst performance for zero-shot without auxiliary data and 
the lower-right cell is the best performance for 64 shots with 
128 auxiliary. As the number of shots or auxiliary pairs 
increases, the test performance improves from the upper-left 
to the upper-right, lower-left and upper-right, which is con-
sistent with intuition. In addition, we find when the number 
of shots or the auxiliary pairs is sufficiently large, e.g., 64 

shots or 128 auxiliary pairs, increasing the amount of auxil-
iary data or shot only contributes to marginal improvement. 
For a fixed size support set, the more data from the shot, 
the better the performance. For example, 16 shots without 
auxiliary pairs is better than zero-shot with 16 pairs. This 
is because the support set in a test task exhibits more task-
specific features than the sampled training data. However, 
we find for tasks with the type ����� and ������� , add-
ing auxiliary data from training tasks will degrade the MAE 
and accuracy. Recall that ����� and ������� task is one 
new pattern p∗ for different data graphs G in a database. We 
observe that, for different patterns p1 and p2 , their true count 
distributions of G are rather different, because of the different 
topology between p1 and p2 . For example, p1 in G has most 
zero counts and p2 in G has most nonzero counts. A large 
discrepancy between the ground-truth distribution makes the 
knowledge transfer difficult. Under this circumstance, few-
shot for the new pattern is important.

4.4 � Comparison with Meta‑Algorithms

We compare the meta-learned ���� − �� with the meta-
learned ���� + ������� by ���� and ��������� for 

Table 3   Test MAE/accuracy for 
zero-shot

MAE/Acc. # Auxiliary data

0 16 32 64 128

����� # shots 0 8.06/0.72 4.01/0.82 3.13/0.84 2.37/0.84 2.24/0.86
1 6.97/0.74 3.5/0.83 2.84/0.82 2.29/0.84 1.73/0.87
4 6.22/0.77 3.14/0.83 2.71/0.85 2.28/0.85 1.81/0.87
16 3.65/0.82 2.68/0.83 2.24/0.85 2.04/0.86 1.79/0.87
64 1.80/0.85 1.67/0.86 1.67/0.86 1.49/0.87 1.48/0.87

����� # shots 0 7.08/0.75 15.02/0.57 15.78/0.50 15.00/0.54 14.92/0.48
1 6.10/0.77 11.11/0.52 12.45/0.54 16.45/0.40 14.54/0.42
4 4.54/0.80 11.84/0.51 11.65/0.52 11.27/0.55 11.01/0.53
16 2.51/0.84 6.48/0.54 6.68/0.63 6.51/0.64 10.09/0.57
64 1.34/0.88 2.61/0.76 2.57/0.76 3.89/0.70 3.68/0.69

������� # shots 0 10.92/0.28 3.68/0.86 3.02/0.88 2.23/0.89 1.67/0.91
1 8.51/0.49 3.76/0.86 2.69/0.87 2.01/0.90 1.81/0.90
4 4.91/0.81 3.61/0.86 2.44/0.89 2.13/0.90 1.71/0.91
16 3.71/0.87 2.89/0.88 1.88/0.89 1.77/0.90 1.59/0.91
64 1.49/0.89 1.35/0.90 1.29/0.90 1.21/0.91 1.11/0.92

������� # shots 0 10.22/0.23 11.35/0.27 10.60/0.30 10.93/0.32 9.62/0.37
1 7.67/0.32 7.77/0.36 9.54/0.36 8.32/0.36 9.34/0.42
4 4.67/0.49 5.94/0.48 5.96/0.46 6.79/0.48 5.41/0.50
16 1.95/0.78 2.50/0.72 2.45/0.71 2.54/0.69 2.62/0.70
64 0.86/0.90 1.00/0.84 1.08/0.85 1.05/0.85 1.02/0.88

������ # shots 0 8.05/0.73 4.38/0.81 2.72/0.84 1.79/0.85 1.41/0.85
1 7.17/0.76 3.83/0.82 3.45/0.83 1.74/0.84 1.43/0.87
4 6.00/0.78 3.49/0.82 2.39/0.84 1.84/0.85 1.46/0.86
16 3.98/0.79 2.21/0.82 2.06/0.81 1.45/0.84 1.26/0.85
64 1.81/0.86 1.61/0.86 1.51/0.86 1.35/0.86 1.23/0.88
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few-shot learning. For ������ , ����� , ����� , 7 tasks 
from ����� are used as the training task set. For 
������� and ������� , except for the 7 ����� tasks, 
either 239 tasks from ���-����� or 797 tasks from ���
-����� are added. By default, the task size is 128 and the 
number of shots is 16. The MAE and accuracy on 28 test 
tasks from ����� are shown in Table 4. Only ���� − �� 
achieves both low MAE and high accuracy consistently 
over all the 5 task types. Both ���� and ��������� fail 
to distinguish zero/nonzero counts as the test accuracy 
is low. ���� conducts the inner and outer loop gradient 
update end-to-end, differentiating through the inner loop 
to obtain the gradients for the outer loop, which will 
cause instability problems [1]. For the subgraph count-
ing task, training loss of ���� converges slow. ���� is 
also resource consuming as it runs out of GPU memory 
on Hybrid tasks from ����� and ���-����� . ��������� 
finetunes the final layer of ���� + ������� one gradient 
step for each task by freezing the parameters of the former 
feature transformation layers. The one gradient step may 
underfit the task data, whereas more gradient steps will 
overfit the task data.

4.5 � Comparison with Algorithmic Approaches

We compare our meta-learned ���� − �� with traditional 
subgraph counting algorithms, including 7 approximate 
algorithms in the GCARE benchmark [38], and an exact 
counting algorithm ���  [9] implemented by NetworkX. 

The MAE, quantiles of the error and the total counting 
time are presented in Table 5. The prediction results of 
���� − �� are collected by fivefold cross-validation where 
one ���� − ��(�����) model is trained over 20% ����� 
pairs that are organized in 7 tasks with type of ������ 
and size of 128. The prediction is conducted by zero-shot 
testing with 128 auxiliary pairs. In Table 5, ���� − �� 
achieves the lowest MAE among the 8 approximate 
approaches and its prediction is 6× faster than the exact 
algorithm ��� . Most of the approximate baselines have 
the problem of underestimation due to sampling failure.

5 � Related Work

Subgraph Counting. There are exact and approximate sub-
graph counting algorithms [44]. For exact counting, exist-
ing approaches in the literature are categorized into enumer-
ation-based  [19, 22, 37] and analytical approaches [32, 36, 
41]. For approximate subgraph counting, various estimation 
strategies have been explored, such as path sampling [23, 54], 
color coding [3, 4], random walk [6], and graph summariza-
tion [34, 50]. Most of the above approaches are designed to 
count graphlets [42], a.k.a. graph motifs, small, unlabeled graph 
queries, over a simple undirected graph. Recently, ML/DL-
based approaches have been proposed to estimate the subgraph 
counting. [64, 65] devise a GNN based model as the counting 
sketch to estimate the subgraph isomorphism/homomorphism 
count over a large data graph, but the model cannot generalize 
to unseen data graphs. [28] proposes DL models to count que-
ries specified by a pair of data graph and pattern graph. Both 
of the two models need training by a large number of training 
data. [7] analyzes the ability of GNNs in detecting subgraph 
isomorphism, and proposes a Local Relational Pooling model 
for counting both subgraphs and induced subgraphs. However, 
the model is specific to a given query pattern.

Meta-Learning on Graphs. There are three types of 
meta-learning algorithms, i.e., black-box adaption [33, 46], 
optimization-based [15, 35] and metric-based [48, 51] meta-
learning algorithms. Black-box adaption relies on specific 
neural network architecture, e.g., RNN to learn each task 
one by one. These approaches have the powerful expressive 

Table 4   Test MAE/accuracy for different algorithms

 Task type ���� − �� ���� ���������

������ 3.64/0.84 6.90/0.41 3.47/0.56
����� 3.56/0.81 6.70/0.40 3.54/0.47
����� 2.72/0.85 4.34/0.71 6.63/0.62
������� ( ���-�����) 3.71/0.87 6.85/0.53 2.26/0.67
������� ( ���-�����) 1.74/0.82 4.60/0.74 9.65/0.47
������� ( ���-�����) 3.09/0.86 OOM 2.01/0.81
������� ( ���-�����) 3.19/0.86 OOM 5.70/0.74

Table 5   Comparison with 
subgraph counting algorithms

 Method ���� − �� �� �� ���� ���� ���� ��� ������ ���

MAE 1.32 8.05 25.35 7.87 40.28 7.69 156.15 6.48 0
5% −4.66 −48 −56 −56 −24 −48 0 −45 0
25% 0.01 −4 −4 −4 0 −4 0 0 0
50% 0.01 0 0 0 0 0 0 0 0
75% 0.35 0 0 0 0 0 66 0 0
95% 3.68 0 0 0 252.96 0 932 2.21 0
Time (s) 0.14 0.59 0.98 0.55 0.82 0.61 693.02 40.55 0.89
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power to model the task prior but are data inefficient and 
challenging for optimization. The optimization-based algo-
rithms learn a hierarchical model by gradient-based back 
propagation. These algorithms are effective regarding learn-
ing the meta-model but are time and memory consuming 
in computation due to the hierarchical optimization para-
digm. The metric-based algorithms borrow the idea from 
the clustering algorithms that learn an embedding for the 
input. The algorithms are applicable for small data but only 
classification tasks.

These meta-learning approaches have been adopted 
over graph data to deal with various graph learning tasks, 
including node classification [21, 66], link prediction [2, 21], 
graph classification [5, 29]. [14] proposes a meta-learning 
framework, conditional graph neural process, for community 
search. A survey summarizes the applications and methods 
can be found in [30]. Here, GNN is widely used as the base 
model or core component of these approaches. However, all 
the existing approaches are oriented to few-shot graph learn-
ing tasks and cannot be directly applied to zero-shot learning 
or the subgraph counting task, where the input is specified 
by a data graph and a pattern graph.

6 � Conclusion

In this paper, we study an NP-complete problem, subgraph 
isomorphism counting, by DL techniques. To alleviate the 
reliance on a large volume of training data, we devise a 
Gaussian Process, called RGIN-GP, which warps a neu-
ral network layer. The model is trained end-to-end by a 
meta-learning algorithm, which aims to exploit the knowl-
edge prior of training tasks. Compared with the baseline 
approach, the meta-trained RGIN-GP reduces the MAE 
from 8 to 1, with only one thousand training samples. In 
addition, in our extensive experiments, the meta-learned 
RGIN-GP can fast adapt to new tasks by few-shot and 
zero-shot learning.
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