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Abstract 

Background:   Partitioning around medoids (PAM) is one of the most widely used 
and successful clustering method in many fields. One of its key advantages is that it 
only requires a distance or a dissimilarity between the individuals, and the fact 
that cluster centers are actual points in the data set means they can be taken as reliable 
representatives of their classes. However, its wider application is hampered by the large 
amount of memory needed to store the distance matrix (quadratic on the number 
of individuals) and also by the high computational cost of computing such distance 
matrix and, less importantly, by the cost of the clustering algorithm itself.

Results:   Therefore, new software has been provided that addresses these issues. 
This software, provided under GPL license and usable as either an R package or a C++ 
library, calculates in parallel the distance matrix for different distances/dissimilarities ( L1 , 
L2 , Pearson, cosine and weighted Euclidean) and also implements a parallel fast version 
of PAM (FASTPAM1) using any data type to reduce memory usage. Moreover, the paral-
lel implementation uses all the cores available in modern computers which greatly 
reduces the execution time. Besides its general application, the software is especially 
useful for processing data of single cell experiments. It has been tested in problems 
including clustering of single cell experiments with up to 289,000 cells with the expres-
sion of about 29,000 genes per cell.

Conclusions:   Comparisons with other current packages in terms of execution time 
have been made. The method greatly outperforms the available R packages for dis-
tance matrix calculation and also improves the packages that implement the PAM 
itself. The software is available as an R package at https://​CRAN.R-​proje​ct.​org/​packa​
ge=​scell​pam and as C++ libraries at https://​github.​com/​JdMDE/​jmatl​ib and https://​
github.​com/​JdMDE/​ppaml​ib The package is useful for single cell RNA-seq studies but it 
is also applicable in other contexts where clustering of large data sets is required.
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Background
Clustering plays a significant role in handling large datasets, particularly in the pipelines 
of information processing within Bioinformatics [1].

Many fields, including bioinformatics, face challenges that involve analyzing large/
huge datasets consisting of numerous individuals n (points or objects) and features d 
(or dimensions). The number of final clusters, k, being a critical aspect that needs to be 
considered.

Clustering large data sets requires either the choice of an algorithm with a low mem-
ory footprint and a low computational cost, or, alternatively, the availability of clever 
(and if possible, parallel) implementations of the existing methods. One of the subareas 
that could benefit most from these improvements is the analysis of single cell sequenc-
ing experiments. Modern sequencing devices are able to process a number of cells 
approaching the range of 100,000 and aggregation of data from several experiments pro-
duces even much larger datasets. See [2] for a review and a performance evaluation of 
clustering methods for single-cell RNA-seq data.

Partitioning around medoids (PAM) [3] is a widely used, classic clustering method that 
can produce highly reliable solutions. However, both its memory and its computational 
cost for clustering a large number of individuals is too high for current computers unless 
an efficient implementation of the method is used [4]. PAM is based exclusively on dis-
tances1 between points. Once the desired number of groups to find k is decided, it seeks 
to find an optimal set M of k representatives, M = {m1, . . . ,mk} selected from the initial 
set so that the total deviation (TD), defined as follows, is minimized.

TD is the sum of distances of each point xc ∈ Ci to the medoid mi of its cluster. The 
medoid of a set is the object with the smallest sum of distances to all other objects in the 
set:
medoid(C) := argminxm∈C xc∈C

d(xc, xm)

PAM is made up of two algorithms: the first one is used to select the initial cluster-
ing, and the second one is a swapping algorithm that iteratively improves the clustering 
towards a local optimum.

PAM, also known as K-medoids clustering method, has not been widely applied due to 
two main issues: its quadratic memory cost ( O(n(n+ 1)/2 ) and its high computational 
cost. The first challenge arises from the need to calculate the distance matrix, which typ-
ically takes O(n2d) time. Then, initial medoids must be identified; doing this using the 
BUILD method can take O(n2k) time. Finally, the optimization phase involves swapping 
between a point of the current set of medoids and the rest of the points, with a cost of 
O(k(n− k)2) per iteration, even when using the FASTPAM1 variant proposed in [4].

The implemented software we propose tackles these problems in two ways. In the 
first place it allows the data, including distance matrices, to be stored with any data type 

TD =

k∑

i=1

∑

xc∈Ci

dist(xc,mi)

1  From now on we will use the term distance to refer to both, distances or dissimilarities which are not metrics except 
when strictly needed.
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and with matrices of almost arbitrary size (matrix indices are 32-bit unsigned integers 
so limits are only based on the physical amount of memory). This might seem obvi-
ous; however, is not easy for example in R implementations, where the matrices are by 
default double type and some packages use indices which are 16-bit integers. Also, stor-
ing of matrices with a high density of zeros is implemented as sparse, and only the lower 
diagonal part of symmetric matrices is stored. Furthermore, the calculation of the dis-
tance matrix, the initialization step using BUILD algorithm and the swapping step of 
FASTPAM1 have been implemented in parallel. As will be shown in Results section, this 
significantly reduces the computation time in all cases, especially as the number of avail-
able processors/cores increases. From now on, we will assume that all the needed data 
have been loaded and are accessible in the memory of the computer. While it is techni-
cally feasible to implement versions of the algorithms that load data from storage media 
on demand (e.g., from disk), this approach typically results in extremely slow execution 
times and is not considered practical unless no other options are available.

Implementation
A C++ library (jmatl​ib) allows the storage on disk, reading and writing of 2D matrices 
as binary data including a header and optional metadata (names of rows and/or columns 
and a comment). It is possible to access the characteristics of a given matrix simply by 
reading the header, without the need to load the complete matrix. Also, a matrix can be 
full, sparse or symmetric and can hold any data type, from char to long double.

A second C++ library (ppaml​ib) contains the parallel implementation of the distance 
matrix calculation (currently, five different distances/dissimilarities are available: Euclid-
ean (L2), Manhattan/City block (L1), Pearson dissimilarity coefficient, cosine dissimilar-
ity and weighted Euclidean distance). Furthermore, the implementation of the algorithm 
takes into account whether the input data is sparse, allowing it to ignore the zeros during 
the distance calculation process.

This library also contains the implementation of the PAM algorithm. Two algorithms 
are available for the initialization phase: BUILD (deterministic) and LAB (random). The 
optimization (swapping) phase uses the algorithm called FASTPAM1 (see [4]).

This library also includes the calculation in parallel of the mean silhouette width [5] 
of a cluster which is a good measure of cluster quality and also a guidance to select the 
number of groups.

Finally, the R package scell​pam which provides the interaction with these libraries 
from R is provided to allow bioscientists to load the single cell data (count matrices) in 
the formats habitually used in the field, such as the SingleCellExperiment (sce) class of 
Bioconductor [6], the format used by Seurat [7–10], or a full or sparse R matrix directly, 
so that distance calculation and PAM can be easily applied. It is important to note that, 
while the matrix and distance/PAM libraries can also be accessed from the R packages 
jmatr​ix and paral​lelpam, the scell​pam package includes the functionality of these two, so 
it is the only one that needs to be installed for biological analysis; the others are provided 
mainly for researchers in other fields.

The normal workflow in the use of this software for the analysis of single cell experi-
ments involves the reading of the count matrix with the package that understands its 

https://github.com/JdMDE/jmatlib
https://github.com/JdMDE/ppamlib
https://CRAN.R-project.org/package=scellpam
https://CRAN.R-project.org/package=jmatrix
https://CRAN.R-project.org/package=parallelpam
https://CRAN.R-project.org/package=scellpam
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format and writing it into JMatrix format. For instance, a simple count matrix stored in a 
.rds file written by the Seurat package is read as:

Alternatively, reading from a package which works with the SingleCellExperiment 
(.sce) class such as DuoClustering [11] is done as,

and then distance matrix is obtained from the counts, and PAM is applied with

The package also includes a function called BuildAbundanceMatrix(), which 
builds and returns the abundance matrix. This function can also generate labels for the 
initial data if they are associated with experimental conditions.

Results
The first test of the package has been done using gene expression data from a single-cell 
sequencing experiment on human endometrium across the natural menstrual cycle with 
N = 71, 032 cells due to Wang [12]. Its NCBI GEO accession number is GSE111976.

It has to be mentioned that the first two authors of this paper are also the co-authors 
of an article submitted to this journal in which this and other datasets mentioned later 
are analyzed using scell​pam; this work is available for review in [13]. In contrast to the 
software paper being presented here, the aforementioned article focuses on the study 
of the dynamics of endometrial remodeling through the menstrual cycle using cluster-
ing analysis and a cell abundance analysis of the data set [12]. In [13] we were mainly 
interested in comparing the performance of scellpam with other packages used in the 
context of scRNA-seq, but in this one we compare our implementation with R packages 
that compute distances and dissimilarities, as well as with R packages which implement 
K-medoids.

All the experiments carried out in this work aim to highlight the strengths of the 
implementation. Firstly, we discuss the computational issues related to the calculation of 
the distance matrices for all the aforementioned data sets, and then a second experiment 
to apply the PAM clustering method using the L2 distance metric is discussed. Also, the 
comparison with other packages is done taking as a basis the Wang data set or subsets 
of it. In some experiments, all 71,032 cells were used, while in others, random samples 

https://CRAN.R-project.org/package=scellpam
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were selected from the total set of cells. Specifically, three random samples were selected 
from the entire set of cells, corresponding to one eighth, one quarter, and one half of the 
total number of cells (8879, 17,758, and 35,516 cells, respectively).

This experimental setup aimed to measure the performance of the implementation 
using different numbers of threads. The tests were carried out on a machine with 64 
cores (an AMD Ryzen Threadripper 3990X) and 128 GiB of RAM. A first test was run 
without using any threads, followed by tests using 8, 32, 64, and 128 threads. The trial 
with 128 threads utilized the hyperthreading capability of the cores. The purpose of 
these tests was to determine how the implementation scaled with increasing numbers 
of threads, and how effectively it utilized the available processing power. In all cases the 
machine was exclusively devoted to this task, and nothing else, apart from the kernel and 
necessary daemons were running. Memory swapping to disk was explicitly forbidden.

Distance calculation

The distances between the cells were calculated using the five provided possibilities ( L1 
and L2 distances, as well as the Pearson correlation coefficient dissimilarity, cosine dis-
similarity and weighted Euclidean distance). The computation time for distance calcula-
tion using the scellpam package was compared with other available packages, including 
stats which is part of R core ([14]), cluster ([15]), parallelDist ([16]), and amap ([17]). 
The stats package is a basic R package that includes the dist function, while cluster 
is a popular package for basic clustering algorithms that provides the daisy function. 
parallelDist is a package that offers a fast parallelized alternative to R’s native dist and 
provides the pdist function. amap is a package for standard hierarchical clustering and 
k-means, which includes the Dist function for parallelization.

In cluster analysis packages, it is common to represent individuals as rows and fea-
tures as columns in the input matrix, which is also the approach adopted in this study. 
However, this differs from the typical convention in single-cell analysis packages, where 
the representation is reversed. Despite this difference, this is not a problem because the 
functions of scellpam allow for the option to transpose the input matrix if desired, thus 
accommodating both conventions. Moreover, most packages require the data matrix to 
be loaded in R memory as a matrix of doubles, but the input format of the data matrix 
for scellpam is binary and it can be either float or double, and a full or sparse matrix. 
The package has implemented special procedures to calculate the distance matrix when 
data are sparse, which is particularly important for single cell RNA-seq data, as it can 
further reduce the time. While R offers the use of sparse matrices in its matrix package, 
most packages for calculating distances only operate with full matrices. Therefore, scell-
pam has been compared to other packages using both a sparse matrix of floats and a full 
matrix of doubles to make the comparisons fair.

The result for L2 distance calculation with serial execution (no threads used in the 
programs) are shown in Table 1. In these and successive tables the best result for each 
experiment is highlighted using bold font.

As previously mentioned, a fair comparison for the general case should involve full 
matrices in double precision. Our package outperforms the others in terms of speed, 
except for the parallelDist package, which is comparable for a small number of indi-
viduals (taking 4469 s compared to our 4049 s for 8879 cells). However, its execution 
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time significantly increases for larger numbers of cells (taking 68326  s compared to 
our 16073  s for 17,758 cells). It is worth noting that in our case, the time required 
increases quadratically with the number of individuals n, since the number of ele-
ments in the distance matrix is n(n+ 1)/2 . This is the expected behavior, but it does 
not hold for the other packages. Furthermore, two of them (amap and cluster) are 
incapable of handling more than 65,536 individuals and produce the errors displayed 
below the table.

In the case of this sparse matrix, our algorithm avoids calculating the squared dif-
ference of components when both components are 0, which proves to be advanta-
geous, as evidenced by the comparison of the last two columns.

The results for parallel execution in the packages that allow this (ours, amap and 
parallelDist) are summarized in Table 2.

The results obtained from the parallelDist package for 32, 64, and 128 threads 
are not exact, but rather estimated. These estimates were based on the number of 

Table 1  Time in seconds for distance matrix calculation, L2 distance, serial execution

(∗1 ) Error in Dist(data, method = ”euclidean”, nbproc = 128, diag = FALSE: Long vectors (argument 4) are not supported in.C

(∗2 ) Error in daisy(data, metric = dtype, stand = FALSE): long vectors (argument 11) are not supported in.Fortran Execution 
halted

R package

Sample amap parallelDist cluster stats scellpam scellpam

size (Dist) (pdist) (dist) (daisy) (double, full) (float, sparse)

8879 20980 4469 10338 10477 4049 2079
17758 155651 68326 59804 59467 16073 8200
35516 196906 273738 541886 516625 64382 32956
71032 (∗1) 551527 (∗2) 2214564 256678 131474

Table 2  Time in seconds for distance matrix calculation, L2 distance, multithread execution

(∗1 ) Error in Dist(data, method = ”euclidean”, nbproc = 128, diag = FALSE: Long vectors (argument 4) are not supported in.C

R package Sample Number of threads

size 8 32 64 128

scellpam (sparse, float) 8879 283.1 76.0 44.4 32.5
scellpam (full, double) 551.8 154.7 115.5 107.4

amap 2775.7 1570.4 1815.7 4978.2

parallelDist 1963.0 826.7 1665.9 4148.3

scellpam (sparse, float) 17,758 1122.1 300.9 174.8 129.1
scellpam (full, double) 2170.3 601.3 431.6 408.6

amap 14673.0 18077.3 25365.7 31961.7

parallelDist 8794.5 10021.2 22694.2 31734.1

scellpam (sparse, float) 35,516 4494.1 1192.6 692.4 508.6
scellpam (full, double) 8774.1 2408.1 1694.4 1625.6

amap 69393.0 92699.9 87231.0 63080.0

parallelDist 36236.8 5751.6 104415.0 119098.0

scellpam (sparse, float) 71,032 17933.0 4730.3 2736.5 1994.7
scellpam (full, double) 35240.1 9534.3 6694.4 6534.9

amap (∗1) (∗1) (∗1) (∗1)

parallelDist 159231.0 545900.0 413000.0 489916.0
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distances that had been effectively calculated at regular intervals until execution was 
interrupted after four days. To achieve this, small modifications to the source code 
were necessary to display progress from time to time.

In the experiment involving parallel execution, our package performs significantly bet-
ter, particularly when using float and sparse matrices. The differences between our pack-
age and the others are even more pronounced than in serial execution. Furthermore, the 
behavior of our package is consistent: execution time increases with the number of cells 
and decreases with the number of threads/cores, although not exactly linearly, possibly 
due to issues with the maintenance of cache memory coherence. This effect is particu-
larly noticeable with 128 threads compared to 64, as using 128 threads on our computer 
involves the use of hyperthreading, which is not ideal for numerically intensive algo-
rithms that rarely use input/output operations.

In the case of the other packages, all of them are consistent with respect to the number 
of cells (time increases with number, as expected), but not with respect to the number 
of threads. Both the amap and parallelDist packages achieve their best results with 32 
threads, which is surprising since the programs run on a machine with 64 physical cores, 
which means that no core should hold more than one thread.

Application of PAM

The second experiment involved applying the PAM clustering method using the L2 dis-
tance metric.

Similar to the previous experiment, results were obtained using the same data and 
applying the PAM algorithm implemented in several R packages, namely:

•	 cluster [15] used in the former experiment which provides the function pam.
•	 fastkmedoids [18] which provides a function called pam, too.
•	 ClusterR [19, 20] which provides the function Cluster_Medoids
•	 scellpam

We also experimented with the kmed package [21], which uses a different algorithm that 
is theoretically faster, but it produced suboptimal results compared to the other pack-
ages (i.e., with a larger value of the optimization function).

The input to PAM consists of two arguments: a distance/dissimilarity matrix (i.e., an 
n× n symmetric matrix) and the number of medoids to be found. In our package, the 
input is provided as a matrix stored in our binary format (symmetric jmatrix) on disk. 
In the other packages, the input is either a standard R matrix or a vector with the ele-
ments in the lower diagonal of the symmetric matrix ordered by columns. We chose 30 
medoids for the test, as this number of clusters is reasonable for this dataset based on 
biological knowledge.

The function pam in the cluster package implements several variants of the PAM algo-
rithm which can be chosen with the parameter pamonce=.... With respect to our 
package, the variant we implemented is the fastest of those used by the cluster package 
and therefore is also the one used for comparison (pamonce=5). Indeed, the Help sec-
tion of pam:cluster explicitly states “’pamonce=5’ adds minor optimizations copied 
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from the ‘pamonce=2’ approach, and is expected to be the fastest of the ‘FastPam’ vari-
ants included”.

It is worth noting that to ensure a fair comparison all the packages were allowed 
to run through both phases of the algorithm, namely the BUILD phase and the opti-
mization phase. The BUILD phase involves the selection of initial medoids using the 
BUILD method described in [4]. The optimization phase involves swapping medoids 
until the optimization function can no longer be improved. Although the number of 
iterations required to reach this state in some cases differ among packages, the final 
results (i.e., the set of medoids found) are either the same or equivalent. Equivalent 
means that in some cases the software finds a set of medoids that differ by two or 
three from the standard result, but with an optimization function value with negli-
gible differences between both implementations. This is another local minimum that 
is equivalent to the most commonly found one. See detailed comments in “Test with 
bigger data sets section”. The fact that different implementations yield the same or 
equivalent results provides strong evidence for the correctness of our implementa-
tion, especially the use of floats for the distances.

Spent time in seconds, with the same computer and same conditions as in the for-
mer experiment, is shown in Table 3 for serial execution (one thread).

Regarding parallel execution, only the ClusterR package along with our pack-
age currently implement a parallel version of PAM, allowing us to compare their 

Table 3  Time in seconds for complete serial execution of PAM (initialization with BUILD + 
optimization)

 NA: package indicates with a message that no more than 65,535 individuals are allowed

SF: Segmentation fault

Note: Cluster package used with parameter pamonce=5

Sample Package

Size Cluster Fastkmedoids ClusterR Scellpam

8879 14.2 13.0 290.1 12.16
17,758 60.7 57.0 977.0 52.0
35,516 258.0 249.2 4266.8 271.8

71,032 NA SF 19468.7 1764.0

Table 4  Time in seconds for complete parallel execution of PAM (initialization with BUILD + 
optimization)

The columns labeled ClR correspond to the ClusterR package, while the columns labeled scp correspond to the scellpam 
package introduced in this paper

Number of threads

Sample 8 32 64 128

Size ClR scp ClR scp ClR scp ClR scp

8879 35.5 2.8 13.1 1.1 9.9 0.7 16.97 0.6
17,758 142.7 9.6 54.9 3.2 94.8 2.2 125.1 2.1
35,516 620.1 49.8 447.7 16.8 503.8 13.9 538.5 17.0
71,032 3107.1 560.6 2133.5 210.6 2183.0 197.1 2300.4 255.2
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performance using different numbers of threads: 8, 32, 64, and 128. As before, the 
use of 128 threads involves hyperthreading on our machine’s 64 cores. The results 
are presented in Table 4, where the columns labeled ClR correspond to the ClusterR 
package and the columns labeled scp correspond to our package, scellpam.

Times for serial execution are quite similar for our package and for cluster and fastkme-
doids. Maximum differences show improvements of 17% and 16% for 8879 and 17,758 
individuals, respectively, of our package with respect to cluster, but the fastkmedoids 
package improves on our time by 9% in 35,516 individuals, as does the cluster package 
by 5%. The problem arises with the whole sample of 71,032 individuals as these packages 
cannot cope with this. On the other hand, package ClusterR shows much higher serial 
execution times than ours, in the best case (71,032 individuals) it is 11.3 times slower.

In our experiment, parallel execution showed a significant improvement, but the time 
reduction was not proportional to the number of threads. The lack of proportional-
ity was partly due to issues with maintaining cache memory coherence, and partly due 
to how the original algorithm was parallelized. Further improvements are needed to 
address this issue.

The ClusterR package had longer execution times than our implementation, but it 
still performed better than serial execution. In its best case (71,032 individuals with 8 
threads), we were 5.5 times faster than ClusterR, and in its worst case (8879 individuals 
with 128 threads), we were 30 times faster.

Both our implementation and ClusterR were consistent when increasing the number 
of individuals, with higher numbers resulting in longer computation times. Our imple-
mentation was also consistent in behavior when changing the number of threads, except 
when using hyperthreading. We do not recommend using hyperthreading with our 
implementation of PAM. ClusterR exhibited similar behavior when using hyperthread-
ing, but it also behaved strangely, for example increasing computation times between 32 
and 64 threads for all sample sizes except 8879 individuals.

Finally, and with respect to memory, our package uses half of the memory used by the 
others, since it can operate with float numbers (4 bytes each) instead of double-precision 
numbers. For the used set (71,032 cells) this means 9.39 GiB instead of 18.79 GiB. In a 
machine with 128 GiB of RAM, this allows the possibility of accommodating a distance 
matrix of about 250,000 individuals instead of 180,000 if double were used. Neverthe-
less, note that tests should be done with a sub sample to check that the loss of precision 
does not change the final results (i.e.: the final set of medoids given by PAM). See more 
detailed tests in “Test with bigger data sets” section.

Test with bigger data sets

Scalability of the package has been tested applying its functions to other data sets of sin-
gle cell RNA sequencing with a larger number of cells, and to a data set with a different 
type of data. Namely:

•	 The data set used in former experiments, scRNA-seq on human endometrium 
throughout the natural menstrual cycle; N = 71, 032cells . NCBI GEO accession 
number GSE111976 [12]. This is denoted in the tables as Wang. Even though it has 
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been used in the former experiments, it is also included here since other distances/
dissimilarities have been calculated for it.

•	 FMA, a Data set For Music Analysis, made available in the UCI Machine Learn-
ing Repository (https://​archi​ve.​ics.​uci.​edu/) as detailed in [22] whose meaning 
and content is explained in [23]. It has N = 106, 574 instances with 518 numer-
ical attributes each and it is included as an example of non-biological data set. 
Denoted in tables as FMA.

•	 scRNA-seq of endometrial superficial biopsies; N = 100, 307 cells denoted in the 
tables as Garcia. ArrayExpress accession number E-MTAB-10287 [24].

•	 scRNA-seq of endometriosis; N = 118, 144cells . NCBI GEO accession number 
GSE213216 [25] denoted in the tables as Fonseca.

•	 A combination of the previous three scRNA data sets; N = 289, 483 cells denoted 
as Merge.

The following tests were carried out with the same computer and in identical condi-
tions as those in the previous sections. First, the calculation of the different distances/
dissimilarities was done for all the data sets using 4,000 features for the single cell data 
(the most highly variable genes normalized with method log1n, i.e.: to the logarithm 
of number of counts plus one) or all the provided features (518) for the FMA data set. 
Moreover, the fastest possibilities offered by the package were used: data represented 
as float values, use of sparse matrices for the scRNA data sets (the FMA is made of 
full data) and the maximum number of threads (in our machine, 128). The results are 
shown in table 5 in terms of spent time in s. The next two tables partly coincide with 
Tables 4 and 5 in [13], even though that paper has a mainly biological approach it also 
presents some computational results using the data sets [24, 25] and Merge.

The increase in computation time is not so clearly quadratic with the number of 
individuals this time, indicating a dependency on the specific characteristics of the 
data being processed. The FMA data set is clearly different as it is of a much smaller 
dimension (518 features per datum vs. the 4000 features/gene expressions chosen 
for the single cell data sets) and it is not sparse. In single cell data sets all metrics/
dissimilarities are calculated faster for the Fonseca than for the Garcia data set. This 
apparent paradox is related with the number of zeros (i.e.: the degree of sparsity) of 
the data, which is greater for the Fonseca data set. In order to verify this, we con-
ducted tests on both data sets using full matrices and evaluated the L1 and L2 metrics. 
Our implementation with full matrices computes the difference between coordinates 

Table 5  Time in s for calculation of several distances/dissimilarities in large data sets

Number of
Data set Instances L1 L2 Pearson Cosine Weighted Euc.

Wang 71,032 324.40 318.53 228.22 285.77 316.04

Garcia 100,307 772.94 761.19 459.19 665.20 753.25

FMA 106,574 165.92 168.05 155.05 162.09 166.67

Fonseca 118,144 663.12 654.61 585.62 534.70 654.17

Merge 289,483 5434.67 5363.10 3777.32 4647.69 5311.57

https://archive.ics.uci.edu/
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even if they were both zero. The results consistently showed that the L1 metric took 
1360.55 seconds for the Garcia data set and 1495.14 seconds for the Fonseca data set. 
The L2 metric exhibited a similar behavior, with computation times of 1367.77 sec-
onds for Garcia and 1519.06 seconds for Fonseca.

A second test involved applying the PAM algorithm to these datasets, including both 
phases: initialization with BUILD and medoid swap for optimization with FASTPAM1. 
The distance matrices used were the ones generated in the previous experiment. Table 6 
displays the corresponding time spent for each case always using 30 medoids.

The time used to execute PAM depends on the number of individuals, increasing with 
this, but there is no clear pattern that relates this with the used metrics. This is because 
the duration of the second phase of the method (swapping medoids with FASTPAM1) 
depends on the number of iterations, which in turn depends on the actual data and on 
how well the used metric captures the inherent clustering structure, if any, with the cho-
sen number of medoids. Indeed, FMA sound data are much less structured, and the 
number of iterations until convergence in the second phase of PAM is greater than for 
the single cell data of comparable sizes, as Table 6 shows.

As stated before, the single cell data biological interpretation of the resulting clusters, 
along with the calculation of silhouette, must guide the selection of the metric and other 
possible choices for the preparation of the inputs used in the biological pipelines of the 
data (such as normalization method, etc.).

Nevertheless, it must be noted that even with the largest set of data (Merge) the com-
plete process of dissimilarity matrix calculation plus PAM in the slowest case (Pearson, 
5363 s plus 9158 s) gives a total of 4 h and two minutes, a long but still manageable time.

Indeed, the main limitation of the method, given the current sizes of the single cell 
sequencing experiments is the amount of memory. A data set of 1,000,000 instances 
which uses float for the distance matrix storage would need about 1.8 TiB. This is not yet 
common on machines currently used by most research groups but it is within the reach 
of current technology.

Finally, a test was carried out to verify the feasibility of using float instead of double 
precision numbers to store the distance matrix and to simultaneously verify the accu-
racy of the software. 100 samples of 10,000 individuals each were randomly taken from 
the Wang data set. For each sample, the PAM with Pearson dissimilarity was applied 
by scellpam first using float for the dissimilarity matrix and then using double, and the 
results were compared with the standard implementation in the cluster package. The 
tests with float yielded no difference in the optimization function (sum of distances to 

Table 6  Total time in s and number of iterations until convergence of the medoid swap phase for 
PAM execution with different distances/dissimilarities in large data sets

Data set Number of 
instances

L1 L2 Pearson cosine Weighted 
Euc.

Wang 71,032 229.19 5 255.74 9 314.05 18 287.35 13 222.97 4

Garcia 100,307 536.79 8 565.61 10 607.45 13 553.23 9 441.13 1

FMA 106,574 816.23 21 1140.72 40 1061.32 36 924.59 29 682.64 13

Fonseca 118,144 727.01 6 747.95 7 809.87 10 928.54 15 662.96 0

Merge 289,483 8393.42 13 9158.63 17 9364.45 18 8618.01 14 6286.18 2
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medoids) for 63 of the 100 tests. For the others, its maximum relative error was 0.52% . 
Similarly, the tests with double precision values yielded identical results in 91 out of the 
100 tests, the maximum relative error for the 9 cases left being 0.22% . In this second 
case, the reason for the differences are ties in the distances (up to the level of precision 
of the representation) that can motivate the algorithm to choose one swap instead of an 
equivalent one, depending on the implementation. The complete results can be seen in 
the Additional file 1.

In each case the user should decide if this error committed using float is acceptable for 
the intended use of the clusters, balancing it with respect to the reduction in memory 
usage.

Conclusion
A new implementation of distance matrix calculation and the PAM algorithm has been 
developed, which can be used from R, or as a command line tool, and is publicly avail-
able under the GPL. This implementation offers several advantages over previous ones. 
For example, it allows arbitrary data types and uses only the memory strictly needed, it 
is not limited by the number of points or features, and it runs in parallel in a way that is 
transparent to the user, resulting in significantly reduced execution times that make the 
method applicable for the current typical sizes of single cell experiments.

The biological implications of the use of PAM were highlighted in [13], where the 
method and this package were used to distinguish subpopulations of epithelium, stroma, 
endothelium, perivascular cells and immune cells of the endometrium during the period 
of time known as the window of implantation of the embryo, but it is worth noting that 
while the original purpose of the package is to cluster single-cell RNA-seq data sets, the 
R packages/C++ libraries presented in this work can also be used for other types of 
data.

Availability and requirements

Project name: scellpam Project home page: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
scell​pam/​index.​html Operating system(s): Platform independent. Programming lan-
guage: R and C++. Other requirements: R ver. 4.1 or later with packages Rcpp (ver. 1.0.8 
or later), memuse (ver. 4.2.1 or later) and cluster (ver. 2.1.4 or later). C++ compiler, as 
needed by Rcpp. License: GNU GPL. Restrictions to use by non-academics: No restric-
tions applicable.

Abbreviations
scRNA-seq	� Single-cell RNA sequencing
PAM	� Partitioning around medoids
PAM-BS	� PAM with BUILD+SWAP
TD	� Total deviation
ARI	� Adjusted Rand index
GiB	� Gibibyte ( 230 bytes)
GPL	� GNU General Public License
NA	� Not available
SF	� Segmentation fault

https://cran.r-project.org/web/packages/scellpam/index.html
https://cran.r-project.org/web/packages/scellpam/index.html
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