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Abstract
Background  Machine learning (ML) can identify and integrate connections among data and has the potential 
to predict events. Heart failure is primarily caused by cardiomyopathy, and different etiologies require different 
treatments. The present study examined the diagnostic value of a ML algorithm that combines echocardiographic 
data to automatically differentiate ischemic cardiomyopathy (ICM) from dilated cardiomyopathy (DCM).

Methods  We retrospectively collected the echocardiographic data of 200 DCM patients and 199 ICM patients 
treated in the First Affiliated Hospital of Guangxi Medical University between July 2016 and March 2022. All patients 
underwent invasive coronary angiography for diagnosis of ICM or DCM. The data were randomly divided into a 
training set and a test set via 10-fold cross-validation. Four ML algorithms (random forest, logistic regression, neural 
network, and XGBoost [ML algorithm under gradient boosting framework]) were used to generate a training model 
for the optimal subset, and the parameters were optimized. Finally, model performance was independently evaluated 
on the test set, and external validation was performed on 79 patients from another center.

Results  Compared with the logistic regression model (area under the curve [AUC] = 0.925), neural network model 
(AUC = 0.893), and random forest model (AUC = 0.900), the XGBoost model had the best identification rate, with an 
average sensitivity of 72% and average specificity of 78%. The average accuracy was 75%, and the AUC of the optimal 
subset was 0.934. External validation produced an AUC of 0.804, accuracy of 78%, sensitivity of 64% and specificity of 
93%.

Conclusions  We demonstrate that utilizing advanced ML algorithms can help to differentiate ICM from DCM and 
provide appreciable precision for etiological diagnosis and individualized treatment of heart failure patients.
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Background
Cardiomyopathy is the leading cause of heart failure 
(HF), which carries high risks of mortality and morbidity 
[1]. The two major types of cardiomyopathy are ischemic 
cardiomyopathy (ICM), which is mainly characterized 
by myocardial ischemia, degeneration, necrosis, fibrosis 
and scar formation, and dilated cardiomyopathy (DCM), 
which is mainly characterized by obvious enlargement 
of the left ventricle (LV), thinning of the ventricular wall 
and decreased LV systolic function [2, 3]. These two CM 
types have different pathophysiological characteristics 
but may have a similar clinical presentation, i.e., impaired 
LV function with disease progression to HF. Determin-
ing whether the decreased LV function in HF patients is 
caused by ICM due to coronary heart disease or by DCM 
is of great importance to early treatment planning and 
improving prognosis [4, 5].

At present, in studies in China and elsewhere, coronary 
angiography is an important technique for the differen-
tiation of ICM and DCM [6]. However, because it is inva-
sive examination, acceptance in the clinic is problematic, 
and more importantly, this technique cannot be carried 
out in many primary hospitals due to limited conditions. 
A considerable number of patients with HF and left ven-
tricular dysfunction show clinical improvement in left 
ventricular function after appropriate use of coronary 
revascularization [7, 8]. Therefore, finding a clinically 
more acceptable and feasible method for the diagnosis of 
HF-related etiology, such as ICM and DCM, is an impor-
tant objective in this field. Traditionally, noninvasive tests 
to distinguish the two have included electrocardiograms, 
echocardiograms or exercise echocardiography, chest 
radiographs, cardiac computed tomography (CT), car-
diac positron emission tomography (PET), cardiac mag-
netic resonance imaging (CMRI), radionuclide studies, 
and genetic studies [9–11], where simple electrocardio-
grams are sometimes not diagnostic. In previous stud-
ies, when used to predict cardiovascular outcomes, ECG 
parameters have generally shown poor predictive accu-
racy and to possibly even reduce the incremental valid-
ity of the model [12–14]. Echocardiography is the first 
diagnostic step following collection of the patient’s family 
history, physical examination, and electrocardiography, 
and is crucial for the morphological diagnosis of most 
cardiomyopathy cases [15, 16]. Cardiac MRI is the gold 
standard for high-quality diagnostic imaging, if echocar-
diography does not clearly identify phenotypes, but the 
use of more advanced imaging methods is limited due 
to technical difficulties, high costs, and other reasons. 
Therefore, to avoid the influence of relevant confounding 
factors, this study attempted to further improve the diag-
nostic effectiveness of echocardiography by utilizing the 
power of big data.

Machine learning (ML) is a statistical learning and 
modeling technique that can make predictions about 
invisible or new data through learning from available 
data [17, 18]. This study aimed to use a ML algorithm 
based on clinical data derived from echocardiography to 
develop and verify a predictive model to distinguish ICM 
from DCM. Our novel model further improves the accu-
racy of diagnosis and reduces the risk of misdiagnosis, 
and thus, can provide practical assistance in the differen-
tial diagnosis of ICM and DCM, especially for hospitals 
that cannot carry out coronary angiography.

Methods
Study population
This study collected data for a total of 437 consecutive 
patients (199 with ICM and 238 with DCM) from the 
First Affiliated Hospital of Guangxi Medical University. 
The included patients were diagnosed with HF according 
to recently published guidelines [1]. All patients under-
went invasive coronary angiography for diagnosis of 
ICM or DCM. DCM was defined as LV or biventricular 
contractile dysfunction and dilatation, rather than the 
presence of severe coronary artery disease and abnor-
mal loading conditions. The diagnosis of dilated cardio-
myopathy was confirmed after a systematic diagnostic 
procedure based on the definition of dilated cardiomy-
opathy published by the World Health Organization/
International Society and Cardiology Federation and 
the latest Guidelines of China [19–21]. The diagnostic 
requirements were: (1) left ventricular ejection fraction 
(LVEF) decreased by < 45%, and left ventricular short 
axis shortening rate (LVFS) decreased by < 25%; (2) the 
left ventricular end diastolic volume or diameter of the 
standard map adjusted by body surface area and age was 
> 2 standard deviations (SDs) compared with the normal 
value; and (3) coronary angiography was used to evalu-
ate coronary artery disease (CAD). However, even in the 
presence of CAD, the diagnosis of DCM can still be con-
sidered when the severity of HF is not proportional to the 
degree of CAD [22]. The inclusion criteria for ischemic 
cardiomyopathy were as follows: (1) history of symp-
tomatic HF (New York Heart Association Functional 
grade II or higher) and a decrease in the LVEF by < 40% 
and (2) one or more of the following: a history of myo-
cardial infarction or revascularization (coronary artery 
bypass graft or percutaneous coronary intervention), 
or with stenosis of 75% or more in the left main stem or 
left anterior descending artery, or with greater than 75% 
stenosis in two or more epicardial vessels [3, 20, 23]. To 
avoid influencing the results of the study, 38 patients with 
LVEF of 40–45% were excluded, and patients with miss-
ing echocardiographic and coronary angiographic data 
or with congenital heart disease, acute or sub-acute myo-
carditis, hypertrophic cardiomyopathy, primary valvular 
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disease [24], infiltrative disease, restrictive cardiomyopa-
thy, incomplete myocardial densification, infiltrative dis-
ease, and/or evidence of immune-mediated disease were 
excluded from this study. Ultimately, the study group 
consisted of 399 patients (199 with ICM and 200 with 
DCM). Figure 1 shows the patient selection and model-
ing process. This study was approved by the Ethics Com-
mittee of First Affiliated Hospital of Guangxi Medical 
University and was conducted according to the principles 
defined in the Declaration of Helsinki. Written informed 
consent was obtained from all individual participants 
included in this study.

Variables
Continuous variables are presented as mean ± SD and 
were compared with the t-test. Categorical variables 
are presented as percentages and were compared with 
the chi-square test. Non-normal distributed data were 
compared with the nonparametric test. Statistical anal-
ysis was performed using the R software package (R 
version 3.6.2). The feature selection method and ML 
algorithm were realized with R software package, and 
a P value < 0.05 was considered statistically significant. 
In the final analysis, a total of 16 variables (10 continu-
ous variables and 6 categorical variables) were included, 

consisting of baseline demographics (3 variables) and 
echocardiographic outcome parameters (13 variables), 
including LV end-diastolic diameter (LVEDD), left atrial 
diameter (LAD), LV end-systolic diameter (LVESD), 
LVEF, LV posterior wall thickness (LVPWT), abnormal 
wall motion (2 variables DWMA (diffuse ventricular wall 
motion abnormalities) and SWMA (segmental ventric-
ular wall motion abnormalities)), the ratio of peak E to 
peak A (E/A), cardiac output (CO), LV fractional short-
ening (FS), stroke volume (SV), moderate to severe mitral 
regurgitation (MR(m-s)), and moderate to severe multi-
ple valve regurgitation (MVR(m-s)).

ML methodology
Data processing
For categorical variables, we implemented 1-hot-encod-
ing, the process of dividing categorical values into zero 
and nonzero value pairs in order to convert variables into 
a format that can be used in the classification algorithm. 
In this method, the presence of missing values in vari-
ables presents a particular challenge. To handle this issue, 
the data with missing values for variables greater than 
20% were removed, and the mean filling method was 
used for continuous variables with fewer missing values. 
Because of the fewer missing values, the filling had little 
impact on the overall distribution of variables. Categori-
cal variables were predicted by combining the decision 
tree algorithm with other variables to obtain the pre-
dicted value to replace the missing value, which explained 
the statistical uncertainty related to interpolation.

Prior to the model construction, value correlation of 
variables was performed using the R software package (R 
version 3.6.2) to remove variables that may cause numer-
ical instability, which leads to over-fitting of the model 
and/or affect model interpretability (Fig.  2). When the 
linear relationship between two variables is enhanced, 
the correlation coefficient tends to be 1 or -1. If when one 
variable increases, the other variable also increases, this 
indicates a positive correlation between them, and the 
correlation coefficient will be greater than 0. In contrast, 
if one variable increases and another variable decreases, a 
negative correlation is found between them and the cor-
relation coefficient will be less than 0. If the correlation 
coefficient is equal to 0, this indicates there is no linear 
correlation between two variables. In this case, no vari-
ables were excluded based on the correlation coefficients 
and clinical significance.

Supervised ML approach
Predictive classifiers were developed for the data of the 
training set using four supervised ML methods: (1) 
logistic regression (LR), (2) extreme gradient boost-
ing (XGBoost), (3) random forest (RAN), and (4) arti-
ficial neural network (NNET). The above-mentioned 

Fig. 1  Machine learning workflow for differentiation of ICM and DCM. 
A machine learning model was developed to differentiate between ICM 
and DCM. The machine method included feature selection using a statisti-
cal method and 10-fold cross-validation, and 4 different algorithms were 
compared. ICM: ischemic cardiomyopathy; DCM: dilated cardiomyopathy
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ML-based algorithms were used in the present study, 
because they represented a full-spectrum analysis 
method from the traditional LR used with statistical anal-
ysis to traditional ML algorithms (RAN), human neuron 
mimetic algorithms (NNET), and integrated enhance-
ment (XGBoost) [25]. Boosting is used with increasing 
frequency in ML, because it involves sequential model 
creation, with each iteration aiming to correct a bug in 
the previous model. XGBoost, which is based on a gra-
dient enhanced decision tree. We used a grid search 
merging cross-validation method to adjust the hyperpa-
rameters of the XGBoost model. We used the traditional 
grid search for simultaneous optimization of multiple 
parameters and specify the range of candidate values 
for each parameter of the model. As for tree booster, eta 
can improve the robustness of the model by reducing the 
weight of each step. Values of 0.1 and 0.3 were selected. 
Min_child_weight determines the minimum leaf node 
sample weight and adopts the combination of 1, 6, 10, 
and 12. Max_depth of the tree was set to 5, 6, 10, and 16, 
respectively. Gamma specifies the minimum loss func-
tion drop value required for node splitting. Subsample 
controls the proportion of random samples for each tree. 
This parameter was set to be 0.5, 0.7, and 1, respectively. 
Colsample_bytree controls the proportion of random 
samples for each tree. The default value was 1. Finally, we 
selected 13 times, 50 times, 100 times and 200 times of 
iterations and carried out model cross validation through 
grid arrangement and combination of all parameters. 
Generally, 10 times of cross validation was selected and 

multiple parameters were selected through observation 
accuracy and Kappa value. Finally, relevant parameters 
of the model were determined as follows: nround = 13, 
eta = 0.1, gamma = 0, subsample = 1, max depth = 5, col-
sample_bytree = 1, min_child_weight = 6 to produce good 
performance.

In addition, to evaluate the validity of each model, 
we also used the K-fold cross-validation technique on a 
random under-sampled subset of the entire dataset. We 
performed 10 cross-validations by randomly dividing the 
entire dataset into 10 parts for 10 iterations. In each iter-
ation, we selected 9 parts as training data and 1 part as 
test set. The average result was 10% of test data unused 
for each model. The overall performance of the predic-
tive model on the test set was evaluated by calculating 
the area under the curve (AUC) from the receiver operat-
ing characteristic curve. Finally, the calibration results for 
each model were reported. Calibration further reflected 
the stability of the model.

Results
Patient characteristics
The demographic and echocardiographic data of all 
patients in the ICM (n = 199) and DCM (n = 200) groups 
are summarized in Table 1. The ICM patients were older 
(mean age 64 years, P < 0.001) and included a higher pro-
portion of men (88.4% vs. 75.5%, P = 0.001) compared 
with DCM patients. ICM patients also more often had 
significant segmental ventricular wall motion abnormali-
ties (57.8% vs. 13.5%, P < 0.001), with an E/A ratio less 
than 1, while more DCM patients had diffuse ventricu-
lar wall motion abnormalities (98% vs. 67.8%, P < 0.001). 
Analysis of correlation parameters such as LAD, LVEDD, 
and LVESD suggested that heart chamber enlargement 
was more significant (P < 0.001). There were also signifi-
cant differences in FS and LVEF between the two groups 
(P < 0.001).

ML analysis
Variable selection
Variable importance graphs were obtained after training 
with tuning parameters on the training data set (90% of 
total cohort). Figure 3 C shows the ranking of the most 
significant variables in the study cohort that differenti-
ated ICM from DCM. In the best-performing XGBoost 
model, segmental wall motion anomalies were the most 
important predictor, followed by age, LVESD and LAD. 
Other significant variables worth noting were sex, BMI, 
and FS.

ML model
For the classification of ICM versus DCM, the perfor-
mances of 4 ML models using all 16 features are pre-
sented in Tables 2 and 3; Figs. 4 and 5. For the XGBoost 

Fig. 2  Analysis of correlations between variables in the dataset. The inclu-
sion of highly correlated variables can lead to numerical instability, obscure 
the interactions between different features, affect the interpretability of 
machine learning models, and also lead to overfitting. Therefore, it is best 
to exclude one of the two relevant variables. The correlation graph shows 
that the dataset did not contain many relevant variables, indicating that 
the model is simple and stable
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Table 1  Baseline and echocardiographic characteristics of the 
included patients in the ICM and DCM groups
Variable ischemic

(n = 199)
dilated
(n = 200)

P

Sex (%) man 176 (88.4) 151 (75.5) 0.001
woman 23 (11.6) 49 (24.5)

Age (years) 64.21 (10.58) 57.39 (12.25) < 0.001
BMI (kg/m2) 23.78 (3.86) 24.36 (4.58) 0.173
LAD (mm) 43.15 (6.64) 46.24 (6.67) < 0.001
LVEDD 
(mm)

65.93 (8.03) 69.52 (8.52) < 0.001

LVESD 
(mm)

55.38 (7.21) 59.06 (9.54) 0.001

LVPWT 
(mm)

10.0[9.00,11.00] 10.00[9.00,11.00] 0.009

DWMA (%) no 64(32.2) 4 (2.0) < 0.001
yes 135(67.8) 196 (98.0)

SWMA (%) no 84(42.2) 173 (86.5) < 0.001
yes 115(57.8) 27 (13.5)

LVEF (%) 32.16 (4.96) 30.09 (5.56) < 0.001
E/A (%) less1 116(58.3) 69 (34.5) < 0.001

Single-
Peaked

28(14.1) 57 (28.5)

more1 55(27.6) 74 (37.0)
FS (%) 16.35 (4.05) 14.57 (3.18) < 0.001
SV (ml/B) 71.48 (22.95) 77.59 (29.50) 0.021
MR (m-s) 
(%)

no 153(76.9) 127 (63.5) 0.005

yes 46(23.1) 73 (36.5)
MVR (m-s) 
(%)

no 191(96.0) 176 (88.0) 0.008

yes 8(4.0) 24 (12.0)
CO (L/min) 6.03 (2.00) 6.79 (2.28) 0.006
Abbreviations: BMI: body mass index; LAD: left atrial diameter; LVEDD: left 
ventricle end-diastolic diameter; LVESD: left ventricle end-systolic diameter; 
LVPWT: left ventricle posterior wall thickness; DWMA: diffuse ventricular wall 
motion abnormalities; SWMA: segmental ventricular wall motion abnormalities; 
LVEF: left ventricle ejection fraction; E/A: the ratio of peak E to peak A; FS: left 
ventricle fractional shortening; SV: stroke volume; MR(m-s): moderate to severe 
mitral regurgitation; MVR(m-s): moderate to severe multiple valve regurgitation; 
CO: cardiac output

Table 2  Prediction of ICM and DCM in the test sample
Model Accuracy Sensitivity Specific-

ity
Precision F1

RAN 0.73 ± 0.07 
(0.60–0.85)

0.71 ± 0.14 
(0.45–0.90)

0.76 ± 0.09 
(0.60–0.90)

0.75 ± 0.07 
(0.65–0.88)

0.72 ± 0.09
(0.53–0.84)

NNET 0.73 ± 0.02 
(0.70–0.78)

0.67 ± 0.08 
(0.58–0.84)

0.79 ± 0.08 
(0.65–0.94)

0.75 ± 0.08 
(0.67–0.93)

0.71 ± 0.05
(0.63–0.77)

LR 0.76 ± 0.08 
(0.65–0.90)

0.76 ± 0.11 
(0.60–0.95)

0.76 ± 0.10 
(0.60–0.95)

0.77 ± 0.10 
(0.65–0.95)

0.76 ± 0.08
(0.65–0.90)

XG-
BOOST

0.75 ± 0.06 
(0.63–0.87)

072 ± 0.12
(0.60-1.00)

0.78 ± 0.07 
(0.65–0.88)

0.76 ± 0.06
(0.71–0.90)

0.73 ± 0.08
(0.62–0.88)

Average of 10-fold cross-validation results shown by mean ± standard deviation

Abbreviations: LR: logistic regression; NNET: neural network algorithm; RAN: 
random forest; XGboost: extreme gradient boosting

Table 3  Prediction of ICM and DCM in the external validation
Model Accuracy Sensitivity Specificity Precision F1
RAN 0.75 0.59 0.90 0.85 0.70
NNET 0.76 0.61 0.9 0.86 0.72
LR 0.74 0.59 0.9 0.85 0.7
XG-
BOOST

0.78 0.64 0.93 0.89 0.75

Abbreviations: LR: logistic regression; NNET: neural network algorithm; RAN: 
random forest; XGboost: extreme gradient boosting

Fig. 4  Receiver operating characteristic curves for prediction of ICM and 
DCM in the test sample. XGboost model presented a higher AUC for dis-
tinguishing ICM and DCM than all other models (LR, RAN and NNET). AUC: 
area under the curve; LR: logistic regression; NNET: neural network algo-
rithm; RAN: random forest; XGboost: extreme gradient boosting

 

Fig. 3  Ranking of feature importance. The importance graph for the vari-
ables was obtained after training with tuning parameters on the training 
data set. The most important variables in the study cohort for the differen-
tiation of ICM and DCM are ranked. (A) random forest, (B) logistic regres-
sion, (C) extreme gradient boosting, and (D) artificial neural network
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model, the average F-score was 0.73, with a sensitivity 
of 72%, specificity of 78%, the average accuracy of 75%, 
and AUC of the optimal subset of 0.934 (Table 2; Fig. 4). 
This model also showed good differentiation of isch-
emic/dilated cardiomyopathy in the externally validated 
cohort (AUC = 0.804, Fig. 5), with a sensitivity of 64% and 
a specificity of 93% (Table 3). Among the other models, 
the logistic regression model (AUC: internal verification 
0.925, external verification 0.750), artificial neural net-
work model (AUC: internal verification 0.893, external 
verification 0.780), and random forest model also had 
good discriminant performance (AUC: internal verifica-
tion: 0.900, external validation: 0.761) (Fig. 5).

Calibration of the prediction models
Calibration was performed on this two-class classification 
task (identification of ICM versus DCM) for evaluating 
class assignment probability distribution. The XGBoost 
model’s Brier score, which measures the accuracy of the 
probabilistic predictions, for predicting cardiomyopathy 
in the optimal training set was 0.177, and that for the test 

set was 0.164, indicating that the ML-based model was 
well fitted and had good stability. Table 4 summarizes the 
Brier scores for the additional models.

Discussion
Here we present, to the best of our knowledge, the first 
accurate and robust diagnostic classification method 
for the differential diagnosis between DCM and ICM, 
which we developed using four different supervised ML 
algorithms. Compared with the traditional diagnostic 
methods, the use of ICM and DCM clinical models pro-
vides a powerful ML framework for distinguishing simi-
lar clinical manifestations between these two types of 
cardiomyopathy.

Previous literature  The high prevalence of HF and 
its association with diminished quality of life support 
the need for targeted treatment. The existing methods 
require certain techniques and equipment, which limits 
their clinical application for rapid diagnosis and effective 
treatment. In addition, it has been shown that in patients 
with new onset HF, the detection deficiencies identified 
in the study analysis were not limited to ischemic detec-
tion, indicating a larger problem that patients hospitalized 
with new HF may not have received appropriate HF test-
ing [26]. In an increasingly cost-conscious era, there are 
concerns about overtesting in low-risk patients, and there 
is clearly underutilization of appropriate tests in high-risk 
patients. The use of ML algorithms for big data analysis in 
clinical research contributes to the development of widely 
applicable predictive models. As a non-invasive, low-cost 
and highly accurate tool, ML models may also help to 
better balance the relationship between risk assessment, 
cost-effectiveness and related testing, further helping 
community hospitals transfer patients most at risk or with 
a high probability of ICM to second-tier facilities, improv-
ing the detection rate of HF etiology, and strengthening 
timely referral management [27]. Previous studies have 
generated various models, including those to predict the 
readmission rate or death due to HF as well as progno-
sis of HF, and a diagnostic model for early recognition of 
HF. However, there are still some gaps in establishing a 
diagnostic model for predicting the etiology of HF [28–
31]. ICM and DCM are both common causes of HF [4]. 
In a previous study for the classification and prediction 
of cardiomyopathy, Alimadadi et al. developed a ML pre-
diction algorithm based on cardiac transcriptomic data 
[32]. The enrolled patients include 41 DCM patients, 47 
ICM patients and 49 non-HF controls. The selected vari-
ables included related genes with strong contributions to 
cardiomyopathy. The model accuracy for differentiating 
ICM from DCM was as high as 85%. However, it may be 
difficult to apply in the clinic because of the difficulty in 
obtaining variables. In another study including 25 ICM 

Table 4  Summary of Brier scores for evaluating the calibration of 
the ML models (NNET, XGBoost, and RAN) as well as that of LR.
Model Brier Score

Training set
Test set

RAN 0.027 0.144
LR 0.158 0.116
NNET 0.141 0.169
XGBOOST 0.177 0.164
Abbreviations: LR: logistic regression; NNET: neural network algorithm; RAN: 
random forest; XGboost: extreme gradient boosting

Fig. 5  Receiver operating characteristic curves for prediction of ICM and 
DCM in the external validation. XGboost model presented a higher AUC 
for distinguishing ICM and DCM than all other models (LR, RAN and NNET). 
AUC: area under the curve; LR: logistic regression; NNET: neural network 
algorithm; RAN: random forest; XGboost: extreme gradient boosting
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patients, 13 DCM patients, and 30 elderly controls, Rodri-
guez et al. developed a ML model based on the analysis 
of electrocardiography (ECG) and blood pressure signal 
data [33]. The selected variables included the time series 
of beat-to-beat intervals (from the ECG signal) and end-
systolic and diastolic pressure amplitude (from the BP 
signal). The best accuracy of the model for differentiat-
ing ICM from DCM was 84.2% [33]. However, the small 
sample size included in this study reduces the significance 
of the findings.

Discussion of main results
Studies have shown the potential for the improved diag-
nostic performance of ML algorithms for cardiomyopa-
thy; however, their application has been flawed due to the 
difficulty in obtaining clinical results and the characteris-
tics of patients from various examination methods. In the 
present study, we developed a recognition ML algorithm 
by using only easy-to-obtain, highly sensitive and specific 
echocardiographic features and compared the diagnostic 
performances of four ML models on an unknown data-
set. We found that four ML algorithms, including NNET, 
RAN, the integrated enhancement algorithm XGboost, 
and LR, all performed well in predicting and classify-
ing ICM and DCM, which may be attributed to the high 
diagnostic value of the original data itself. Among these 
four models, the XGboost algorithm had the highest dis-
criminant performance. The results from both internal 
verification and external verification in our study sup-
port the notion that ML can integrate a number of vari-
ables to build advanced algorithms that distinguish ICM 
from DCM. In addition, we also found clinically impor-
tant factors related to the two kinds of cardiomyopathy 
in a ML model, including wall motion abnormalities. 
From physiological and pathological studies, in DCM 
patients with myocardial extensive diffuse damage, with 
tension reducing myocardial relaxation the four cardiac 
chambers were expanded, showing diffuse ventricular 
wall motion abnormalities. Coronary vessel distribution 
in ICM patients is associated with myocardial ischemia, 
and heart damage is limited to one side of the left ven-
tricle, generating segmental disturbance of ventricular 
wall movement. The clinical consensus is that the differ-
ence in ventricular wall motion between the two groups 
has differential diagnostic significance, which is basi-
cally consistent with the structure of our model and also 
proves the reliability of ML. Although the data integra-
tion process is complex, clinicians can still readily under-
stand the final outcomes of the analysis obtained from 
using the prediction model.

The four different ML algorithms used different struc-
tures to predict the end point. Each model also ended 
up correctly predicting different patients, and thus, the 
important variables in the XGBoost model were different 

from those in the RAN, LR and NNET models, as seen 
in Fig.  3. Hence, different algorithms can show efficient 
mutual complementation. As a result, many research-
ers have attempted to combine prediction algorithms to 
achieve a high degree of predictive accuracy [34, 35]. This 
approach, which is referred to as ensemble algorithms, is 
the next frontier in our studies.

Clinical implications
Compared with traditional diagnostic methods, ML 
models serve as platforms for integrating multiple types 
of information [35], which may be more useful than 
one standardized interpretation of the data [36]. ML 
approaches do not underestimate the contribution of tra-
ditional echocardiography in the identification of cardio-
vascular diseases; rather, it provides a modern solution 
to integrate increasing numbers of parameters into the 
clinical database, thus simplifying the diagnostic process 
[37]. Considering the complexity of cardiovascular phe-
notypes and associated comorbidities, the potential of 
ML algorithms in personalized diagnosis and treatment 
cannot be overlooked [18]. Previously, we established a 
data-driven diagnostic system to accurately classify indi-
vidual cases [38]. Despite the complexity of the data pro-
cess, this process can be automated and easily performed 
in primary hospitals with limited conditions.

Limitations
Despite the outstanding strengths of the novel prediction 
model generated in this study, there are some limitations 
in our study. First, although we fit the ML algorithm by 
determining the weight of each variable, we were not 
able to explain the algorithm in terms of clinical end 
point decision making. For instance, if a patient was pre-
dicted to have ICM by the ML algorithm in this study, 
the reason for the prediction could not be determined. 
Hence, explaining ML remains to be explored. In addi-
tion, this study did not include a comparative analysis of 
expert inspection results and machine results, which is 
a very important limitation. However, the model devel-
oped in our study can provide a valuable reference for 
primary-level hospitals with limited resources and con-
ditions, as well as for inexperienced novice doctors and 
outpatient physicians who are not cardiac specialists. 
Current practice relies on the clinician’s interpretation 
of echocardiograms of heart failure patients, which is a 
subjective judgment based on the clinician’s knowledge 
and experience. Therefore, the findings cannot be quan-
tified and integrated into any quantitative estimate for 
risk stratification. In contrast, machine learning mod-
els facilitate automated interpretation and risk quanti-
fication of echocardiograms, reduce variability and cost 
between human observers, and minimize variation in 
access to medical service. We see the primary role of the 
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developed model as complementing rather than replac-
ing the existing work of clinical teams. However, a pro-
spective randomized study is indeed needed in the future 
to evaluate and compare the clinical outcomes achieved 
with the use of ML- and human-guided diagnostic strat-
egies to adapt clinical practice applications. Second, 
because the analysis included patients of single race and 
was conducted in only two hospitals in China, this study 
may be subject to selection bias. It is necessary to vali-
date this model in patients with ischemic/dilated cardio-
myopathy in other countries. In addition, although the 
developed model was validated in test sets and external 
validation queues, the possibility of overfitting cannot 
be completely ruled out. Third, patients were assigned to 
the ischemic CM group based on the burden of coronary 
artery disease as assessed by invasive coronary angiogra-
phy and prior medical history. However, a recent cardiac 
MRI study found that 11.8% of patients were tradition-
ally classified as having ischemic CM (via angiography) 
and 1.5% of patients with non-ischemic CM showed a 
mixed CM pattern on MRI [39]. Therefore, there may 
also be a subset of patients in our cohort with mixed 
CM, which is inconsistent with the binary results of our 
model. A mixed CM pattern may lead to false positives 
or false negatives in our model, thus reducing its predic-
tion accuracy. Fourth, the sample size of this study was 
small and included patients with WMAs. WMAs account 
for a large proportion in both clinical consensus and 
model structure, making a significant contribution to the 
classification of both. However, this group of patients is 
more difficult to classify. Future studies may require a 
larger sample size and exclusion of this group of patients 
to provide more reliable results for clinical practice. 
Fifth, differences between the two may have an impact 
on judgment, including clinical diagnosis and machine 
diagnosis, such as different ranges for LVEF, ventricular 
volume, and inner diameter. We excluded patients with 
40–45% LVEF to reduce such effects, but still could not 
completely avoid them. Sixth, we can try to explore other 
features, including more advanced and accurate non-
invasive imaging data, which can further improve the 
prediction accuracy of the model, such as exercise echo-
cardiography, PET, CT, and CMRI features [40]. Exercise 
echocardiography can differentiate VDIC from DM with 
a reasonable degree of diagnostic precision, measuring 
changes in overall and regional systolic function with 
exercise, but the relevant research is largely dependent on 
the technique used, which in turn requires an observer 
with extensive experience [41]. Although CT can be used 
to evaluate perfusion [42], left ventricular function [43], 
and scarring [44], it is mainly used for coronary artery 
imaging in the clinic. Especially in patients with chronic 
CAD, CT may be restricted by a high calcium load. Dedi-
cated cardiac PET-CT systems can simultaneously assess 

the presence and extent of coronary artery anatomy, 
ischemia, and hibernation myocardium. Similarly, this 
approach may be hampered by high cumulative effective 
doses of ionizing radiation [45]. Studies have shown that 
CMR is useful for ventricular volume and function evalu-
ation as well as scar visualization, with a high degree of 
accuracy in assessing systolic reserve and ischemia in a 
single examination in the case of no exposure to ioniz-
ing radiation [46]. The ML framework discussed herein 
relies on data-driven echocardiographic diagnosis, which 
opens up a promising frontier for a cardiomyopathy clas-
sification system. In the near future, we will attempt to 
include more comprehensive information, and multi-
dimensional and high space data are expected to produce 
better results and increase the generalization of groups. 
Seventh, instead of using the original echocardiographic 
image signals, we used the features. Our goal was to 
make the ML model easier to use in general clinics and 
to achieve high-precision predictions under limited con-
ditions. However, this approach may potentially limit the 
performance of the recognition algorithm. In our future 
studies, we plan to use raw echocardiographic image sig-
nals to predict cardiomyopathy.

Conclusion
We generated ML prediction models based on the 
parameters derived from echocardiography to differen-
tiate ICM- and DCM-induced HF. Our study provides 
evidence that ML algorithms using demographic and 
echocardiographic features can distinguish ICM and 
DCM and have the potential for application in precision 
medicine in the clinic, providing a new possibility and 
reference for the etiological diagnosis of HF.
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