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Abstract 

Background  The most prevalent mutation in ovarian cancer is the TP53 mutation, which impacts the development 
and prognosis of the disease. We looked at how the TP53 mutation associates the immunophenotype of ovarian 
cancer and the prognosis of the disease.

Methods  We investigated the state of TP53 mutations and expression profiles in culturally diverse groups and data-
sets and developed an immune infiltration predictive model relying on immune-associated genes differently 
expressed between TP53 WT and TP53 MUT ovarian cancer cases. We aimed to construct an immune infiltration pre-
dictive model (IPM) to enhance the prognosis of ovarian cancer and investigate the impact of the IPM on the immu-
nological microenvironment.

Results  TP53 mutagenesis affected the expression of seventy-seven immune response-associated genes. An IPM 
was implemented and evaluated on ovarian cancer patients to distinguish individuals with low- and high-IPM 
subgroups of poor survival. For diagnostic and therapeutic use, a nomogram is thus created. According to path-
way enrichment analysis, the pathways of the human immune response and immune function abnormalities were 
the most associated functions and pathways with the IPM genes. Furthermore, patients in the high-risk group showed 
low proportions of macrophages M1, activated NK cells, CD8+ T cells, and higher CTLA-4, PD-1, PD-L1, and TIM-3 
than patients in the low-risk group.

Conclusions  The IPM model may identify high-risk patients and integrate other clinical parameters to predict their 
overall survival, suggesting it is a potential methodology for optimizing ovarian cancer prognosis.
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Introduction
Ovarian serous cystadenocarcinoma (OV) is a fatal 
gynecological cancer in women, accounting for almost 
14,000 new deaths in the United States in 2018 [1]. Bio-
markers, particularly gene expression in tumor tissues, 
are consistently associated with cancer prognosis and 

survival [2, 3]. As a result, Researchers identified the sub-
group of patients with poorer prognoses and increased 
death required for further therapeutic care. The avail-
ability of large-scale public cohorts with gene expression 
data, as well as a well-developed biology database, opens 
up the possibility of identifying a universal prognostic 
signature with a biological basis for ovarian cancer.

The immune system has been proven to have a role in 
cancer development and progression [4, 5]. Several stud-
ies have shown that ovarian cancer tumors are immu-
nogenic [6, 7], and immunotherapy is being aggressively 
sought by targeting immunological checkpoints [8, 9]. 
Furthermore, earlier research has tentatively validated 
the immune system’s predictive relevance in ovarian 
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cancer [10]. As a result, the immune-based prognostic 
signature can be used in ovarian cancer.

Sentences like "TP53 is frequently mutated gene in 
human cancer" have featured in the introductions of 
hundreds of papers going back to 1990 [11, 12]. The 
TP53 mutation is often one of the five most prominent 
mutations in common human malignancies [13, 14]. The 
wild-type TP53 protein is vital in cell cycle regulation 
and apoptosis after cell injury [15]. On the other hand, 
cells with mutations may escape apoptosis and grow 
into malignant cells if TP53 is altered. According to a 
study that comprised 12 tumor types and 3281 patients, 
the mean alteration rate of TP53 was about 42% [13]. 
Because of TP53’s high mutation rate, genetic change is 
a particularly appealing prospective therapeutic target. 
This gene is critical for genomic stability, and its func-
tional loss may result in centrosome amplification, ane-
uploid cell proliferation, and chromosomal instability 
(CIN) [16]. TP53 mutations are more prone to increase 
CIN and genomic instability when paired with functional 
deficiencies in the tumor suppressive gene pRb or spindle 
checkpoint problems [17]. Considerable evidence sug-
gests that TP53 mutation simultaneously abandons their 
tumor-suppressive capabilities while gaining new abilities 
to promote tumorigenesis [18].

This research aimed to determine the role of TP53 sta-
tus in modifying the immunological signature in OV. A 
systematic review of the mutational landscape, expres-
sion profiles, and the relative abundance of tumor-infil-
trating lymphocytes (TILs) from the multiple cohorts 
were performed in the present work to evaluate the 
functional deviations and immunotherapeutic landscape 
of OV. Immune-based biomarkers associated with the 
status of TP53 alterations were explored to develop and 
verify an immune infiltration predictive model (IPM). 
Furthermore, a nomogram incorporating either immu-
nological markers or clinical aspects was created and 
tested to maximize their mutual efficacy. Our findings 
show that the IPM is an independent prognostic factor 
for OV patients and a good predictor for an immunother-
apeutic response. The final integrated nomogram is very 
useful for doctors in quantitatively predicting the overall 
survival of OV patients.

Materials and methods
Data collection
The somatic mutation data, gene expression profile and 
clinical information of the ovarian cancer TCGA cohort 
were downloaded using the TCGAbiolinks package [19]. 
Testing cohorts were acquired from the Gene Expres-
sion Omnibus (GEO) under GSE13876, GSE30161, and 
GSE51088. Information involving the patients subjected 
to the immunotherapy was obtained from the published 

studies [20, 21]. The datasets used in this study were 
summarized in Table S1.

Gene set enrichment analysis (GSEA)
To evaluate the immunological effect of TP53 mutation 
in ovarian cancer, the TCGA-OV cohort was divided 
into the TP53-WT (n = 248) and TP53-MUT (n = 26) 
subtypes depending on the TP53 mutation status. We 
performed GSEA between the two subtypes using the 
immunologic signature gene set (c7.all.v7.5.1.symbols.
gmt) with permutations of 104 [22]. P-value < 0.05 was 
defined as significant.

Establishment and validation of the IPM
We developed the IPM based on a series of model algo-
rithms from the immune-related genes better to evaluate 
ovarian cancer’s overall survival and immunotherapeutic 
response. First, the significant differentially expressed 
genes (DEGs) were generated using the DESeq2 pack-
age between the TP53-WT and TP53-MUT subtypes in 
the TCGA-OV cohort. Then, the expression profiles of 
DEGs that overlapped with genes in the immunologic 
signature gene set were extracted as the immune-related 
genes for the following analysis. Second, the least abso-
lute shrinkage and selection operator (LASSO) analy-
sis was performed with the five-fold cross-validation to 
screen the hub genes. Third, the genes identified upwards 
of 900 occasions in 1000 repeats were retained. We con-
structed the IPM model using the regression coefficients 
originating from the multivariate Cox regression analysis. 
The suitable cutoff value was calculated using the “surv_
cutpoint” function of survminer R package based on the 
risk score, overall survival status and times. Patients were 
divided into high- and low-risk groups using the same 
cutoff value obtained from the TCGA training cohort. 
Finally, the IPM was validated by three independent 
testing cohorts to ensure stringency. The Kaplan-Meier 
analysis and the log-rank test were used to assess the 
predictive ability; the time-dependent receiver operating 
characteristic (ROC) curve was applied to show the diag-
nostic ability under the different times.

Estimation of immune cell infiltration
Immune cell fractions in the tumor microenvironment 
were adopted from the published study [23]. Four immu-
nosuppressive cells were calculated using the TIDE [24] 
and xCell [25]. The Spearman correlation was estimated 
between the risk score and immunosuppressive cell infil-
tration. A P-value less than 0.05 is significant.

Functional enrichment
We explored the functional deviations between the two 
IPM subgroups using the clusterProfiler package [26]. 
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Benjamini-Hochberg (BH) adjusted P-value less than 
0.05 was defined as significant. Metascape was used to 
construct the interactive network to present the func-
tional characteristic [27].

Construction and assessment of the nomogram model
Rms package ran a Univariable Cox analysis on diagnos-
tics variables in the training dataset. Then, a multivariate 
Cox analysis was conducted using all significant (P-value 
< 0.05) variables, including age, race, TP53 status, and the 
IPM subgroup. Forestplot was used to depict the hazard 
rate and P-value of variables from the Cox analysis. A 
nomogram was drawn using rms package to help doctors 
assess the 1-year, 3-year, and 5-year OS probability of OV 
patients. To assess the outcomes’ performance, discrimi-
nation and calibration analyses were used. The capacity 
to discriminate was assessed using a pec package and a 
time-dependent concordance index (C-index) calcu-
lated using the bootstrap method with 1000 resampling. 
The calibration was evaluated using rms package, which 
included mapping the nomogram predicted probability 
of 1-year, 3-year, and 5-year overall survival (OS) against 
the observed data rates.

Chemotherapeutic response prediction
Based on the most extensive publicly released pharma-
cogenomics database (the Genomics of Drug Sensitivity 
in Cancer (GDSC), https://​www.​cance​rrxge​ne.​org/), we 
estimated the chemotherapeutic response for each sam-
ple. The assessment approach is carried out using the R 
package "pRRophetic," in which the half-maximal inhibi-
tory concentration (IC50) of the samples was estimated 
by ridge regression, and the accuracy rate was evaluated 
utilizing 10-fold cross-validation based on the GDSC 
training set [28].

Human sample collection
Human specimens containing 20 OV patients utilized in 
this investigation were acquired from patients undergo-
ing surgical operations at Tian Jin Fifth’s Central Hospi-
tal and frozen at -80 °C for qRT-PCR. All materials were 
examined using HE staining in accordance with stand-
ard protocol, and two different pathologists made the 
diagnoses.

qRT‑PCR analysis
qRT-PCR was performed to validate the gene expres-
sion levels of our three target genes (TFPI, TNC, and 
ELK3). The high- and low-group were stratified using the 
median risk score calculated from the three target genes. 
Total RNA was extracted from the collected tissue sam-
ples using a commercially Trizol Reagent as described 
everywhere. cDNA synthesis was carried out using the 

PrimeScript RT Reagent Kit (Invitrogen, USA). qRT-PCR 
was performed by One-Step qPCR Kit (Invitrogen) and 
CFX ConnectTM Real-Time System (BIO-RAD) follow-
ing manufacturer’s instructions. The relative gene expres-
sion levels were calculated using the ΔCt method with 
normalization to a reference gene GAPDH.

Immunohistochemistry
Fresh target tissues were collected and fix it in 10% neu-
tral buffered formalin for an appropriate period. Trans-
fer the tissue into a labeled cassette and dehydrate it by 
placing it in a series of increasing concentrations of alco-
hol for gradual dehydration. Embed the tissue in molten 
paraffin wax and allow it to solidify. Then, the paraffin-
embedded tissue block were cut to 4 μm section and sub-
jected to deparaffinization and rehydration with xylene 
and graded alcohols. 3% H2O2 was utilized to eliminate 
endogenous peroxidase after antigen retrieval with five 
mM citrate buffer. The slides were blocked for 30 min-
utes at room temperature with goat serum before being 
treated with primary antibodies overnight at 4 ℃. The 
slices were rinsed three times in PBS before being treated 
for two hours at room temperature with a biotinylated 
secondary antibody. As a chromogen substrate, diamin-
obenzidine was utilized. Hematoxylin was used to coun-
terstain the sections at the end. Immunohistochemistry 
was performed using antibodies against IL-17 (ab79056, 
Abcam), CD163 (ab79056, Abcam), CD64 (ab140779, 
Abcam), CD1A (17325-1-AP, Proteintech), CD57 (19401-
1-AP, Proteintech), CD8 (66868-1-Ig, Proteintech) and 
CD3 (3F3A1, Proteintech).

Statistical analysis
Fisher’s exact test or Pearson’s Chi-square test com-
pared independent variables. For survival data analysis 
and preparation of Kaplan-Meier plots, the R packages 
survival and survminer were used. P-value < 0.05 was 
applied to determine statistical significance, and all sta-
tistical analysis was performed using R version 4.0.4 
(https://​www.r-​proje​ct.​org/).

Results
The association of TP53 mutations with immunophenotype 
in OV
The most prevalent mutation found in OV is TP53 
(370/420, 88%; Fig.  1A). Co-occurrence and mutual 
exclusivity analysis indicated TP53 mutation co-occurred 
with SPEN and was mutually exclusive with other genes 
(P<0.05; Fig. 1B). TP53 mutations are related to the sur-
vival of OV patients, according to pioneering research 
[29]. Although TP53 mutations have a well-documented 
pathogenetic role in the outcome of patients with OV, 
their particular effects on immunological profiles in OV 

https://www.cancerrxgene.org/
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have not been thoroughly studied. As a result, we used 
expression profiles and medical data from OV patients in 
the TCGA for the first time to look for immune-related 
biochemical functions associated with TP53 status. 
OV samples with TP53 mutations (n = 248) and with-
out TP53 mutations (n = 26) were subjected to GSEA 
analysis. TP53 MUT OVs were highly enriched in 105 
immune-related biological processes (Fig. 1C; Table S2). 
To provide a more comprehensive understanding of the 
immune-related functions of TP53 mutational patients 
in OV, we performed Gene Ontology (GO) enrichment 

analysis (Fig.  1D), which showed that 17 out of 19 
immune-related functions were inhibited in the TP53 
mutational patients, indicating an immune-suppressed 
status. This finding highlights the potential importance of 
TP53 mutation status as a predictor of immune-related 
outcomes in OV.

Definition of the IPM and valuation its predictive power 
in training cohort
In the TCGA training cohort, univariate Cox analy-
sis investigated the connection between genes and 

Fig. 1  Somatic mutation spectrum and GSEA enrichment based on TP53 status in ovarian cancer. A Mutational landscape of top 30 genes 
in ovarian cancer. B Co-occurrence and mutual exclusivity analysis of the top 30 mutated genes. C Top 20 immune-related functions of TP53 
mutational patients in ovarian cancer. D Immune-related functions of TP53 mutational patients analyzed by GO enrichment
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OS (Table S3-4). The LASSO algorithm chose three 
DEGs (TFPI, TNC, and ELK3) that emerged more than 
900 times out of 1000 repeats as necessary. Risk score 
depending on associated gene abundance adjusted by 
the Cox regression coefficients was produced using 
multivariate Cox analysis: IPM risk score = (ELK3 × 
0.378) – (TFPI × 0.168) + (TNC × 0.196). Patients 
were divided into high- and low-risk groups using 
a feasible cutoff value (0.93). Figure  2A shows that 
high-risk individuals had a worse OS than low-risk 

patients (P = 0.00016). The AUCs of the IPM at 1-, 3-, 
and 5-years were 0.514, 0.568, and 0.598, respectively 
(Fig. 2E). Moreover, the expression levels of the three 
hallmark immunity genes were very compatible with 
the appropriate IPM risk score, with gene enrichment 
being more remarkable in the IPM high-risk subgroup 
in contrast to the IPM low-risk subgroup (Fig. 2I). To 
investigate the distribution of OV patients’ status, we 
performed a chi-square test and found no significant 
difference between the high- and low-risk groups (p = 

Fig. 2  Establishment and validation of the IPM. Kaplan-Meier analysis for training cohort (A), and testing cohort GSE13876 (B), GSE30161 (C), 
and GSE51088 (D). Time-dependent ROC curve analysis for training cohort (E), and testing cohort GSE13876 (F), GSE30161 (G), and GSE51088 (H). 
Risk score assessment for training cohort (I) and testing cohort GSE13876 (J), GSE30161 (K), and GSE51088 (L)
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0.12, Figure S1A). Although not immediately evident, 
we observed a significant correlation between the risk 
score and survival times, providing valuable insights 
into the relationship between the risk model and 
patient outcomes (p = 0.019, Figure S1B).

Verification of the IPM in three independent testing 
cohorts
Three independent validation testing cohorts from 
GEO datasets were used with the same equation to 
assess the IPM’s resilience. Patients in the testing 
cohort were likewise divided into high- and low-risk 
subgroups using the same cutoff criterion (0.93). In 
testing cohorts, patients designated as low-risk had 
longer survival times than ones substantially from the 
high-risk subgroup (P < 0.05; Fig.  2B-D), confirming 
the findings of the TCGA training cohort. The AUCs 
have shown the validation cohort’s predictive ability, 
demonstrating that the IPM is reliable across various 
datasets (Fig. 2F-H). Furthermore, heatmaps depict the 
correlation between the IPM and the expressed abun-
dances of the three immunological hallmark genes in 
the three testing cohorts (Fig. 2J-L).

IPM reflects the immunosuppression status in OV
The immunosuppressive genes and cells in the TME are 
primarily responsible for the reduced percentage and 
dysfunction of CD8+ T cells. The association between 
IPM risk score and immunological checkpoints and 
immunosuppressive cells implicated in T cell depletion 
was then investigated. In OV, we discovered that the IPM 
risk score was linked to six immunosuppressive markers 
(PD-L1, PD-1, CTLA4, LAG3, HAVCR2, and TIGHT) 
(Fig. 3A; Table S5). These immunological checkpoints are 
essential in T cell activation and cause T cell function to 
regress [30]. Consistent with this notion, patents from 
the IPM high-risk group presented the high expression 
of these immunosuppressive markers compared with the 
low-risk patients (Fig. 3B).

Myeloid-derived suppressor cells (MDSC), tumor-
associated macrophages (TAM), cancer-associated 
fibroblasts (CAF), and regulatory T cells (Treg) are four 
immunosuppressive cells that can prevent immune cells, 
particularly CD8+ T cells, from infiltrating the TME 
and suppressing their functions within the tumor [31]. 
Four immunosuppressive cells and their corresponding 
markers were shown to be substantially associated with 
the IPM risk score (Fig. 3C). Furthermore, we calculated 

Fig. 3  IPM correlates with immune suppression and CD8+ T cell exhaustion in ovarian cancer. A Spearman correlation between the risk score 
and six immunosuppressive genes. B Difference of six immunosuppressive genes between the high- and low- IPM groups. C Spearman correlation 
between the risk score and immunosuppressive cells and their representative markers. D The difference between the cancer immunity cycle 
signatures between the high- and low- IPM groups. E Representative IHC images of infiltrated immune cells in ovarian cancer
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the variations in immune recruitment of 25 immune cell 
types between the two IPM subgroups. The number of 
immune cells in OV varies across and among groups 
(Fig.  3D). As a result, alterations in the quantities of 
TILs could be an innate trait that distinguishes individu-
als. Th17 cells, macrophages M2, activated Dendritic 
cells, Neutrophils, T cells CD4 memory resting, and T 
cells regulatory (Tregs) were found in significantly larger 
percentages in high-risk OV patients. In contrast, mac-
rophages M1 activated NK cells and CD8+ T cells were 
found in markedly decreased ratios in low-risk OV 
patients. Finally, the representative markers of specific 
immune cells were validated using immunohistochem-
istry in OV tissues as previously reported [32] (Fig. 3E).

Functional deviations between IPM subgroups
According to the enrichment assessments, various cancer 
hallmark-related pathways, including immune response, 
intercellular communication, metabolism, and other 
physiological functions, were shown to differ significantly 
between the IPM high- and low- subgroups (Fig. 4A). The 
DNA replication, Arachidonic acid metabolism, Primary 
immunodeficiency, cGMP-PKG signaling pathway, and 
Cell cycle were activated substantially (Fig.  4A-B; FDR 
< 0.05). ECM-receptor interaction, Chemokine signaling 

pathway, B cell receptor signaling pathway, p53 signal-
ing pathway, and Natural killer cell-mediated cytotoxicity 
were all down-regulated significantly (Fig.  4A-B; FDR < 
0.05). Metascape was also used to investigate the physio-
logical activities enrichment of IPM. The GO and KEGG 
terms network were colored according to the cluster and 
P-values (Fig. 4C-D; Table S6) [33]. IPM was involved in 
anticancer immune response, which may progress the 
immunosuppressive milieu of OV, a clear example of 
inflammation-related malignancy, according to the GSEA 
findings.

Construction and evaluation of the nomogram according 
to the IPM
Univariate and multivariate Cox analyses were done pro-
gressively to determine whether the IPM was an inde-
pendent prognostic factor, including the IPM risk score 
and other available clinical hazard variables such as age, 
race, stage, and TP53 mutations. The IPM was signifi-
cant (P < 0.05) across either the univariate or multivari-
ate Cox analyses, as shown in Fig.  5A, demonstrating 
that the IPM was practical to prognosticate the OS of OV 
patients severally. The multivariate cox analysis, the IPM 
presented the worst hazard rate (HR = 1.683, 95 per-
cent CI = 1.210 – 2.341; Fig. 5A) within the considered 

Fig. 4  Functional deviations between the high- and low- IPM groups. A Differential activities of pathways between the high- and low- IPM groups. 
B Representative pathways between the high- and low- IPM groups. C Network of GO and KEGG enriched terms colored according to clusters. D 
Network of GO and KEGG enriched terms demonstrated according to P-values
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covariates. To address how TP53 status correlates with 
IPM, we have calculated the IPM risk score for each 
patient in TCGA dataset, including both TP53 MUT and 
TP53 WT patients. We observed the significant correla-
tion between risk score and TP53 status (Figure S3). In 
addition, Fig. 5B showed that the IPM had a greater time-
dependent C-index (0.787) than all other clinical charac-
teristics (0.415 – 0.765). In general, our findings showed 
that the IPM was an independent prognostic factor that 
outperformed other clinical characteristics in predicting 
the outcome of OV patients.

To increase the predictive accuracy of patients’ OS 
using the IPM model, a nomogram was created by the 
TCGA cohort, including the IPM risk score and available 
clinical risk variables (Fig.  5C). Based on the multivari-
ate Cox analysis, each covariate was assigned a score, and 
the total points nomogram score was obtained by adding 
the risk point values of all the covariates. By matching the 
total points to the 1-, 3-, and 5-years OS axes, the inci-
dence of OS at 1-, 3-, and 5- years was estimated. When 
contrasted to other clinical criteria, the IPM presented 
the highest scores (coverage from 0 to 52). To assess the 
effectiveness of the nomogram, calibration plots (Fig. 5D) 

were created, which showed the estimated rates versus 
the actual rates at 1-, 3-, and 5-years intervals, indicat-
ing high stability. To assess the impact of the IPM on the 
nomogram, we generated a new nomogram without the 
IPM and compared it with the original version. Figure S2 
shows the calibration plot of the nomogram without the 
IPM. We found that the inclusion of IPM in the nomo-
gram improved its predictive accuracy and provided 
additional prognostic information, demonstrating that 
IPM is a critical component of the model. These data 
revealed that the nomogram is a better model than indi-
vidual prognostic variables for predicting the survival 
time in OV.

IPM predicts the immunotherapeutic response
Using the IMvifor210 and GSE78220 cohorts, we then 
investigated the predictive significance of the IPM for 
immune checkpoint inhibitor (ICI) treatment. In both 
the IMvifor210 and GSE78220 cohorts, patents with 
high IPM risk scores had a significantly worse prognosis 
than those with low IPM scores (Fig. 6A, E). ICI therapy 
may assist patients with low IPM low subgroup better 
(Fig. 6B-C, F-G). ROC was also used to measure tumor 

Fig. 5  Comparation of IPM and conventional clinical characteristics. A Univariate and multivariate Cox regression analysis of IPM and some 
conventional clinical covariates in ovarian cancer patients. B Concordance index plot of IPM and some conventional clinical covariates. C 
Nomogram for overall survival at 1-, 3-, and 5-year in ovarian cancer patients. D Calibration plot at 1-, 3-, and 5-year for validation to predict overall 
survival probability
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mutation burden (TMB), which is highly associated to 
immunotherapy efficacy. Nonetheless, we discovered that 
the IPM risk score alone had less predictive value than 
the TMB. However, combining TMB and IPM risk scores 
boosted predictive power compared to utilizing TMB or 
IPM alone (Fig.  6D, H). Figure  6I depicts the risk score 
for each sample. Since both scores combined improve the 
predictive value for IMvigor210 cohort, combining IPM 
with TMB into a single nomogram would be a valuable 
next step in validating our findings and exploring their 
clinical utility (Figure S4).

Furthermore, we compared the expression profiles of 
the two IPM subgroups to those of another cohort of 
47 melanoma patients who responded to immunothera-
pies. Surprisingly, the expression of PD-L1 was higher in 
patients from the high IPM subgroup than those from 
the low IPM subgroup (Fig. 6J). Since chemotherapeutic 
therapy is a primary tool in tumor therapy, we predicted 
the response of commonly used drugs between the two 

IPM subgroups of patients using the GDSC dataset. Ten 
compounds exhibited an excellent response in IPM low 
subgroup (Fig. 6K).

Discussion
Patients with high-grade ovarian serous carcinomas with 
wild-type TP53 seemed to have a worse prognosis and 
were more resistant to chemotherapy than those with 
mutant TP53 [29]. However, the prognostic significance 
of TP53 mutations and TP53 mutation types in ovarian 
cancer is debatable [34–36]. A meta-analysis reveals a 
broad range of variation in methodologies used to assess 
TP53 mutation status and categorize TP53 mutations 
into functionally significant categories [36]. Kang et  al. 
found that TCGA cohort patients with TP53 mutations 
were more likely to develop distant metastases [37]. Con-
sistent with Laxmi et al, there is no significant correlation 
was seen between TP53 mutations and clinical outcome 
[34, 38].

Fig. 6  IPM predicts immunotherapeutic prognosis. A Kaplan-Meier analysis between the high-- and low- IPM group in the IMvigor210 cohort. B 
Risk score distribution for different anti-PD-L1 clinical responses in IMvigor210 cohort. C The relative proportion of clinical response to anti-PD-L1 
immunotherapy in the high- and low- IPM group in IMvigor210 cohort (PD-progressive disease, SD-stable disease, PR-partial response, 
and CR-complete response). D ROC curves of TMB, risk score, and combination of TMB and risk score in IMvifor210 cohort. E Kaplan-Meier analysis 
between the high- and low- IPM group in GSE78220 cohort, (F) Risk score distribution for different anti-PD-1 clinical responses in GSE78220 cohort. 
G The relative proportion of clinical response to anti-PD-1 immunotherapy in the high- and low- IPM group in GSE78220 cohort. H ROC curves 
of the risk score in GSE78220 cohort. I)The risk score of each patient in GSE78220 cohort. J PD-L1 gene expression levels in the high- and low- IPM 
group. K The box plots of the estimated IC50 for the top 10 compounds in the high- and low- IPM group
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Distinct gene expression patterns in these TP53 wild-
type tumors may illuminate the molecular mechanism 
behind treatment resistance [29]. Recent research has 
demonstrated that TP53 mutations can boost immu-
nological checkpoint gene expression, trigger T effec-
tor cells, and increase interferon-γ in lung cancer [39]. 
Patients with co-occurrence mutations of TP53 and 
KRAS benefited more from blockers targeting PD-1 [39]. 
Anti-PD-1 antibodies have been shown to boost anti-
tumor immunity in ovarian cancer [40]. However, the 
molecular mechanism by which TP53 mutations regulate 
the immunophenotype and prognosis of OV is unknown. 
As a result, the immunological implications of TP53 sta-
tus in OV should be investigated.

Additionally, improved IPM was beneficial for identify-
ing biomarkers, assessing the immunological status for 
OV sufferers, and classifying them to improve immuno-
therapy efficacy. Cancer immune-associated signatures 
have been created and discovered in multiple malignan-
cies in recent years [41, 42]. While several analyses have 
tried to delineate immune-associated markers in OV 
[43–45], the true nature of the TME in OV outcome and 
prediction remains unknown. The functional enrichment 
revealed that the group with mutant TP53 had a con-
siderably weaker immunological profile than wild-type 
TP53. Following that, a cox-proportional hazards analysis 
using the L1-penalized LASSO estimator identified three 
essential genes (TFPI, TNC, and ELK3) that were utilized 
to develop a unique IPM for OV patients.

TFPI, TNC, and ELK3 are less studied in OV, but 
have been well researched in other cancer. TFPI has 
been found to play a complex role in cancer, with 
both tumor-suppressive and tumor-promoting effects 
depending on the context [46]. TFPI can interact with 
various cellular signaling pathways implicated in can-
cer. It has been shown to interact with growth factor 
receptors, extracellular matrix proteins, and proteases 
involved in tumor invasion and metastasis. These 
interactions may influence tumor cell behavior and 
signaling cascades associated with cancer progression 
[47]. TNC gene is involved in cancer and has been 
found to play various roles in tumorigenesis and tumor 
progression [48, 49]. TNC is an extracellular matrix 
(ECM) protein that is upregulated in many types of 
cancer. It contributes to ECM remodeling by interact-
ing with other ECM components, such as fibronectin 
and collagens. TNC promotes tumor cell migration, 
invasion, and metastasis by modulating the physical 
properties of the ECM [49]. Moreover, TNC interacts 
with cell surface receptors, including integrins, to pro-
mote tumor cell adhesion and migration. It can pro-
vide a permissive environment for cancer cells to move 
through the ECM and invade surrounding tissues. 

TNC has also been associated with epithelial-mesen-
chymal transition (EMT), a process linked to increased 
cancer cell motility and invasiveness [50]. The ELK3 
gene, also known as NET (Nuclear Protein Related to 
SAM Pointed Domain-Containing ETS Transcription 
Factor), has been found to play roles in cancer devel-
opment and progression [51–53]. It binds to specific 
DNA sequences and either activates or represses gene 
transcription. ELK3 can modulate genes related to 
cell proliferation, survival, angiogenesis, and metas-
tasis, which are crucial processes in cancer develop-
ment [52]. Alterations in ELK3 expression have been 
observed in various cancers, and its expression levels 
have been investigated as potential prognostic mark-
ers. Both increased and decreased ELK3 expression 
have been associated with poor prognosis in different 
cancer types, indicating its potential as a prognostic 
indicator [54].

We established via various methods that our IPM was 
more predictive of survival than typical clinical char-
acteristics. Moreover, we conducted a complete review 
that considered both the IPM and traditional clini-
cal parameters. The calibration curve demonstrated a 
strong level of concordance between the predicted and 
observed clinical features at 1-, 3-, and 5- years OS. 
Our primary advantage provides a unique viewpoint 
on tumors prognosis and offers a grading system for 
OV patients. As a result, the nomogram can be a valu-
able method for doctors. Elimination is a more sophis-
ticated pattern of cancer immunosurveillance. The 
innate and adaptive immune systems work in concert 
to detect the presence of tumor growth and destroy 
it before it progresses [41]. IFNs may increase tumor 
development, stimulate dendritic cells, and enhance 
adaptive immune responses [55]. The adaptive immune 
system controls cancer cell expansion and shapes the 
tumor immunogenicity during equilibrium. The reten-
tion of occult tumor cells is facilitated by IL-12, IFN-, 
CD4+, and CD8+ T cells [56, 57].

The immunoediting process against cancer is divided 
into three stages: elimination, balance, and escape [56]. 
Variant cells that have progressed through the previous 
two stages and gained the capacity to evade immune 
detection enter the escape stage when they become 
visible and continue to proliferate. Thus, tumor escape 
occurs when an immunosuppressive state is established 
inside the tumor microenvironment [56, 58]. Tregs are 
a significant class of immunosuppressive cells that 
decrease host-protective anti-tumor responses. Tregs 
that have been activated may express PD-1, PD-L1, and 
CTLA-4 to suppress the activity of tumor-specific T 
cells [59]. We examined the immune infiltration of 25 
immune cell types in low- and high-risk OV patients 
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to better understand the immunological processes at 
work and assess the potential reach of the proposed 
IPM as cancer immunotherapy. The findings indicated 
that patients with high-risk OV had more Th17 cells, 
macrophages M2, activated Dendritic cells, Neutro-
phils, T cells CD4 memory resting, and Tregs.

Additionally, the high-risk OV subgroup’s PD-1, 
PD-L1, LAG3, HAVCR2, and TIGIT gene expression 
levels were considerably more significant than low-risk 
OV patients. As a result, the IPM was compatible with 
immune infiltration’s capacity to determine ICI treat-
ment gene expression. We show that the high-risk indi-
viduals’ worse prognosis may have been caused by a 
more favorable immunosuppressive milieu and greater 
expression of immune checkpoint genes. Overall, our 
study suggests that the high-risk group of patients with 
ovarian cancer have more immunosuppressive cells 
and higher expression of immunosuppressive mol-
ecules. However, the low-risk group responds better to 
ICI therapy. One possible explanation for this is that 
ICI therapy targets specific immune checkpoints, while 
the overall immune suppression in high-risk patients is 
driven by multiple factors, not all of which are targeted 
by ICI. Other factors that could influence the response 
to ICI therapy include tumor mutational burden, neo-
antigen load, and the presence of immunosuppressive 
stromal cells [60, 61]. Further research is needed to fully 
understand the underlying mechanisms. Nevertheless, 
our findings suggest that the inclusion of ICI genes in 
the IPM may provide a more accurate prognosis for high 
IPM scored OV patients, which could lead to significant 
advancements in prognostication.

Conclusion
Given that the model reported here has relied on 
retrospective data, they should be additionally con-
firmed by potential investigations. Notably, the three 
critical immune-related genes employed to design 
the IPM should be identified in experimental trials to 
confirm their medical use. Moreover, this study adds 
to our understanding of OV’s immunological milieu 
and immune-associated therapy. An IPM based on 
three immune-related genes were suggested for the 
first time. The suggested IPM was shown to be a sig-
nificant predictive factor for OV patients and provided 
an overview of the immune response landscape in the 
OV microenvironment. Interestingly, the creation and 
assessment of the IPM provided an immunologic view-
point for elucidating the processes behind the clinical 
outcomes of OV and may serve as a model for other 
forms of cancer.
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