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Abstract

Abstract Health systems worldwide are implementing lung cancer screening programmes to identify early-stage
lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and out-
performs other measurement methods. However, volumetry is known to be influenced by multiple factors. The objec-
tives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding fac-
tors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact,
identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid,
Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included,
explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these
studies is tabulated, and a narrative review is provided. A subset of studies (n=16) reporting clinical significance were
selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include
the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules,

and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this
field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical
relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of stud-
ies testing for clinical significance.

Critical relevance statement Many studies have investigated the influencing factors of pulmonary nodule volume-
try, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these
studies presents a challenge in consolidating results and clinical application of the evidence.

Key points
- Factors influencing the volumetry of pulmonary nodules have been extensively investigated.

« Just 11% of studies test clinical significance (wrongly diagnosing growth).

+ Nodule size interacts with most other influencing factors (especially for smaller nodules).

« Heterogeneity among studies makes comparison and consolidation of results challenging.
- Future research should focus on clinical applicability, screening, and updated technology.
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Introduction

Health systems worldwide are implementing Lung Can-
cer Screening programmes (LCS) to identify early-stage
lung cancer and maximise patient survival. However,
false positive findings presenting as mostly benign, small,
non-calcified pulmonary nodules are present in 22-51%
of participants, which may cause morbidity and under-
mines the cost-effectiveness of LCS [1, 2].

Before the Dutch-Belgian randomised lung cancer
screening (NELSON) trial, any pulmonary nodule was con-
sidered potentially malignant until proven stable for two
years. This trial linked the risk of malignancy to the nodule’s
size, with small nodules (<100 mm? in volume or<5 mm
in diameter) having a low risk of cancer (0.4%), while large
nodules (>300 mm? or > 10 mm) see this risk raise to 16.9%.
The risk of malignancy for medium-sized nodules depends
on their growth rate, increasing from 0.8% for nodules with
a volume doubling time (VDT) >600 days to 9.9% for nod-
ules with a VDT <400 days [1].

Volumetry has consistently outperformed other meth-
ods of measuring pulmonary nodules and has been

recommended by several international scientific societies
for their follow-up [1, 3, 4]. However, the growth curves
based on volumetry are highly variable and influenced
by multiple known factors [5, 6]. These influencing fac-
tors can be related to the scanner, acquisition (e.g., radia-
tion dose exposure, slice thickness) and reconstruction
parameters (e.g., kernel), software package, nodule (e.g.,
size, shape, location), patient (e.g., breathing, comorbidi-
ties) or even to the observer (e.g., experience and train-
ing). The consistent use of the same scanner, protocol,
and software during the follow-up of a pulmonary nodule
reduces measurement variability. Still, it is often imprac-
tical, such as in cases of equipment failure, critical soft-
ware upgrades, or the patient moving house.

The primary objective of this systematic review is to
summarise the current knowledge regarding the factors
that influence the outcome of volumetry tools dedicated
to pulmonary nodules. The secondary objectives are to
assess the clinical significance of the evidence, identify
gaps in current knowledge and suggest future research.
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Methods

The protocol and search strategy were registered
with PROSPERO with the registration number
CRD42022370233.

The authors defined the primary and secondary
research questions as “What factors influence the out-
come of volumetry tools dedicated to pulmonary nod-
ules?” and “What is the clinical significance of their
effect?” respectively.

The authors searched the following databases on the
21°% of September 2022: MEDLINE, SCOPUS, Journals@
Ovid, Embase, and Ovid Emcare, using the query: (((Vol-
ume OR Volumetry OR Volumetric) AND (lung OR pul-
monary) AND (nodule OR nodules)).

Eligibility criteria
The inclusion criteria were defined as follows:

+ Original research studies using dedicated volumetry
tools in solid or part-solid pulmonary nodules.

+ Study design explicitly tests the potential impact of
influencing factors on these tools” outcomes (i.e., vol-
ume, segmentation quality).

The exclusion criteria were defined as follows:

« Case reports reviews, or opinion articles.

» Study design exclusively investigating ground-glass
opacities (GGOs), using a dedicated (i.e., less gener-
alisable) segmentation algorithm.

The authors excluded duplicate records using the
Rayyan online tool (Perdue University).

Assessment of methodological quality

The quality of the included studies was assessed indepen-
dently by two authors (chest radiologists with over five
years of experience in LCS) based on the revised Qual-
ity Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2), and all disagreement was resolved through
discussion with a third chest radiologist. The risk of bias
was rated as high, low, or unclear.

Data extraction
Both authors agreed on the final list of reports and
retrieved the respective full articles.
Non-English articles (i.e., Chinese, German) were
translated using an online service (www.translated.com).
The authors then screened the complete reference lists
of all included articles for additional pertinent entries.
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Grey literature reports were used to identify potential
candidate studies.

The variables collected included: population, nodule
features, statistical methodology, influencing factor(s),
outcome variable, observed effect(s), interactions
between different influencing factors, and the statistical
significance of relevant tests.

Statistical analysis and data presentation

To assess the evidence for clinical significance, we
selected all in vivo studies reporting interscan variability
using relative Bland—Altman analysis. The variables col-
lected at this stage included: influencing factor(s), sys-
tematic bias, Limits of Agreement (LOA), and sub-group
analysis. The LOA were deduced from the standard devi-
ation and systematic bias if needed. When appropriate,
the authors synthesised LOA and systematic bias from
groups of studies using the inverse-variance method with
a random-effects model (SPSS v26 [IBM, Armonk, NY,
USA]).

The heterogeneity between the primary studies was
assessed using the heterogeneity variance (%) and Forest
plots. The Deeks’” funnel plot was planned to determine
study asymmetry and potential publication bias if com-
paring more than ten studies.

Missing values were excluded after an unsuccessful
attempt to contact the corresponding author of the pri-
mary study.

Results

The search returned 1259 (MEDLINE), 1697 (SCOPUS),
53 (Journals@Ovid), 223 (Embase), and 126 (Emcare)
results from 1960 to 2022. The PRISMA flow diagram is
presented in Fig. 1.

After the study selection and critical appraisal, the first
stage of the systematic review included a cohort of 137
studies. A consolidated summary of results is presented
in Table 1, and the complete list of the summarised
results is provided as Additional file 1: Table S1.

The second stage of the review identified a cohort of 16
studies, summarising their results in Table 2. Meta-anal-
ysis was attempted in two study groups, with results pre-
sented as Additional file 1 (Table S3 and Figures S1 and
S2). Funnel plots were not performed since the minimum
of 10 studies was unmet.

Influencing factors related to the scanner

Acquisition parameters

Radiation dose exposure, tube current, and tube poten-
tial Minimising radiation dose exposure is essential to
LCS and can be done by manipulating tube current and
potential, often interchangeably. The interaction between
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Fig. 1 Prisma flow diagram describing the results of the search and selection process

dose exposure and tube current—time product (mAs) is
linear and well understood. However, the interaction
with tube potential is not, with a reduction of tube volt-
age from 100 to 80kVp resulting in a reduction of dose
exposure in the order of 1.5 [23].

Several studies investigated the impact of radiation
dose exposure, tube voltage, or tube current on the
outcome of volumetry tools. Less than half of the stud-
ies showed a statistically significant difference in accu-
racy, and the vast majority concluded this difference to
be clinically insignificant [13, 15, 24—38]. Some studies
reported worsening segmentation quality with lower
dose exposure [30] and reduced precision with lower
dose exposure, tube current—time product, or tube
voltage, limited to small 5 mm and non-solid nodules
[28, 39-46].

The impact of radiation dose exposure on volume-
try showed clinically significant differences between
standard-dose (SDCT) vs low-dose (LDCT) [18] CT
protocols and SDCT vs ultra-low-dose CT proto-
cols (ULDCT) [15, 17], contradicting the consensus
that reducing the radiation dose does not affect the
outcome of volumetry. Studies comparing LDCT vs

ULDCT did not confirm this result, thus supporting
their use in LCS [10, 13]. Despite the acceptance of
SDCT, LDCT and ULDCT protocols, their definition
varies among authors, and the effective radiation dose
depends on the patient’s body weight. The estimated
effective dose acceptable for LCS is 2 mSv [47].

The signal-to-noise ratio (SNR) is not an independ-
ent influencing factor [32, 48].

Collimation

The effect of collimation is statistically significant
between thin (<0.75 mm) and thick (>1.5 mm) settings,
with some authors recommending thinner [37, 38] while
others recommend thicker [49, 50] settings for volume-
try. However, the consensus considers collimation as not
clinically significant.

High-resolution scan mode

The development of garnet detectors in CT scanners ena-
bled the high-resolution scan mode, increasing the sam-
pling per gantry rotation, spatial resolution, and image
quality while reducing volume overestimation [51].
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Table 1 Summary of studies included in the review
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Factor

Statistical significance Clinical relevance

Observations

Acquisition parameters

Radiation dose exposure, tube current and tube
potential

Signal-to-noise ratio (SNR)
Collimation

High-resolution scan mode

Field of view (scan FOV)
Pitch

Contrast enhancement

Reconstruction parameters
Slice thickness

Field of view (display FOV)
Reconstruction interval

Raw-data reconstruction algorithm

Kernel

Post-processing

CT scanner equipment
Vendor
Technology

Software

Software (package and version) and segmenta-
tion algorithm

Nodule

Size

Density

No consensus

No
Yes

Yes

No
No

Yes

Yes

No
No consensus

No

Yes

No

Yes
No consensus

Yes

Yes

Yes

Yes

Untested

Untested

Untested

Yes

Untested

Yes
(sub-solid nodules)

Yes
(sub-solid nodules)

Untested
Untested

No

Yes

Untested

Despite usually considered as non-significant,

there are numerous contradictory study results,
with some studies even showing inter-scan vari-
ability of volumetry measures in the realm of clinical
relevance

Not an independent factor

Generally considered as clinically not relevant,
but untested

Single study showing reduced volume overestima-
tion of pulmonary nodules

Not significant unless using high pitch mode (pitch
factor=3) in small nodules (<5 mm)

Overestimates the volume of the pulmonary
nodule

Thinner slice thickness improves accuracy, preci-
sion, and segmentation quality

Should be thin enough to allow any nodule to be
visible in > 3 consecutive slices

A thickness > 2.5 mm is inadequate to detect T mm
changes in nodule’s diameter

Overlap (interval < thickness) improves accuracy
and precision of volumetry in smaller nodules
and thicker slices

Likely not significant using 1 mm slice thickness

[terative reconstruction (IR) algorithms outperform
filtered back projection (FBP) for small part-solid
nodules and at lower tube currents improving
performance of volumetry tools

The noise reduction provided by IR is not uniform
and less significant at the nodules’edges

Sharp kernel improves volumetry performance
in thin 1T mm slices

Smooth kernel outperforms sharp kernel

in thicker > 2.5 mm slices

Image compression and vessel suppression con-
sidered as not significantly influencing volumetry
of pulmonary nodules

Only for small nodules not requiring follow-up

Multi-detector CT, flat-panel, dual energy spectral
CcT

The same software package and version should
be consistently used through the follow-up of any
pulmonary nodule

Performance of volumetry tools is degraded
in smaller nodules and considered unreliable
for growth estimation of nodules <5 mm

Volumetry of non-solid nodules has worse accuracy
and precision than for solid nodules
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Table 1 (continued)
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Factor Statistical significance Clinical relevance Observations

Shape Yes Untested Volumetry of nodules with irregular and spiculated
shapes has lower accuracy and precision than volu-
metry of nodules with round, elongated, smooth
or lobulated shapes

Margin Yes Untested Volumetry of nodules with poorly defined margins
have higher variability

Location Yes Untested Attachment to surrounding structures (e.g., pleura,
vessels, bronchial walls) degrades the performance
of volumetry tools

Patient

Parenchymal changes Yes Untested Only with increased attenuation of surrounding
parenchyma (e.g,, ILD)

Breathing Yes Yes Breathing artifacts are related to volume overesti-
mation and increased measurement variability

Cardiopulmonary haemodynamics Yes Yes Complex cardiopulmonary interactions affecting
the amount of blood inside or around a nodule,
leading to increased volume measurement vari-
ability

Observer

Manual correction Yes Untested Selectively correcting obvious segmentation errors
improves the performance of volumetry tools

Experience No

Training Yes Untested Training with the volumetry tool is important

in unexperienced observers

Field-of-view (FOV)
The scanners’ spatial resolution in the axial plane
depends on the FOV and the matrix size. The scan FOV
determines the amount of raw data acquired, but images
can be later reconstructed with a different and smaller
display FOV.

Several authors investigated the effect of changing the
FOV (between 9.6 cm and 36 cm) and showed no statisti-
cally significant impact on volumetry [52—55].

Pitch

Likewise, the pitch parameter has no significant impact
on volumetry within conventionally used values [36, 49,
53, 56], apart from improved repeatability with smaller
pitch values (0.9 vs 1.2) [49]. However, the high pitch
mode (i.e., pitch factor of 3) reduces the accuracy of volu-
metry in small (<5 mm) solid nodules [56].

Contrast enhancement

Contrast enhancement overestimates the volume, pos-
sibly by increasing the attenuation of the nodules or
adjacent structures [57-61]. Rampinelli et al. found
volumetry comparable across different delay times (i.e.,
phases) in contrast-enhanced CT [58].

Reconstruction parameters

Slice thickness

Slice thickness has been investigated as an influencing
factor of volumetry between 0.625 and 5 mm. Thinner
slices resulted in statistically significant improvement in
accuracy and precision in all but one study [19, 21, 31, 34,
36, 39, 44, 48-50, 52-55, 62—67]. In comparison, thicker
slices are related to lower measurement agreement and
reduced segmentation quality [52, 54, 66].

The slice thickness determines the scan’s longitudi-
nal (z-axis) spatial resolution. The difference between
the higher axial and lower longitudinal spatial resolu-
tion explains why the FOV is insignificant while the slice
thickness is, especially for thicker slices.

Increasing the slice thickness increases the volume of
voxels along the z-axis. Larger voxels may increase the
volume measurement, but surface voxels will also suf-
fer more partial volume effects, increasing measurement
variability [54]. Since smaller nodules have a higher ratio
of surface to inner voxels, the volumetry of smaller nod-
ules is more affected by slice thickness [21, 36, 49, 52].

The slice thickness should be thin enough to make any
nodule visible in at least three consecutive slices [52].
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Table 2 Summary of studies reporting percent Bland—Altman analysis of interscan variability

Ref. Population (n) Independent variable/subgroup Bias lowerlOA  (pperLOA
[7] Patients with known pulmonary nodules
100 Size: all —-090% —1640% 14,60%
58  Size:30-<80 mm? -03% —168% 162%
42 Size:80-150 mm? -17% —155% 123%
[8] Patients with pulmonary nodules detected on CCTA 195  Cardiac cycle phase (systole vs diastole) 265%  —470% 52.3%
[9 Patients with part— solid nodules 66  Kernel
Solid component segmentation -32% —450% 39.0%
Whole nodule segmentation 13,00% —21.0% 46.0%
[10]  Patients under surveillance for <2 mm solid nodules Radiation dose exposure (LDCT vs. ULDCT)
170 all nodules -20% —180% 22.7%
97  indeterminate nodules -60% —-127% 21.9%
68 BMI<25 —25% —175% 23.6%
102 BMI>25 -10% —183% 20.8%
[11]  Patients with preoperative scans for subsolid 66  Reconstruction algorithm: FBP vs. MBIR
nodules solid component segmentation 6.3% —51.9%  64.6%
whole nodule segmentation 3.2% —-20.5%  27,00%
[12]  Patients with emphysema 88  Level of inspiration (end-inspiratory vs end-expir- 7,5% —-241% 39,1%
atory)
[13]  Patients were enrolled prospectively 105 Radiation dose (LDCT vs. ULDCT with FBP or SAFIRE)
FBP 0.2% —-200% 20.4%
SAFIRE 0.3% —-9.7% 10.4%
[14]  Patients with subsolid nodules 94 intraobserver (R1) -15% -173% 165%
Intraobserver (R2) 0,4% —-148% 185%
[15]  Patients retrospectively enrolled 202 Radiation dose exposure (SDCT vs. ULDCT)
Intraobserver (R1) 1.4% —-251%  262%
Intraobserver (R2) 1.9% —251%  28.9%
Interobserver (R1 vs R2) 1.2% —-250% 274%
interobserver (R2 vs R1) 2.1% —-239% 28.1%
[16]  Consecutive patients referred for known or sus- 89  Software
pected pulmonary metastases (3.3 mm—30 mm) Software A 0,0% —170%  17.0%
Software B 0,0% -13,1% 13,1%
Software C 0,0% -208% 20,8%
Software D 0,0% —134% 134%
Software E 0,0% —-205% 20,5%
Software F 0,0% -196% 19,6%
[17]  Patients on follow-up for lung cancer or scanned Radiation dose exposure (SDCT vs. ULDCT)
because of suspicious pulmonary nodules 229 Size: all
Intraobserver (R1) 1.5% —-251% 28.1%
Intraobserver (R2) 2,0% —264%  30.4%
Interobserver (R1 vs R2) 1.3% —265% 29.1%
interobserver (R2 vs R1) 2.2% —252%  29.6%
153 size:<10 mm
Intraobserver (R1) 2.3% —285% 33.1%
Intraobserver (R2) 2.6% —294%  34.6%
Interobserver (R1 vs R2) 1.9% —-283% 32.1%
Interobserver (R2 vs R1) 2.1% —29,10% 33.3%
76 Size:>10 mm
Intraobserver (R1) 1.4% —-186% 21.4%
Intraobserver (R2) 0.4% —-186%  19.4%

Interobserver (R1 vs R2) 0.4% —17,00% 17.8%
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Table 2 (continued)
Ref. Population (n) Independent variable/subgroup Bias lowerlOA  ypperlOA
Interobserver (R2 vs R1) 0.6% -184% 19.6%
[18]  Patients with known nodules were prospectively 83  Radiation dose: SDCT vs. LDCT
enrolled SDCT 128%  —270%  40.0%
LDCT 170%  —380% 60.0%
[19]  Patients with contrast-enhanced chest CT 101 Slice thickness: T mm -01% —-216% 203%
101 Slice thickness: 3 mm 1.0% —-154% 152%
101 Slice thickness: 5 mm 1.6% -218% 27.6%
[20]  Patients with pulmonary metastases 218 Segmentation: all 1.3% -212% 23.8%
106 Segmentation: complete 028% —11.9% 124%
112 Segmentation: incomplete 161%  —268% 30.0%
[21]  Patients with pulmonary metastases 96  Segmentation algorithm 0.0% —-269%  269%
[22]  Patients with pulmonary metastases 151 Size:all 0.7% -204%  21.9%
105 Size:<10mm 0.55% —-193% 204%

The independent variable is the influencing factor (if any) that changes between measurements of each nodule (e.g., standard dose [SDCT], low-dose CT [LDCT] vs.

ultra-low-dose CT [ULDCT])

Likewise, a thickness>2.5 mm is inadequate to detect
1 mm changes in diameter [63, 65].

Reconstruction interval
When the reconstruction interval is smaller than the slice
thickness (i.e., overlap), the longitudinal spatial resolu-
tion improves independently of slice thickness [36, 55].
In a study by Gavrielides et al., the accuracy and preci-
sion of volumetry tools improved with 50% overlap, with
significant cross-effects between reconstruction interval,
slice thickness, nodule size, and radiation dose exposure
[36]. Honda et al. reported that non-overlapping recon-
structions were associated with volume overestimation
in scans obtained with 2.5 mm and 3.75 mm slice thick-
nesses [54]. Eberhard et al. found no significant benefit of
overlapping protocols when using a 1 mm slice thickness,
arguing in favour of skipping them to improve LCS cost-
effectiveness [68].

Raw-data reconstruction algorithm and kernel
CT image reconstruction involves converting the raw data
to a sinogram (representing the number and angulation of
photons as they hit the detectors) and then to a matrix of
attenuation values, known as the image model. This pro-
cess is called direct back-projection and results in signifi-
cant blurring. In filtered back projection (FBP), filters (or
kernels) are applied to the image model to reduce the blur-
ring effect, provide smoothing or edge enhancement, and
highlight certain features and anatomical components.
Most studies investigating the impact of kernels on
volumetry have considered them statistically significant
(10 out of 13 studies). High-spatial frequency (sharp)

kernels, like lung or bone, improved accuracy, precision,
and repeatability in most studies [36, 45, 49, 63]. In con-
trast, a single study reported increased repeatability with
a low-spatial frequency (smooth) kernel [64]. Larici et al.
investigated the interaction between kernel and slice
thickness to conclude that a sharp kernel provides the
best performance for volumetry in 1.25 mm slice thick-
ness. A smooth kernel outperforms the sharp kernel in
2.5 mm slice thickness [66].

Several studies reported an overestimation of volume
associated with the sharp kernel [54, 59, 64], especially in
non-overlapping acquisition and solid nodules (or solid
components of part-solid nodules) [54]. Conversely, vol-
umetry of GGOs (or ground-glass components of part-
solid nodules) results in higher estimates when using a
smooth kernel [9].

In iterative reconstruction (IR), the scanner converts
the image model into an artificial sinogram (forward
projection). It then compares it to the original sinogram
with each iteration, correcting random fluctuations in
photon measurement. This process minimises noise and
improves image quality at significantly lower radiation
exposure [69]. However, this noise reduction is less sig-
nificant at the edges of the pulmonary nodules, resulting
in IR-specific measurement error for small nodules and
lower doses or higher noise levels [25, 34].

Multiple studies investigated the influence of raw data
reconstruction algorithms on volumetry tools [13, 24,
25, 28, 30, 32-34, 39-42, 51, 70-72], with the consensus
being that IR outperforms FBP for small, part-solid nod-
ules or at lower tube currents [28, 39-41], allowing IR-
based protocols to replace FBP safely.
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Recently, Kim et al. [73] investigated two deep learning
(DL)-based raw-data reconstruction algorithms (True-
fidelity and ClariCT.Al), showing improved accuracy
against the adaptive statistical iterative reconstruction
(ASiR) algorithm using LDCT and ULDCT.

The scientific literature often refers to raw-data recon-
struction algorithms and kernels as just reconstruction
algorithms, which could be confusing since the former
is generally considered not to influence volumetry meas-
urements. At the same time, the latter is known to do so
[42].

Post-processing

Despite the earlier warning by Ko et al. regarding image
compression [74], Santos et al. found no significant dete-
rioration in the performance of volumetry tools within
the limits proposed in the European Society of Radiology
(ESR) position paper [75, 76].

The influence of vessel suppression on volumetry was
investigated by Milanese et al. using commercially avail-
able software (ClearRead, Riverain, Miamisburg, OH,
USA). The authors reported high measurement agree-
ment with and without vessel suppression, although the
rate of manual correction was unusually high (49/77,
75.4%) [77].

CT scanner equipment

CT scanner vendor

Comparing the performance of volumetry tools using dif-
ferent scanners showed good accuracy regardless of the
scanner vendor [37]. Two later studies found a statisti-
cally significant difference between scanner vendors, but
only for small nodules, which would not require follow-
up according to current guidelines [26, 78].

CT scanner technology

Several studies have compared the performance of volu-
metry between different scanner technologies (e.g., sin-
gle or multiple detectors, flat-panel, and dual-energy CT
scanners) [19, 37, 55, 79, 80]. Das et al. reported increas-
ing accuracy in volumetry with more detector rows [38],
although Xie et al. did not confirm this [81].

Flat-panel scanners outperform multi-detector scan-
ners in pulmonary nodule volumetry, especially in small
nodules (<5 mm) [82-85].

Mono-energetic reconstructions at 70 keV using
dual-energy spectral CT are considered equivalent to
conventional CT images acquired using 120 kVp, and
several authors found no significant difference in volu-
metry accuracy between them [86-88]. In addition,
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mono-energetic reconstructions improved the repeat-
ability of volumetry at the same radiation dose [87].

Influencing factors related to the software
Software package and segmentation algorithm
Several studies compared different software packages and
different segmentation algorithms for pulmonary nodule
volumetry, reporting statistically significant differences in
all but one study [45, 83, 89-92] and even between dif-
ferent versions of the same software [93]. Adjusting the
attenuation threshold, as some segmentation algorithms
allow, also influences the volume measurement outcome
[45, 55, 92].

Several international societies firmly recommend con-
sistently using the same software package, version, and
segmentation algorithm during follow-up [94].

Influencing factors related to the nodule

Nodule size

Volumetry is less performant for small nodules [10, 13,
16, 18, 21, 25, 28, 29, 31, 36-38, 40, 41, 45, 48-51, 53,
55, 56, 60, 63, 70, 72, 74, 78, 79, 81, 82, 89, 92, 93, 95—
101], explained mainly by partial volume effects, and is
considered unreliable for nodules<5 mm in diameter
[60, 102].

Multiple interactions between nodule size and other
influencing factors are known, including collimation
[31, 49], tube current [29, 41], reconstruction algorithm
[29, 41, 51, 70, 72], kernel [36], reconstruction interval
[36], slice thickness [20, 21, 31, 36, 48, 49, 53], scanner
technology [41, 52, 82], software [16, 45, 89, 93], com-
pression level [74], density [28, 41], and level of inspira-
tion [16, 20].

Hwang et al. suggested that raising the threshold to
9 mm for starting follow-up would lead to a significant
increase in specificity (i.e., from 91.7% to 96.7%) at the
cost of only a modest decrease in sensitivity (i.e., from
96.2% to 94.2%). The impact of such a change to current
recommendations would result in a 60% reduction of fol-
low-up scans at the cost of delaying the diagnosis of 1.9%
of lung cancer patients [103]. Volumetry tools should be
robust to influencing factors for solid nodules>9 mm
when using current LDCT protocols in LCS programmes.

Density
Published studies in the literature describe the density
of a nodule as either a qualitative (e.g., solid, part-solid,
ground-glass, calcified) or quantitative feature (i.e., in
Hounsfield Units).

Non-solid nodules are more challenging to segment
manually and using volumetry tools and present lower



Guedes Pinto et al. Insights into Imaging (2023) 14:152

accuracy and higher variability than solid nodules [11,
25, 26, 28, 36, 41, 45, 92].

Interactions between density and other influencing
factors have been described, including nodule size [28,
36, 92], reconstruction algorithms [28, 41, 70], slice
thickness [36], tube current [41], level of inspiration
[104], and image compression [74]. Higher nodule den-
sity is correlated to larger volume [88].

Shape and margin
The shape of a pulmonary nodule can be round, elon-
gated, smooth, lobulated, spiculated, or irregular.

An irregular or spiculated shape is associated with
lower accuracy [62, 64] and precision [20] of volumetry
tools. It is also associated with a lower volume meas-
urement [78], lower segmentation quality [97, 105], and
increased variability [21, 96, 97, 100, 106].

The ratio of surface to inner voxels increases in nod-
ules with an irregular or spiculated shape (i.e., larger
surface area), deteriorating the performance of volume-
try tools due to partial volume effects [78, 100]. There-
fore, volumetry of small (<6 mm) pulmonary nodules
with irregular or spiculated shapes (i.e., high-risk fea-
tures for malignancy) may be unreliable and can justify
an optional follow-up period [107].

The shape of a nodule also interacts with other influ-
encing factors, such as the nodule’s density [28], location,
slice thickness, and kernel [64].

Several authors describe spiculation as a feature of the
nodule’s margin, which can be a source of confusion. We
defined the margin as either well or poorly defined. In a
study by Iwano et al., volume measurements of nodules
with poorly defined margins had a significantly higher
variability [108].

Location

Most authors categorise a nodule’s location as either
intra-parenchymal, juxta-pleural, juxta-fissural, or juxta-
vascular [37, 38, 51, 64, 66, 96, 109, 110], with intra-
parenchymal nodules further classified as either central
or peripheric [74, 111, 112].

Attachments to adjacent structures (e.g., vessels, bron-
chial wall, and pleura) may result in the latter’s inclusion,
overestimating the volume and increasing the measure-
ment variability [111, 112].

In a recent study by Guedes Pinto et al., the authors
reported the location in both the axial (anterior, mid-
dle, or posterior) and coronal (upper, middle, lower)
planes, additionally measuring the vascular distance
along the pulmonary arteries, from the main pulmonary
artery (MPA) to the nodule using multiplanar reformat-
ting, which proved to be statistically significant [113].
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Conversely, the location within a lobe [18] or segment
[98] was not proven to be statistically significant.
Interactions have been reported between the location
and software [111], shape [64], slice thickness [64, 66],
kernel [64], tube current [66], and compression [74].

Influencing factors related to the patient

Parenchymal changes

Both global and regional parenchymal changes in
emphysema patients (i.e., reduced parenchymal atten-
uation) have been investigated and found not sig-
nificantly to affect pulmonary nodule volumetry (108.
However, in diseases with increased parenchyma atten-
uation, like interstitial lung disease (ILD), the reduced
contrast between nodule and surrounding parenchyma
could deteriorate the performance of volumetry tools.
In two phantom studies by Gavrielides et al., the dif-
ference in attenuation between a synthetic nodule
and the background was statistically significant [39,
67]. Recently, Penha et al. reported that the quality of
pulmonary nodule segmentation by volumetry tools
decreases with increasing attenuation of the surround-
ing parenchyma [114].

Breathing
Breathing artefacts are related to overestimating vol-
ume and increased measurement variability of volume-
try tools [12, 16, 20, 43, 99, 104, 115, 116]. This effect is
most significant at the end of expiration and for smaller
nodules but is considered unlikely to be clinically rel-
evant [12, 16, 20, 115]. However, Goo et al. reported
a volume overestimation of 23.1% from inspiration to
expiration, interpreted as clinically significant [116].
The level of inspiration interacts with other influenc-
ing factors like the nodule size [16], density [104], and
software package [16].

Cardiopulmonary haemodynamic factors

Studies designed with coronary CT angiography
(CCTA) can compare the performance of volumetry
tools at different cardiac phases in a single acquisition.

Boll et al. reported changes in volume measurement
related to a complex interaction between the cardiac
phase, location (i.e., pulmonary segments), and nodule
size [98].

Guedes Pinto et al. investigated the impact of car-
diopulmonary haemodynamic factors on volumetry
tools, including the cardiac phase, calibre change of
the MPA between systole and diastole, the vascular dis-
tance between the MPA and the nodule, and nodule’s
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location along the axial (related to hydrostatic pres-
sure) and coronal plane (related to vascular section
area), all statistically significant except the cardiac
phase. The authors proposed a theoretical model where
the volume of a given nodule is affected by the dynamic
vascular pressure as blood travels from the heart to the
nodule [113]. In another study by the same authors, the
variability of volumetry vastly exceeded the criterion
for clinical significance when comparing measurements
in opposing cardiac phases (systole vs diastole [—47%,
52.3%]), with the lower variability seen when compar-
ing two measurements in diastole ([—18.9%, 19.7%])
[8].

CCTA is not appropriate for LCS. However, there is
considerable overlap in risk factors between coronary
artery disease and lung cancer. Patients enrolled in
LCS are also at risk of cardiovascular events, with some
authors advocating a role for dual screening [113].

Influencing factors related to the observer

Manual correction, observer experience and training

The promise of (semi)automated tools is to reduce inter-
observer variability by limiting the observer’s influence in
the measurement [102, 117]. Counter-intuitively, allow-
ing manual correction of the segmentation improves
the tool’s performance [60, 102, 118]. This is explained
because inadequately segmented nodules tend to be out-
liers (i.e., either including adjacent structures [113] or
incompletely segmenting the nodule [20]), resulting in
higher variability and lower observer agreement.

The outcome of volumetry tools is independent of
observer experience (i.e., radiologists vs non-radiolo-
gists), even when manually correcting the segmentation
result. However, in the un-experienced group of observ-
ers, training with the tool was statistically significant for
volume measurements [119].

Regarding concerns of bias and excluded studies
The most common concern of bias in the included stud-
ies (Table 3) is the use of experimental algorithms [9, 28,
45, 53, 74, 89, 92, 117, 120-152], followed by the assump-
tion of zero-change datasets over more extended periods,
relying on the perceived stability of the nodules [80, 95,
152]. Two studies use non-consecutive or convenience
sample techniques, possibly introducing selection bias
[60, 71]. Still, others present an incomplete description
of their methods, poorly defining their population or the
statistical analysis [26, 72, 77, 93, 148, 152].

Several promising candidate studies were excluded
after full-text analysis based on their choice of outcome
(Additional file 1: Table S2). These outcomes include
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Table 3 Assessment of bias of the primary studies

Specific concerns of bias References

Experimental algorithm not com-  [9, 28,45, 53,74,89,92,117,

mercially available 120-152]
Assumption of zero-change data-  [80, 95, 152]

set cannot be guaranteed

Inadequate description of statisti- ~ [72,93, 148, 152]
cal analysis

Non-consecutive or convenience  [60, 71]

sample

Study population is inadequately  [26, 77]

described

the risk of malignancy [1, 100, 103, 153—161], prognosis
[162-167], growth [5, 67, 101, 112, 168—174], or com-
parison to other methods of measurement like diameter
[100, 175], area [175], the diameter of an equivalent vol-
ume sphere [3] or manual segmentations (e.g., most of
the recent research using DL-based segmentation).

Although these outcomes are clinically interesting, they
are unrelated to our research questions.

Discussion

The influencing factors of volumetry tools have been
investigated extensively. However, the possibility of
wrongly diagnosing a nodule as stable or growing
between follow-up scans has only been tested in a little
over 10% of studies. Consolidating the results from dif-
ferent studies is difficult due to the heterogeneity, but an
impact on clinical decision-making seems more likely in
smaller nodules.

The contrast between nodule and surrounding lung
parenchyma and the surface-to-inner voxel ratio are two
key concepts in understanding how volumetry tools can
be influenced.

Pulmonary nodule volumetry benefits from the con-
trast between the nodule and the surrounding well-
aerated lung parenchyma. This contrast is decreased in
sub-solid nodules when the surrounding parenchyma has
increased attenuation (e.g., ILD, expiratory phase, con-
trast enhancement) or when the nodule contacts adjacent
structures. Image reconstruction with different kernels
and raw-data reconstruction algorithms may also expand
or contract the segmentation by changing the attenuation
value of the voxels.

Surface voxels contain both nodule tissue and sur-
rounding parenchyma and suffer partial volume effects
leading to measurement error and variability.

The surface-to-inner voxel ratio depends primarily
on the size difference between the nodule and the voxel
(i.e., how many voxels fit in the nodule). Still, it can also
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be increased by an irregular shape or ill-defined nodule
margin (i.e., increased surface area).

Reducing the slice thickness and measuring nodules of
increasing size rapidly decreases the ratio of surface to
inner voxels, improving the performance of volumetry
tools.

Apart from these two key concepts, implementation
details involved in the segmentation algorithms account
for most of the remaining observed influence in volume-
try tools.

Despite the large number of included studies in this
review, comparing study results is problematic given a
large number of influencing factors and heterogeneity in
study design, outcomes, statistical analysis, nodule fea-
tures and demographics. Additionally, multiple authors
report statistically significant results while openly ques-
tioning their clinical relevance. Changing a factor that
influences a volumetry tool may not be enough to change
our assessment of nodule growth and clinical manage-
ment. Therefore, using this evidence to support clinical
decisions is challenging. We consider this a limitation of
the evidence and a strong motivator for this review.

A clarification of clinical significance seems needed.
The optimal waiting period for a follow-up scan is based
on the inherent in vivo interscan measurement variability
of volumetry tools, accepted as <25% of total volume [6].
Higher measurement variability implies a longer time to
distinguish real growth from measurement error. There-
fore, we defined clinical significance as interscan variabil-
ity>25% of volume change since false-positive growth
estimation would become more likely in this setting. We
used this criterion to select a subset of all studies report-
ing interscan variability using Bland—Altman analysis
(n=16). Influencing factors investigated regarding their
clinical relevance include radiation dose exposure, slice
thickness, raw-data reconstruction algorithms, kernels,
size, cardiac cycle phase, software package, segmentation
algorithm, and level of inspiration.

We combined the results of two studies comparing
SDCT vs ULDCT protocols [15, 17], and the synthe-
sised result confirmed the primary studies’ conclusions.
We also combined the results in a second group (three
studies) by disregarding sub-group analysis concerning
size [7, 22] and quality of segmentation [20], with a syn-
thesised result within the clinically acceptable a priori
LOA, but losing the influence of the factors (i.e., size and
quality of segmentation) under study. Due to significant
population, outcome, and design heterogeneity, we could
not combine other studies. Therefore, our attempted
meta-analysis failed to advance the current knowledge
meaningfully (Additional file 1: Table S3 and Figures S1
and S2).
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Several other factors have been statistically shown to
influence the outcome of volumetry tools. However, the
clinical relevance of these findings still needs to be inves-
tigated (Table 1) and represents gaps in current knowl-
edge and opportunities for future research.

Implications of the results for practice, policy, and future
research

Findings from this review confirm the clinically significant
impact of some known influencing factors on pulmonary
nodule volumetry, including the segmentation algorithm,
quality of the segmentation, slice thickness, the level of
inspiration for solid nodules, and the reconstruction algo-
rithm and kernel in subsolid nodules (Table 3).

Much of the evidence collected has yet to be tested
for potential clinical significance and is thus open for
future research.

A concern related to this systematic review is the long
period of the included studies in a rapidly changing field,
suggesting that this review may not reflect current perfor-
mance. A comparison of recent (i.e., last five years) and older
studies show an improving performance trend likely related
to software and scanner technology innovations. In a recent
study by Bartlett et al., the reported interscan variability was
not clinically relevant (,;CI [—16.8%; 16%]) even for very
small (30-80 mm?) solid, non-metastatic and non-calcified
pulmonary nodules (n=>58), suggesting that a shorter opti-
mal waiting time may already be appropriate [7].

We propose a standard for future studies around the
Bland—Altman analysis and restricted to nodules between
5 and 10 mm where growth estimation is useful. Such
studies should investigate the persisting gaps in current
knowledge, focusing on clinical applicability and currently
available technology. Future research should also explore
the cost and benefits of potential changes to current prac-
tices, like raising the threshold for follow-up or shortening
the optimal waiting period in the follow-up schedule.

Abbreviations

CCTA Coronary CT angiography
DL Deep-learning

FBP Filtered back-projection
FOV Field of view

GGO Ground-glass opacity

IR Iterative reconstruction
LCS Lung cancer screening
LDCT Low-dose CT

LOA Limits of agreement
QUADAS-2  Quality Assessment of Diagnostic Accuracy Studies tool
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SNR Signal-to-noise ratio
ULDCT Ultra-low-dose CT

VDT Volume doubling time
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