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Abstract 

The decision of where to locate the catchment area of an urban network exerts sig‑
nificant influence on the indicator values and in this research this influence is referred 
to as the placement effect. Placement effect has significant impact on the stud‑
ies at the neighborhood scale focusing on the structural properties of the network 
models, the network analysis results and centrality measures, the inferred movement 
patterns and the accessibility to destination. Placement effect becomes even more sig‑
nificant when multiple catchment areas are sampled to be compared or classified. This 
research examines placement effect on one of the most affected indicators, closeness 
centrality, and proposes using an idealized network as a reference to be compared 
with the real network in order to find a solution to mitigate the placement effects. By 
comparing the normalized closeness centrality in the real network with that in the ide‑
alized network, we can (1) evaluate the placement effect on the closeness centrality 
and (2) find the threshold distance in order to mitigate the placement effect. The 
results show that the closeness centrality of the same node varies remarkably depend‑
ing on its position and how central it is in the chosen catchment area. Specifically, 
in the selected areas in this research, if the center point of a catchment area is moved 
by more than 100 m away from the original center point, the closeness central‑
ity of the same node starts to be significantly influenced by the placement effect. 
The threshold distance of 100 m offers a recommendation that a direct comparison 
of the closeness centrality between different nodes in the same catchment area should 
be drawn only if these nodes are less than 100 m away from each other. In other words, 
when comparing two nodes located further than the threshold distance from each 
other, it is advisable to create two separate catchment areas, where these nodes serve 
as the center points. It should be noted that the threshold distance of 100 m derived 
specifically from the current research should not be generalized to other cases. The 
threshold distance of different case studies remains open for further investigation 
in the future as it may vary among cities or areas.
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Introduction
Urban network system is a complex spatial system whose members connect and inter-
act with each other. For any real-world spatial network analysis, it is essential to define 
an artificial border of the network model (Park 2009). Spatially confined networks or, in 
other words, local sub-networks of the entire global network system have been termed 
catchment areas (Chen and Dietrich 2021), contextual areas or bounded systems (Park 
2009), subnetworks or regional networks (Rheinwalt et al. 2012).

Drawing an arbitrary boundary inevitably cuts the links connecting the catchment 
area under investigation with the rest of the network outside the boundary (Rheinwalt 
et al. 2012). However, the events, structures, behavior and dynamics of the entire global 
network system still affects the local sub-network inside the catchment area (Greenberg 
et al. 2020). The inevitable arbitrary delineation of the boundary may induce distortion 
of the results of the measures, which can subsequently induce bias that affects the infer-
ences based on these measures (Paul 2014). Such distortion of the results is found to be 
more pronounced when the nodes or links are closer to the border of the catchment area 
(Okabe and Sugihara 2012).

These boundary determination problems, which have been termed the edge effect 
(Crucitti et al. 2006; Gil 2017; Ripley 2004) or the boundary effect (Park 2009; Okabe and 
Sugihara 2012), have significant impact on the studies focusing on the structural prop-
erties of the network models, the network analysis results and centrality measures, the 
inferred movement patterns and the accessibility to destination. First of all, the choice of 
the boundaries decides the internal structure of the local network model that is spatially 
confined within the catchment area. This decision directly influences the members of 
the sub-structure and topology included in the network model and, therefore, affects our 
understanding of the spatial structure and functional properties of the network system 
(Laumann et al. 1989).

Secondly, the delineation of the model boundary can cause a certain bias in network 
analysis results (Ratti 2004; Joutsiniemi 2010) because the analytic algorithms of net-
work analysis are relational (Okabe and Sugihara 2012) and “network data by definition 
includes dependencies among observations” (Laumann et  al. 1983). Similarly, syntac-
tic values are meaningful only with reference to a system boundary that a researcher 
chooses for his or her analysis (Park 2009). Excluding any elements or members of the 
entire global network system will affect the characteristics, performance and behavior of 
the measurement result of the local network models. In particular, path-based measures, 
such as closeness centrality and betweenness centrality, are very sensitive to the bound-
ary effect. Distortion of the results can be induced when links are cut off by an arbitrary 
boundary and, therefore, are not included in the calculation. The nodes and links closer 
to the border are less central and peripheral only because of the presence of the bound-
ary. Usually, the boundary effect on the path-based measures is prevalent in all nodes 
and links in the entire network model (Rheinwalt et  al. 2012) and is particularly pro-
nounced for those at the border of the catchment area. Nodes or links near the center of 
the catchment area tend to have higher closeness centrality (Gil 2017) and betweenness 
centrality (Chen and Dietrich 2021) compared with those close to the border.

Thirdly, boundary effects can also induce a bias on the inference based on such 
distorted measure results. For example, Krafta (1994) has carried out tests for the 
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correlation between different definitions of boundaries and pedestrian movement. Park 
(2009) has tested the predictability of human movement patterns under various bound-
ary conditions and found that this predictability reaches its maximum at a certain radius 
from the boundary, which is also an indication of the presence of the size-independent 
boundary effects on the internal structure.

Finally, boundary definition also affects accessibility analysis. Previous studies (Shar-
key and Horel 2008) related to public health issues and to nutrition and food accessibil-
ity in rural areas have been criticized for not considering resources outside of the study 
area, even though resources across the boundary may also affect behavior within the 
area under investigation (Sadler et al. 2011; van Meter et al. 2010). In response to this 
methodological deficiency, van Meter et al. (2010) and Sadler et al. (2011) have inves-
tigated the boundary effect on reaching the retail shops from the locations within the 
study area, which is typically within an arbitrary administrative boundary. The results 
show that the boundary effect has led to considerable bias in mis-identification of food 
desert communities at the border of the study area, even if there is a source of food right 
across the border. The actual distance of traveling necessary for buying food has also 
been over-reported.

In order to improve the reliability and the consistency of the network analysis results 
across locations, a number of procedures and practices have been proposed to mitigate 
the boundary effect. The first approach, the catchment of catchment (Hillier et al. 1993), 
adds an additional boundary to create a buffer area outside the actual test area. The size 
of the boundary of the buffer area is larger than that of the catchment area. Network 
analysis is then carried out for both the catchment and the buffer area. However, the 
results of the network measure of the buffer area are not included in the analysis because 
they are distorted by the boundary effect (Gil 2017; Penn et al. 1998). Secondly, instead 
of one fixed boundary definition, the other mitigation method, the radius-radius analy-
sis (Hillier 1996) or local radius analysis (Gil 2017), applies various boundary conditions 
by creating multiple circles around the center of the catchment area under investigation.

Although the catchment of catchment method and the radius-radius analysis have 
proved to be successful in mitigating the boundary effect in many empirical stud-
ies, the optimal size of the buffer and the radius remains open to further research. 
Gil (2017) finds that the results of the network centrality analysis are very unstable 
in small study areas (e.g. on a neighbourhood scale) and suggests that the study area 
should be embedded in a larger context. However, there remains the question of how 
large is a large enough context. In other words, the problem of delineating the bound-
ary becomes the problem of deciding the radius or the size of the study area (Jout-
siniemi 2005). In response to this open question, Chen and Dietrich (2021) conducted 
a series of experiments of the size-related boundary effects, i.e. the size effect, on the 
indicator values. Based on these experiments, they have suggested that, first of all, the 
average street length can be one of the indicators for determining the size of the catch-
ment area and, secondly, “the size effect on the indicator is not very significant when the 
size of the catchment area is larger than 4000 × 4000 m2. Therefore, any size larger than 
4000 × 4000 m2 would not be necessary” (Chen and Dietrich 2021).

Another mitigating method, namely the moving boundary approach, consists in shift-
ing the center of the circular boundaries with fixed size and shape to calculate network 
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measures (Penn et al. 1998; Hillier and Penn 2004; Turner 2007; Gil 2017). However, by 
keeping the same shape and size of the moving network boundaries, Gil (2017) shows 
that indicators like closeness centrality still vary in different study areas and are par-
ticularly sensitive to the shift of network centers. Since the boundary shape and size are 
identical, the variation of the indicator values can only be explained by the location of 
the network. In other words, although the size-related boundary effect can be eliminated 
by adopting the moving boundary approach, the placement-related boundary problem, 
which is termed placement effect in this research, still exist. To be more specific, place-
ment effect refers to the phenomenon that the variation of the indicator values depends 
on where the catchment area is retrieved. From this perspective, a very important ques-
tion is where the center of the catchment area should be. The current research intends to 
further investigate this placement effect in order to provide more refined guidelines for 
deciding the location of the network model.

Presenting the placement effect on closeness centrality
The results of Gil’s experiments (2017) show that one of the indicators that could be 
most influenced by the placement effect is closeness centrality (Cc), which is the recipro-
cal of the sum of the shortest distance between the chosen node-v and all other nodes in 
the catchment area. The Cc of node-v can be formally expressed as the following

where Cc(v) refers to closeness centrality of the chosen node-v, S(v, u) refers to the length 
of the shortest distance between the chosen node-v and other nodes, u, and N refers to 
the total number of nodes in the chosen catchment area. Closeness centrality measures 
how fast a node exerts influence on all other nodes. For example, if the target is to spread 
the information in the network, a node with large closeness centrality means that it is in 
a position to spread information quickly. Nodes with higher value of closeness central-
ity can be important influencers in the network. Closeness centrality is not an absolute 
value as it may change depending on the location of the selected catchment area in the 
entire global network. A node in the center of the catchment area has the advantage of 
having more influence on other nodes and has higher value of closeness centrality than a 
node located on the borders of the network (Gil 2017). Therefore, the closeness central-
ity of a chosen node might not necessarily be small in the entire city street network, but 
it may be small in the selected catchment area only because it is not close to the center of 
the catchment area.

In order to demonstrate the placement effect, the Plaza Luceros in Alicante has 
been selected as the center point of the study area. The size of the catchment area is 
3000 × 3000  m2 and the unit of closeness centrality is 1/km. We have chosen the area 
size that is larger than the acceptable walking distance for the pedestrian because this 
allows more space to move the chosen node further away from the center in order to 
investigate the placement effect. One of our targets is to foster pedestrians in cities and 
to help to develop walkability, visibility and accessibility of points of interest. Therefore, 
we would like to investigate a network for pedestrian and Open Street Network (OSM) 

(1)Cc(v) = 1/

N

u=1

S(v,u)
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can be a source of data to extract existing pedestrian networks in cities. The following 
highway tags of the OSM are selected to form the network within the catchment area: 
primary, secondary, tertiary, residential, pedestrian, steps, path and unclassified.

Eight catchment areas with different centers were selected and presented in Table 1. 
The center of each catchment area is indicated by a blue center point. The placement 
effect on the chosen node, which is indicated by the red node in each catchment area,1 
will be investigated by examining the changes in the indicator values of the eight selected 
study areas in Table 1.

These eight catchment areas differ in the distance between the blue center point and 
the red chosen node. In catchment area 1, the blue center point and the red chosen node 
are overlapping with each other. The centers of the catchment areas offset from 50 m in 
catchment area 2 to 1500 m in catchment area 8. That is, starting from catchment area 2 
to catchment area 8, the blue center point gradually moves 50 m, 100 m, 200 m, 300 m, 
500 m, 1000 m and 1500 m to the north from the red chosen node.

The results in Table  1 show that the closeness centrality of the red chosen node 
changes from 0.000678 1/km in catchment area 1 to 0.000438 1/km in catchment area 
8. This change shows that the closeness centrality of the red chosen node is affected by 
its distance to the blue center point in all eight catchment areas. Hence, there is a place-
ment effect on the value of the closeness centrality of the red chosen node.

Normalization of the closeness centrality in the real network
The processes of normalization has been proposed to connect the number of nodes with 
the indicator (Masucci and Molinero 2016). The current research also applies the nor-
malization procedure and creates an indicator, normalized closeness centrality, CN, so 
that the different number of nodes in different catchment areas is balanced through the 
normalization and the fact that the number of nodes changes with the locations of the 
catchment area is now taken into the consideration. In this section, the results in Table 1 
are used to explain the normalization of closeness centrality derived from two different 
indicators: (1) the closeness centrality and (2) the shortest distance between the chosen 
node and all other nodes.

A common way of determining the normalized closeness centrality is multiplying the 
closeness centrality of the chosen node with the number of nodes in the catchment area. 
The normalized closeness centrality can be formally expressed as the following.

where CN(v) refers to the normalized closeness centrality of node-v, N refers to total 
number of nodes in the catchment area, Cc(v) refers to the closeness centrality of the 
chosen node-v. (N-1) refers the number of connections between a chosen node to all 
other nodes because the chosen node has no (or zero) connection with itself. In the case 
of a small urban area, in which N is not very large, (N-1) is used. In the case where N is 
very large, the ‘1’ can be dropped from (N-1).

(2)CN (v) = (N − 1)× Cc(v)

1  This red node is also the node that is closest to Plaza Luceros.
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Table 1  Catchment areas with different center (blue) nodes and indicator values of (red) node 
under investigation in the selected catchment areas

Distance 
between 
red 
chosen 
node 
and blue 
center 
node
m

Closeness 
centrality 
of the red 
chosen 
node

Average distance 
from all nodes to 
chosen node

Total 
number 
of nodes

Normalized 
closeness 
centrality

C(v) ∑
N

n=1 S(v , n)/(N − 1) N CN(v)

Unit 1/km m 1/km

Catchment 
area 1

0 0.000678 917 1606 1.089

Catchment 
area 2

50 0.000674 906 1637 1.103

Catchment 
area 3

100 0.000668 899 1665 1.112

Catchment 
area 4

200 0.000649 891 1728 1.12

Catchment 
area 5

300 0.000635 874 1802 1.145

Catchment 
area 6

500 0.000611 854 1916 1.170
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To illustrate this, we can use catchment area 1 in Table  1 as an example. The total 

number of nodes, N, is 1606 nodes and the closeness centrality of the red chosen node-v, 
C(v), is 0.000678 1/km. Based on the formula (2), the normalized closeness centrality of 
the red chosen node-v, CN(v), accounts to (1606 − 1) × 0.006784 = 1.089 1/km.

Idealized network
Knowing the value of the normalized closeness centrality of the chosen node-v, CN(v), 
in the real network, we need to have a reference for different networks to be compared 
with in order to evaluate the value of CN(v). In this research we propose to use the ideal-
ized network to be the reference. For our purposes, the idealized network is defined to 

a The length of any link between two nodes can be calculated with a simple Pythagoras’ Theorem

Table 1  (continued)

Distance 
between 
red 
chosen 
node 
and blue 
center 
node
m

Closeness 
centrality 
of the red 
chosen 
node

Average distance 
from all nodes to 
chosen node

Total 
number 
of nodes

Normalized 
closeness 
centrality

C(v) ∑
N

n=1 S(v , n)/(N − 1) N CN(v)

Unit 1/km m 1/km

Catchment 
area 7

1000 0.000528 918 2062 1.088

Catchment 
area 8

1500 0.000438 1190 1919 0.840

Side length 
of the 
catchment 
area equals 
to 3000m

15
00

m

Center

One of the possible 
shortest paths to the 
center

Fig. 1  The idealized network
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be mathematically ideal, and its nodes are evenly distributed in a quadratic grid. The 
idealized network has the star-like pattern, as shown in Fig. 1. 

In this section the center node of the idealized network is the chosen node-v, which is 
used to explain how the closeness centrality of this chosen node-v changes with (1) dif-
ferent number of nodes in the catchment area, N; and (2) the corresponding sum of the 
shortest distance between the chosen node-v and all other nodes, 

∑
N

u=1 S(v,u).
Figure  1 presents the idealized network. There is a direct connection between the 

center node and all other nodes. The nodes and links in such a network form a star-like 
pattern. The shortest distance from any node to the center node is indicated by the yel-
low arrow. It should be noted that such a network is only favorable to one node, which 
is the center node in this case. For all other nodes, such a network is not ideal because 
the sum of the shortest distances between all nodes and any of the non-center node is 
larger than the sum of distances between the center node and all other nodes. This type 
of network is often found in real urban networks, such as Place Charles es de Gaulle in 
Paris or Connaught Place in New Delhi. It is designed to give the central place a high and 
exceptional importance.

Idealized network as the reference for comparison
This section explains (1) the calculation of the normalized closeness centrality in the ide-
alized network and (2) the comparison of the normalized closeness centrality in the ide-
alized and real networks.

Calculation of normalized closeness centrality of idealized network

In order to calculate the normalized closeness centrality in the idealized network, the 
first step is to acquire the sum of the shortest distances from the chosen node to all other 
nodes. Although the side length of the catchment area (which is indicated by the black 
rectangular in Fig. 2) is 3000 m, because of the symmetry it is sufficient to focus on just 
one quadrant of the catchment area, which has the side length of 1500 m and is indi-
cated by the red rectangle in Fig. 2.

Figure 3 presents the relationship between the increasing number of links on each side 
of the 1500 m × 1500 m quadrant2 and the average distance between the center node and 
all other nodes in the idealized network. Table 2 presents the average distance between 
the center node and all other nodes in Fig. 2, with an increasing number of nodes on 
each side of the quadrant. As the number of nodes on each side of the catchment area 

Side length of 
the catchment 
area equals to 
3000m

1500m

One quadrant of 
catchment area 

Boundary of the 
selected catchment area

Fig. 2  Relationship between the catchment area and one quadrant of the catchment area

2  In the idealized network, as the number of links on each side increases, the node density of the network also increases.
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increases, the node density of the network also increases. The results show that, with an 
increasing number of nodes on the side of the quadrant, the average distance between 
the center node and all other nodes, i.e.

∑
N

u=1 S(v,u)/(N − 1) decreases and reaches sat-
uration at 1148 m. Applying formula (1) and (2), one can calculate the normalized close-
ness centrality of the center node in the idealized network, namely

Comparing the normalized closeness centrality in the idealized and the real network

Our next task is to compare the normalized closeness centrality in the idealized and real 
network and to examine the relationship between the number of nodes and the close-
ness centrality. The closeness centrality of the chosen node in the eight catchment areas 
of the real network in Table 1 is plotted in Fig. 4a. The normalized closeness centrality 
of the chosen node in the eight catchment areas of the real network is shown by the red 

(3)CN (v) = (N − 1)/

N∑

u=1

S(v,u) = 1/1148m = 0.8711/km

Average 
distance 
between 
center 
point to 
all nodes 
(m)

Number of links on each side of 1500x1500m2 quadrant
Fig. 3  Relationship between number of links on each side of quadrant and average distance between center 
and all nodes

Table 2  Changes of measurements in quadrant with different number of nodes on each side of the 
quadrant

Number of nodes 
on each side of the 
quadrant

Average distance 
between the center 
node and all other 
nodes∑

N

n=1 S(v, n)/(N − 1)

Sum of shortest 
possible distance 
between each node 
and the central pointa,∑

N

n=1 S(v, n)

Total number 
of nodes, N

Normalized 
closeness 
centrality, CN

m M 1/km

5 1342.176 33,554 25 0.745
15 1212.577 272,830 225 0.825
25 1186.662 741,664 625 0.843
50 1167.228 2,918,069 2500 0.857
100 1157.511 11,575,105 10,000 0.864
150 1154.272 25,971,110 22,500 0.866
200 1152.652 46,106,082 40,000 0.868
300 1151.033 103,592,930 90,000 0.869
500 1149.737 287,434,240 250,000 0.870
750 1149.089 646,362,654 562,500 0.870
1000 1148.765 1,148,765,266 1,000,000 0.871
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curved line in Fig. 4b. The blue line in Fig. 4b indicates the normalized closeness central-
ity of the center node in the idealized network.

As shown in Fig. 4a, the closeness centrality of the chosen node is not normalized 
by the number of nodes, and its value reduces as the catchment area moves from 
catchment area 1 to catchment area 8. There can be several explanations for this 
observation.

One of the possible explanations is that, as the catchment area moves, the number 
of nodes increases. Increasing number of nodes indicates a higher node density and a 
greater length of the shortest paths. It also leads to a smaller value of closeness central-
ity because, by definition, closeness centrality is the reciprocal of the sum of the shortest 
distances between the chosen node and all the other nodes. As mentioned before, one of 
the contributions of normalizing closeness centrality is that the number of nodes can be 
taken into consideration. Therefore, the changes in the normalized closeness centrality 
also reflects the changes in number of nodes.

Further examination shows that, in catchment areas 6, 7, and 8 there is a higher num-
ber of nodes (1916, 2062 and 1919 nodes) in comparison with 1606 nodes in catchment 
area 1. Also, comparing with catchment area 1, the closeness centrality of catchment 
areas 6, 7, and 8 is smaller. In order to check whether the changes in number of nodes 
can account for the decreasing closeness centrality shown in Fig.  4a, we examine the 
changes in the normalized closeness centrality, as shown in Fig. 4b.

When taking the number of nodes into consideration, the normalized closeness cen-
trality of catchment area 1 becomes smaller than that of the catchment area 6. The 
nearly straight line in Fig. 4a changes into the curved line in Fig. 4b, which demonstrates 
the effect of the normalization. This means that the decreasing closeness centrality can 
indeed be broadly explained by the increasing number of nodes in the catchment area.
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(a)Closeness centrality of the chosen node in the 
eight catchment areas in the real network.

(b)Normalized closeness centrality of the chosen node 
in the eight catchment areas in the real network in 
Table 1 (red line) and in the idealized network (blue 
line).

Catchment 
area 1

Catchment 
area 6

Catchment 
area 7

Catchment 
area 8

Catchment 
area 1

Catchment 
area 6

Catchment 
area 7

Catchment 
area 8

Fig. 4  Comparing the closeness centrality in the real network, the normalized closeness centrality in the real 
network and in the idealized network
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In sum, comparing with the closeness centrality, the normalized values provide addi-
tional information about the network, such as whether there is a change in the number 
of nodes included in the catchment area.

Finding the threshold distance between two nodes in order to mitigate 
the placement effect
Furthermore, in the case of the selected catchment areas in Alicante, we can use the nor-
malized closeness centrality of the center node in catchment area 1 as a reference and 
plot the deviation of the normalized closeness centrality of the other 7 catchment areas. 
The results in Fig. 5 show that, if the center node is placed within 100 m of the original 
place, the deviation is less than 2%,3 which is highlighted with the gray belt. This means 
that, if the center node of a catchment area is moved by more than 100 m away from the 
original center point, the closeness centrality of the same node starts to be significantly 
influenced by the placement effect. As shown in Fig. 5, the percentage of deviation starts 
to rise after 100  m. The threshold distance of 100  m offers a recommendation that a 
direct comparison of the closeness centrality between different nodes in the same catch-
ment area should be drawn only if these nodes are less than 100 m away from each other.

Conclusions and discussion
For the assessment of an urban network, it is important to define the location of the 
center point and a catchment area around it. The location of the catchment area, which 
is a sample of the entire network, exerts significant influence on the value of the indica-
tors and this influence is referred to as the placement effect in the current research. This 
effect becomes even more significant when multiple catchment areas are sampled to be 
compared and classified.

This paper examines one of the most affected indicators, the closeness centrality. The 
closeness centrality of a chosen node changes remarkably depending on its position in 
the catchment area. If the value of the closeness centrality of a chosen node is the high-
est among all the nodes, one cannot be sure whether it is because this chosen node hap-
pens to be placed in the center of the catchment area or it really is the most important 
node in the entire street network.
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Fig. 5  Relationship between percentage of deviation and distance between center point and the chosen 
node under investigation in Table 1

3  For the purpose of this research, we have assumed that 2% is the acceptable deviation. In the future, the researchers 
may decide what percentage is the acceptable range based on the research interests.
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In this research we propose that this problem can be mitigated to a certain degree 
by a normalization process, since the normalization takes into account the number 
of nodes in the catchment area. By comparing the normalized closeness centrality in 
the real network with that in the idealized network, we can (1) evaluate the placement 
effect on the closeness centrality (2) find the threshold distance in order to mitigate 
the placement effect.

The results show that the closeness centrality of the same node varies remarkably 
depending on its position and how central it is in the chosen catchment area. In other 
words, the closeness centrality of a chosen node might not necessarily be small in the 
entire city street network, while it appears small in the selected catchment area just 
because the node is located far from the center of the catchment area. Furthermore, 
if the center node of a catchment area is moved by more than 100 m away from the 
original center point, the closeness centrality of the same node starts to be signifi-
cantly influenced by the placement effect.

The first implication of these result is that, as a consequence of the placement 
effect, a direct comparison of closeness centrality between different nodes in the same 
catchment area is only possible if these nodes are less than 100  m away from each 
other. Secondly, when comparing two nodes that are further than the threshold dis-
tance, which is 100  m in the case of the current research, it is better to create two 
separate catchment areas where these two nodes are the respective center points. It 
should be noted that the threshold distance of 100  m derived specifically from the 
current research should be generalized to other cases. The threshold distance for dif-
ferent case studies remains open for further investigation in the future as it may vary 
among cities or areas.

As a consequence, a map like Fig. 6 that is an output of software cannot be used to 
compare the absolute values of closeness centrality of different nodes in the entire street 

Fig. 6  Nodes colored by closeness centrality
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network at the global level. But such a map shows well the situation in a relative context 
at local level. It shows whether certain nodes in the catchment area are the highlight or 
not in the direct neighborhood.

Finally, we found that the relationship between the distribution of node and the difference 
in normalized closeness centrality between the real and idealized network may deserve 
some further investigation in the future study. In the idealized network, where the nodes 
are evenly distributed, the central node has the shortest possible sum of distances from all 
other nodes to the central node. Therefore, the closeness centrality of the central node in 
an idealized network has the highest possible value among all nodes. However, very often 
the closeness centrality of the central node in a real network does not necessarily have the 
highest value among all nodes. Take Fig. 4b as an example, if the nodes in the real network 
were evenly distributed, the normalized closeness centrality of the central node cannot be 
higher than the one of the idealized one. However, the results in Fig. 4b show that the close-
ness centrality of the central node is in fact higher than the one in the idealized network in 
all catchment areas except for catchment area 8. Therefore, we predict that the nodes in 
the real network are not evenly distributed and more concentrated around the node under 
investigation. Further investigate of the Alicante map in Table 1 confirms that predication; 
the nodes are highly concentrated in the historical old city and the surrounding extensions. 
For the future studies, it would be interesting to further investigate whether the distribution 
of the nodes around the node under investigation can indeed be derived by comparing the 
normalized closeness centrality in both of the real and idealized networks.

List of symbols
N	� Number of nodes (node)
M	� Number of links (link)
Ck	� Degree centrality
Cc	� Closeness centrality
CN	� Normalized closeness centrality
d	� Length of a link of the idealized network
D	� Side length of the idealized network (link)
L	� Number of links on each side of the catchment area of the idealized network (link)
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