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Soil bacterial community composition 
is more stable in kiwifruit orchards relative 
to phyllosphere communities over time
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Abstract 

Background  Soil and phyllosphere (leaves and fruit) microbes play critical roles in the productivity and health 
of crops. However, microbial community dynamics are currently understudied in orchards, with a limited number 
incorporating temporal monitoring. We used 16S rRNA gene amplicon sequencing to investigate bacterial com-
munity temporal dynamics and community assembly processes on the leaves and fruit, and in the soil of 12 kiwifruit 
orchards across a cropping season in New Zealand.

Results  Community composition significantly differed (P < 0.001) among the three sample types. However, the com-
munities in the phyllosphere substrates more closely resembled each other, relative to the communities in the soil. 
There was more temporal stability in the soil bacterial community composition, relative to the communities resid-
ing on the leaves and fruit, and low similarity between the belowground and aboveground communities. Bacteria 
in the soil were more influenced by deterministic processes, while stochastic processes were more important for com-
munity assembly in the phyllosphere.

Conclusions  The higher temporal variability and the stochastic nature of the community assembly processes 
observed in the phyllosphere communities highlights why predicting the responsiveness of phyllosphere communi-
ties to environmental change, or the likelihood of pathogen invasion, can be challenging. The relative temporal stabil-
ity and the influence of deterministic selection on soil microbial communities suggests a greater potential for their 
prediction and reliable manipulation.
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Introduction
Rhizosphere and phyllosphere microbes form tight asso-
ciations with host plants, both mutualistic and antago-
nistic [7], with plant-associated microbes performing 

beneficial roles, including plant growth promotion [1, 
9], stress tolerance [4], disease suppression [21, 82] and 
nutrient cycling [2, 52]. Plant microbiome composition 
and dynamics are shaped by host-microbe interactions, 
including the plants defense systems [28] and phyto-
chemical production [15, 73], such as phytohormones 
[20]. The rhizosphere and phyllosphere are spatially dis-
tinct plant habitats. The rhizosphere, which surrounds 
the plant root, is a highly complex and nutrient-rich 
environment that is influenced by the roots and har-
bours an abundance of diverse microorganisms [61]. In 
contrast, the phyllosphere, which describes the aerial 
components of the plant microbiome, is considered a 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Environmental Microbiome

*Correspondence:
Ziva Louisson
zlou499@aucklanduni.ac.nz
1 School of Biological Sciences, University of Auckland, 3a Symonds Street, 
Auckland 1010, New Zealand
2 PlantTech Research Institute, 29 Grey St, Tauranga 3011, New Zealand
3 School of Science, Auckland University of Technology, 34 St Paul Street, 
Auckland 1010, New Zealand

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-023-00526-5&domain=pdf


Page 2 of 16Louisson et al. Environmental Microbiome           (2023) 18:71 

more nutrient-limited environment, exposed to more 
variable conditions than the soil, such as fluctuations in 
temperature, moisture and UV radiation [73]. Relative 
to soil environments, the phyllosphere has low microbial 
abundance [23]. However, phyllosphere communities still 
play an important role in plant health and it is a potential 
entry point for bacterial pathogens [19].

A focus in microbial ecology is identifying the under-
lying drivers that shape microbial community structure. 
The physiochemical properties of soil environments are 
highly influenced by land use and land management 
practices, which in turn strongly impact the soil bacte-
rial community composition [29–31]. While less research 
has been directed towards the phyllosphere, primary 
sources of phyllosphere microbes have been identified as 
soils, plant seeds, the atmosphere and insect vectors [6, 
24, 49]. Some studies have identified that soil is the domi-
nant source of phyllosphere microbes, perhaps acting as 
a bacterial reservoir [24, 85], while others suggest that 
the atmospheric microbes are important for phyllosphere 
colonization [49, 56]. As the plant microbiome is increas-
ingly linked to ecosystem functioning, there are growing 
efforts to understand the dynamics of microbial commu-
nities in different agricultural systems, and particularly 
their consequences for plant health [24, 67, 85].

Understanding the mechanisms shaping microbial 
community assembly through resolving the relative influ-
ence of deterministic and stochastic processes on com-
munity structure is an important theme in microbial 
ecology [25, 53, 88]. Knowledge of these mechanisms 
is also of importance for managing plant health, since 
deterministic influences are intrinsically easier to pre-
dict than stochastic drivers of community change. Deter-
ministic theories specify that species patterns are shaped 
mainly by selection imposed by the abiotic environment 
and biotic interactions [70]. Under similar and consistent 
environmental conditions, selection leads to a higher-
than-expected similarity in community composition 
between local communities (homogeneous selection), 
while under variable environmental conditions, selection 
leads to lower-than-expected similarity in community 
composition between local communities (heterogene-
ous selection) [70, 76]. In contrast, stochastic processes 
involve less predictable factors such as dispersal, the 
movement of individuals from one location to another 
leading to chance colonization [17], and ecological drift 
and random extinction. When two local communi-
ties reside in environments with distinct abiotic condi-
tions, but have high rates of dispersal between them, this 
‘homogenising dispersal’ can lead to communities hav-
ing more similar composition than would otherwise be 
expected. In contrast, if two environments have similar 
abiotic conditions, but low dispersal rates, this ‘dispersal 

limitation’ can assist to maintain community composi-
tions that are more distinct than might otherwise be 
expected. However, dispersal limitation alone does not 
solely drive community composition turnover, but rather 
heightens the influence of stochastic changes (drift) in 
population size and spatial turnover [70, 76]. In addition, 
random births and deaths, rather than deterministic fac-
tors, can contribute to greater differences among com-
munities via ‘ecological drift’ [53].

Stegen et  al. [68] developed an analytical framework 
to infer the relative contributions of selection, disper-
sal and drift in structuring microbial communities. The 
framework is a two-step null model workflow based on 
phylogenetic and taxonomic turnover. Application of this 
framework to determine the balance between these eco-
logical processes has been explored across various envi-
ronments, including marine waters [78], lakes [3, 47], soil 
[35, 71] and crop systems [45, 87]. Community assembly 
processes have been explored in phyllosphere communi-
ties; however, research has focused mainly on examining 
primary colonisation sources [24] or successional dynam-
ics in community structure [49]. Research quantifying 
the relative influence of specific assembly processes (i.e., 
selection, dispersal and drift) on bacterial community 
structure among different plant components and how 
they vary through time remains largely unexplored. Soil 
pH and plant exudates are identified as important factors 
influencing the balance of deterministic and stochastic 
assembly processes in soil and plant-associated microbial 
communities [71, 72, 86],  however, less is known about 
the influence of underlying environmental factors on 
community assembly in managed agricultural systems. 
Understanding community assembly processes and the 
factors regulating such processes in agricultural systems 
can provide insights into the strength of the relationship 
between abiotic conditions and ecosystem processes, and 
the degrees to which communities can be influenced by 
targeted land management, such as inoculum transplants 
[8].

This study examines the temporal dynamics and com-
munity assembly processes of phyllosphere and soil 
bacterial communities in kiwifruit orchards, which are 
known to be vulnerable to invasion by pathogens such 
as Pseudomonas syringae pv. actinidiae (Psa). Disentan-
gling the interactions between kiwifruit soil and phyllo-
sphere microbial communities and understanding how 
the dynamics of these communities change through 
time can improve our understanding of plant–microbe 
interactions and form the basis for potential avenues 
for integrating crop-associated microbes into orchard 
management and protection. To our knowledge, this is 
among the first studies to examine temporal variation 
in the kiwifruit microbiome over a cropping season. We 
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used 16S rRNA gene amplicon sequencing to charac-
terise differences in the structure of leaf, fruit and soil 
bacterial communities and examine how they change 
over time. We analysed bacterial communities from 12 
kiwifruit orchards at six times, across the cropping sea-
son from December to June. We investigate the following 
questions: (1) Does the composition of bacterial commu-
nities vary among substrates? (2) Do the microbial com-
munities in the different components of the plant exhibit 
different levels of stability? (3) How similar are the above-
ground and belowground communities? (4) What are 
the dominant mechanisms driving bacterial community 
composition in each substrate? Investigating these ques-
tions will help us better understand the interconnected-
ness of crop microbiomes and further our understanding 
of the fundamental ecological processes driving com-
munity structure. A thorough understanding of crop 
microbiome diversity and dynamics could aid us in inte-
grating beneficial microbes into promoting agricultural 
production.

Materials and methods
Site description and sample collection
We collected soil, leaf and fruit samples from 12 kiwi-
fruit orchards in the Bay of Plenty region of New Zea-
land, including orchards of green (Haywards) and gold 
(Hort16A, Gold3) cultivars, the latter of which has 
greater resistance to the Psa pathogen [75]. The Hay-
ward orchards have an age range of 20 to 45 years, while 
the Gold orchards are aged between 15 to 30 years. The 
orchards are representative sites from New Zealand’s 
dominant kiwifruit growing zone, with an average total 
precipitation of 623.2  mm ± 20.7 and mean annual tem-
peratures of 13.7  °C ± 0.15  °C [83]. Sampling was con-
ducted six times throughout an entire season, with 
samples collected in December 2020, January, March, 
April, May and June 2021. However, we did not collect 
fruit samples for the January sampling due to insufficient 
resources at the time. Five kiwifruit vines were selected 
per site, with the same vines sampled at each time for 
soil (n = 360), leaves (n = 360) and fruit (n = 300). Six soil 
cores (0–10 cm depth, 2.5 cm diameter) were taken 1 m 
from the base of each vine in a radial pattern. At each 
sampling time, the soil cores were manually homogenised 
and pooled to form a composite sample per vine. To sam-
ple the phyllosphere, five different canes from each vine 
were selected, and ten fully developed leaves (two per 
cane) and five fruit (one per cane) were cut with sterile 
snips. The leaves and the fruit from each vine were com-
posited to form one leaf and one fruit sample per vine, 
per sampling time. All samples were placed into ster-
ile bags and kept on ice during sample collection, until 
they were transferred to − 20  °C storage, awaiting DNA 

extraction. Soil samples, composited per orchard for the 
first sampling occasion (December 2020), were used to 
determine soil chemical properties for each site (Addi-
tional file 1: Table S1).

DNA extraction, PCR and sequencing
To extract phyllosphere, or surface-associated DNA, five 
leaves were chosen from the ten leaf composite samples 
(per vine) and washed for 30 s in 50 mL of sterile isotonic 
saline (0.90% w/v of NaCL, 9.0 g per L) containing 0.01% 
Tween 80. All five fruits collected per vine were simi-
larly washed. For each composite sample, 25  mL of the 
washing liquid was transferred to 15 mL falcon tubes and 
centrifuged at 4000 ×g for 20  min. The supernatant was 
discarded, and the falcon tubes were stored at − 20  °C. 
Before DNA extraction, the material from the washed 
leaves and fruits were thawed and resuspended in 200 µl 
of sterile water; the soil cores were thawed and manu-
ally homogenized. We extracted genomic DNA from 
250  mg of each soil sample and the 200  µl of each leaf 
and fruit wash liquid using DNeasy PowerSoil HTP kits 
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions, with the following modifications; (i) 
a Qiagen TissueLyer II instrument (Retch) was used for 
mechanical lysis for 4  min at a frequency of 30  Hz; (ii) 
after adding the elution buffer, the plates were incubated 
at room temperature for 5 min. The extracted DNA (360 
soil, 360 leaf, 300 fruit = 1020 samples) was placed in 
− 20  °C storage. We amplified the V3/V4 region of 16S 
ribosomal RNA genes through PCR using the primers 
341F (5′-TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​
AGA​CAG​CCT​ACG​GGNGGC​WGC​AG-3′) and 785R 
(5′-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​
ACAG​GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′), modified 
with an overhang region complementary to the Illumina 
DNA sequencing adapters (underlined), which were 
optimised for use on Illumina MiSeq platforms [42]. 
Amplification reactions were carried out in a final vol-
ume of 25 µl containing 2.5 µl of 10X MTP Taq Buffer, 
0.5  µl of deoxynucleotide triphosphate mixture (dNTP; 
10  mM), 0.75 µl of each primer (10  µM) and 0.25  µl of 
MTP™ Taq DNA polymerase (Sigma-Aldrich, France). 
DNA template was amplified from each sample using 
the following conditions: (i) initial denaturation at 95°C 
for 3 min; (ii) 25 cycles of denaturation at 95°C for 30 s, 
annealing at 55°C for 30 s, and extension at 72°C for 30 s; 
and then (iii) a final extension at 72°C for 5 min. We puri-
fied the PCR products using DNA clean-up kits (Zymo 
Research), according to the manufacturer’s instruc-
tions. DNA concentration was quantified using a Qubit 
double-stranded DNA HS assay kit (Thermo Fisher Sci-
entific) and samples were normalised to 4  ng/µl. The 
purified PCR products were submitted to New Zealand 
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Genomics Ltd. (Auckland, New Zealand), which were 
then barcoded (Nextera XT dual indices), pooled and 
sequenced on an Illumina MiSeq instrument, producing 
2 × 300 bp paired-end reads. A ZymoBIOMICS Microbial 
Community Standard (mock extraction standard) and a 
ZymoBIOMICS Community DNA Standard (mock com-
munity standard) were used as controls to examine DNA 
isolation and sequencing run bias, respectively (Zymo 
Research). We extracted DNA from the mock extraction 
standard in the same manner as our samples. We ampli-
fied the isolated DNA from the mock extraction and 
community standard. We included the amplicons from 
the mock extraction standard on two sequencing runs 
and those from the mock community standards on all six 
sequencing runs.

Bioinformatics and statistical analysis
Demultiplexed sequence data were processed in R v 
4.2.2 [64], following the DADA2 pipeline [13]. We iden-
tified exact amplicon sequence variants (ASVs) using 
the DADA2 algorithm, resolving sequences at a single-
nucleotide level. Compared to traditional clustering 
approaches, DADA2 enables increased accuracy in iden-
tifying real biological variants and greater reproduc-
ibility [12]. Using the DADA2 package, we trimmed and 
filtered the reads to remove low-quality reads and prim-
ers, merged the paired-end reads and removed chime-
ras. For taxonomic assignment, we used the RDP’s naïve 
Bayesian classifier method [79] and the SILVA rRNA 
gene database, version 138.1 [63]. We omitted ASVs not 
categorised as bacterial, or those classified as chloro-
plasts or mitochondria. We rarefied the reads to 7,000 
sequence reads per sample (Additional file 1: Fig S1) for 
alpha diversity analyses, using the rarefy_even_depth 
function in the ‘phyloseq’ package [51]. After rarefaction, 
we retained 1001 out of 1020 samples. For beta-diversity 
analyses, all samples with < 1000 reads were removed, as 
biological patterns can be obscured by low library sizes, 
as recommended by Weiss et al., [81]. We retained 1011 
out of 1020 samples and Cumulative Sum Scaling (CSS) 
normalisation was executed on the non-rarefied data 
as recommended [58]. Differences were tested for sta-
tistical significance using a permutational multivari-
ate analysis of variance (PERMANOVA), implemented 
with the adonis function in the ‘vegan’ package [54]. For 
the CSS normalised data, the replicate data were aver-
aged for each site and time to generate one representa-
tive bacterial community per substrate, site and sampling 
time, which was used for all downstream analyses, unless 
stated otherwise. To construct a phylogenetic tree, the 
sequences were aligned using MAFFT (v 7.505) [36] with 
default settings, trimmed using trimA1 (v 1.2 rev 59) [14] 
with parameters set to -gt 0.3 and -st 0.001. The tree was 

constructed using FastTree (v 2.1.10) [62] with -gtr and 
-nt options selected. Climatic data were extracted for 
each site using GIS software from NIWA interpolations 
of climate station data [83]. We identified soil chemical 
and climatic variables which strongly correlated with 
each other (Pearson’s correlation < − 0.6 or > 0.6), and 
selected one of the variables as representative for down-
stream analyses. We retained three climatic variables and 
six soil chemical variables and discarded four and nine 
variables, respectively (Additional file 1: Table S2).

Sequencing summary
In the mock communities, taxonomy was assigned to 
genus levels and all eight of the bacterial genera defined 
in the mock communities were correctly identified in our 
mock samples (Lactobacillus was assigned as Limosilac-
tobacillus); no other genera were identified (Additional 
file 1: Fig S2). The mock extraction indicated some bias 
against Gram-positive bacteria, with lower relative abun-
dances of Enterococcus and Listeria. This extraction bias 
has been previously observed and is attributed to their 
thick cell wall [26]. The mock community standard dis-
played a comparable community structure across five 
sequencing runs. The mock sample from sequencing run 
three was omitted as there were no sequencing reads for 
this sample. Two negative samples, consisting of a pooled 
negative control from each PCR master mix and a control 
from the extraction kit, were also included in a sequenc-
ing run. We used the isContaminant function from the R 
package ‘Decontam’ [18] to identify and remove contami-
nant sequences. Eight taxa were identified as contami-
nants in the control sample and these taxa were removed 
for downstream analyses.

Quantitative analyses
To analyse the alpha diversity of communities from the 
different substrates (leaf, fruit and soil) and sampling 
times, we computed Shannon diversity index values using 
the estimate_richness function in ‘phyloseq’ [51]. For each 
substrate, we assessed the effects of orchard and time on 
the Shannon diversity index using analysis of variance 
(ANOVAs). For each substrate, we tested for statistically 
significant differences in Shannon diversity among sam-
pling times, using a Dunn’s test. We compared the bac-
terial communities among the different substrates and 
times by computing Bray–Curtis dissimilarity matrices 
using the ‘vegan’ package [54] in ‘R’ [64]. To investigate 
the relationship between the soil and phyllosphere com-
munities, we quantified the proportion of ASVs uniquely 
found in each substrate and the proportion of ASVs 
shared with the other substrates for the leaf, fruit and soil 
communities. We plotted the proportion of unique and 
shared taxa for each substrate and sampling date. We 
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excluded data from January as we do not have fruit com-
munity data for this date. We visualised the differences in 
community composition between substrates and times 
using non-metric multidimensional scaling (NMDS). 
Differences were tested for statistical significance using 
a PERMANOVA, implemented with the adonis function 
in the ‘vegan’ package. Centroids of data representing 
each site, sampling date, substrate and kiwifruit variety 
(Gold or Hayward) were calculated and an NMDS plot 
was generated to visualise the Bray–Curtis dissimilarity 
distance between the centroids. To investigate the tem-
poral trajectory of change for each substrate individu-
ally, the centroid of data representing each sampling date 
was calculated separately for the leaf, fruit and soil data 
and visualised on an NMDS plot. We performed a Man-
tel test, using the mantel function [54], to investigate the 
relationship between bacterial community composition 
(Bray–Curtis dissimilarity) and geographical distance 
(Euclidean distance between orchard coordinates).

Quantification of community assembly processes
We used the non-averaged replicate data to infer ecologi-
cal processes, running analyses separately for each sub-
strate and time (n = 1020; n = 60 per substrate and time). 
We applied a two-step null model approach, described 
by [68, 69], to infer the degree to which the leaf, fruit 
and soil communities are influenced by homogene-
ous selection, heterogeneous selection, dispersal limi-
tation, homogenising dispersal and drift, and how this 
changes through time. A requirement of the framework 
is that closely related taxa share habitat preferences, as 
determined by testing for phylogenetic relatedness. The 
weighted average score of the soil chemical and climatic 
variables was calculated for each ASV, and a Euclidean 
distance matrix was generated to represent differences in 
niche optima between ASVs. The cophenetic.phylo func-
tion in the ‘ape’ package [57] was used to compute a phy-
logenetic distance matrix based on the branch lengths of 
the phylogenetic tree. A Mantel correlogram was gener-
ated to relate niche differences between ASVs to their 
phylogenetic distances, using the mantel.correlog func-
tion from the ‘vegan’ package in ‘R’ [54]. The significance 
of these correlations was tested using 999 permutations 
of the data, with Holm correction to counteract the prob-
lem of multiple comparisons [32]. Phylogenetic cluster-
ing was observed across very short phylogenetic distance, 
indicating ecological niche distance increases with phylo-
genetic distance (Additional file 1: Fig S3). Phylogenetic 
overdispersion was observed at slightly more distant phy-
logenetic distances. These patterns became non-signifi-
cant over larger phylogenetic distances (Additional file 1: 
Fig S3).

Figure 1 displays a flowchart summarising our analyt-
ical workflow. The first step of the framework involves 
quantifying the observed β-mean-nearest-taxon-
distance (βMNTD), which calculates the phyloge-
netic turnover between each pair of local communities 
(n = 60 [5 vines × 12 orchards] per substrate and sam-
pling time). βMNTD was calculated using the comdist 
function from the package ‘picante’ [37]. A null dis-
tribution of the phylogenetic turnover was produced 
through randomisation by shuffling ASV names and 
abundances across the tips of the phylogenetic tree 
and recalculating the βMNTD 999 times, simulat-
ing expected βMNTD under stochastic processes. The 
β-nearest taxon index (βNTI) was calculated for each 
pairwise comparison and represents the difference (in 
units of one standard deviation of the null distribution) 
between the observed βMNTD and the mean of the 
null βMNTD. A βNTI value of < − 2 or >  + 2 indicates 
that the community composition was significantly con-
sistent with selection as the assembly process.

The second step uses a modified version of the Raup-
Crick metric, which incorporates Bray–Curtis distances 
(RCBray) to further partition the data for samples for 
which pairwise comparisons were not dominated by 
selection (βNTI <|2|) into being dominated by homog-
enising dispersal, dispersal limitation or drift, acting 
alone. RCBray compares the observed and expected 
turnover between two local communities, using com-
munity composition instead of phylogenetic turno-
ver. A Bray–Curtis dissimilarity is calculated for each 
pairwise comparison. This observed Bray–Curtis value 
is compared to a null distribution of Bray–Curtis dis-
similarity generated through a randomisation approach 
where ASVs are probabilistically pulled into each local 
community until the richness of that community is 
reached and one individual represents each recruited 
ASV. The likelihood of drawing a particular ASV is pro-
portional to the total number of sites it occupies. Reads 
of the recruited ASVs are then drawn into the commu-
nity until the sample read depth is reached. The prob-
ability of being drawn is proportional to that ASV’s 
relative abundance across all sites. The randomisation 
process and recalculation of Bray–Curtis dissimilarity 
was done 999 times to generate the null distribution 
for each pair of communities. The RCBray metric var-
ies between − 1 and + 1, with a value < − 0.95 or >  + 0.95 
specifying lower or higher than expected pairwise simi-
larity in community composition than when drift is 
acting alone [16, 68]. We separately quantified the per-
centage contribution of each ecological process across 
all pairwise comparisons, for each substrate and sam-
pling time.
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Fig. 1  A flow chart displaying the analysis workflow (black arrows) for inferring the influence of ecological processes (box labels) on the kiwifruit 
vine microbiome, and a summary of the putative assembly processes. The vine signifies the regional microbial species pool or metacommunity. 
Two environments with different conditions are represented by a grey leaf (environment 1) and a white leaf (environment 2), respectively. 
For each pair of local communities (run separately for each substrate and time point, n = 60), the observed level of phylogenetic turnover, or beta 
mean nearest taxon distance, was determined (βMNTDobs). A null distribution of phylogenetic turnover values (βMNTDnull) was computed 
by randomly shuffling species names and abundances across the tips of the phylogeny. β-nearest taxon index values (βNTI) represent the difference 
between the βMNTDobs and the mean of the βMNTDnull. A βNTI value of < − 2 or >  + 2 indicates that the community composition was significantly 
consistent with selection as the assembly process. A βNTI value of < − 2 indicates that homogeneous selection was the principal assembly 
process. A βNTI value of >  + 2 indicates that heterogeneous selection was the principal assembly process. Further separation of the data was done 
for samples for which pairwise comparisons were not dominated by either homogeneous or heterogeneous selection (BNTI <|2|). We compared 
the observed pairwise Bray–Curtis dissimilarity (BCobs) between samples to values obtained from a null distribution of Bray–Curtis values (BCnull). 
Raup-Crick, based on Bray Curtis dissimilarity (RCBray), uses the deviation between BCobs and BCnull to disentangle variation in community 
dissimilarity from variation in α-diversity and ranges between − 1 and + 1. An RCBray value of < − 0.95 or >  + 0.95 specifies lower or higher turnover 
than expected if the sole mechanism shaping the community composition were due to ecological drift. An RCBray value of < − 0.95 indicates 
that homogenising dispersal was the dominant assembly process. An RCBray value of >  + 0.95 indicates that dispersal limitation was the dominant 
assembly process. The portion of insignificant RCBray values for each pairwise comparison ( <|0.95|) are those where drift is estimated to dominate 
community assembly
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Influence of environmental variables
We performed variance partitioning using the varpart.
MEM function [46] to quantify the relative variance 
explained by data attributed to the categories of soil 
chemistry, climate, kiwifruit variety and time on each 
substrate separately. The soil chemistry (pH, anaerobi-
cally mineralisable N: Total N, Total nitrogen (TN, %), 
C: N, Potassium (me/100  g), Sodium (me/100  g)) and 
climatic variables (Jan (summer) max temperature (℃), 
July (winter) min temperature (℃), total precipitation 
(mm)) were standardised using the deconstand func-
tion in the R package ‘vegan’ [54]. The kiwifruit variety 
data of Hayward and Gold were converted into a binary 
(0/1) variable, representing the two levels of this cate-
gorical variable used as model inputs. For the time vari-
able, we represented the months using sine and cosine 
functions to incorporate the cyclical nature of seasonal 
variation into the model. To evaluate the relation-
ship between microbial community turnover, climatic 
variables, and soil chemical properties, we calculated 
Pearson’s correlations between βNTI and each environ-
mental variable. As we have one composite soil chemi-
cal sample per site, we calculated the median βNTI 
value for each substrate per orchard. The median value 
represents the median of all pairwise comparisons to 
every other sample. We found the median value across 
all times sampled. We plotted the linear regression of 
those significantly correlated.

Results
Variability of bacterial community composition
There was no significant relationship between beta 
diversity (Bray–Curtis) and geographical distance 
between the orchards (Mantel, r = 0.015, P = 0.54). 
Additionally, bacterial community composition was not 
significantly different within replicates (PERMANOVA, 
P = 0.518, Additional file  1: Table  S3). Bacterial com-
munity composition was significantly different among 
kiwifruit varieties (PERMANOVA P < 0.05, Table  1), 
orchards, substrates (leaves, fruit and soil), and sam-
pling times (PERMANOVA, all P < 0.001; Fig.  2, 
Table  1). Substrate explained the greatest amount of 
compositional variation (R2 = 43%), followed by sam-
pling month (R2 = 9%, Table 1). The largest shift in com-
munity composition occurred between May and June 
(Fig.  2). Kiwifruit variety and orchard both explained 
significant variation in community structure. However, 
they account for less variation (1% and 4% respectively, 
Table 1).

Greater temporal stability in bacterial community 
composition in soil than the phyllosphere
As most of the variation was attributed to substrate and 
temporal variation, we plotted two additional NMDS 
plots to more thoroughly investigate the difference in 
bacterial community composition among the substrates 
(Fig.  3a) and their temporal trajectories (Fig.  3b). The 
greatest difference in community composition was 
observed between the soil communities and the phyl-
losphere communities (leaves and fruit) (Fig.  3a). A 
pairwise PERMANOVA analysis indicated that the 
community composition among all substrates was sig-
nificantly different (P < 0.001), with 17% of the varia-
tion between fruit and leaf communities attributed to 
substrate, compared to other variation not tested (e.g. 
time or variety) (Table 2). In comparison, 45% and 42% 
of the variation between leaf and soil and fruit and soil 
communities was attributed to substrate (compared 
to other variation not tested), respectively (Table  2). 
The Bray–Curtis distances among the sampling times 
were greater in the leaf and fruit community data com-
pared with the soil community data (Fig.  3). Bacterial 
composition in the leaf and fruit communities was sig-
nificantly different between each of the successive sam-
pling times (Pairwise PERMANOVA, P < 0.05), except 
between the March and April fruit samples, which 
did not significantly differ (Pairwise PERMANOVA, 
P = 0.169) (Additional file 1: Table S4a and b). Bacterial 
communities within the soil samples were composition-
ally comparable across the successive sampling times 
(Pairwise PERMANOVA, P > 0.05), except between the 
samples transitioning from March to April and May to 
June, which were compositionally distinct from each 
other (Pairwise PERMANOVA, P < 0.05) (Additional 
file 1: Table S4c). The largest temporal shift in commu-
nity structure in the leaf data was observed from May 
to June. The largest temporal shift in community struc-
ture in the fruit data was observed from December to 
March, with the second largest shift observed from 
May to June (Fig.  3b). Note that we did not have fruit 

Table 1  PERMANOVA results of bacterial community 
composition indicating the partitioning of variation and tests for 
kiwifruit variety, orchard, sample time and substrate

Source of variation d.f. Sum of Sqs R2 F P

Variety 1 0.54 0.01 3.20  < 0.05

Orchard 10 3.22 0.04 1.89  < 0.001

Time 5 6.72 0.09 7.91  < 0.001

Substrate 2 31.23 0.43 91.81  < 0.001

Residuals 185 31.47 0.43
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sample data for January; therefore, the December to 
March transition represents a longer time period.

Taxa identified in the phyllosphere communities 
were largely not found in the soil communities
The most abundant phylum among all the substrates 
was Proteobacteria. Only four abundant phyla, clas-
sified as making up over 1% of the total relative 
abundance, were identified in the phyllosphere commu-
nities: Actinobacteriota Bacteroidota, Firmicutes and 
Proteobacteria. Contrastingly, there were eight abun-
dant phyla identified in the soil communities: Acido-
bacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, 
Firmicutes, Verrucomicrobio and Proteobacteria (Addi-
tional file  1: Fig S4). For each of the substrates, both 
time and orchard had significant effects (P < 0.001) on 
the alpha diversity of the bacterial communities and a 
significant interaction (P < 0.001) was present. For each 
substrate, the effect of time was larger than orchard 
(leaves: F = 13.10 and 6.35, fruit: F = 39.56 and 5.53, 
soil: F = 12.25 and 6.10 for time and orchard respec-
tively). Overall, bacterial communities in the soil were 
more diverse than in the phyllosphere communities 
(Fig. 4a). The bacterial diversity of the leaf communities 
significantly increased (Shannon index, Dunn’s P < 0.05) 

after January and then decreased in May. There was a 
significant increase (Dunn’s P < 0.05) in bacterial diver-
sity in the fruit samples after December, and then a 
significant decrease in Shannon diversity in June. The 
diversity of the bacterial communities in the soil fluc-
tuated through time, with each successive month sig-
nificantly more or less diverse than the previous month 
(Dunn’s P < 0.05), except May and June where diversity 
did not significantly differ between the months (Dunn’s 
P > 0.05).

Of the ASVs identified in the phyllosphere samples, 
the majority were not present in the soil, with > 80% 
and > 90% of taxa observed in the fruit and leaf sam-
ples, respectively, not observed in the soil at each time 
(Fig. 4). The proportion of unique ASVs observed in the 
fruit samples remained relatively stable through time, 
with an average of 57.8% (Fig.  4b). However, the pro-
portion of unique ASVs observed in the leaf samples 
gradually reduced from 79.2% in December to 46.1% 
in June. This was largely due to increased ASVs shared 
with the fruit samples from 13% in December to 49.1% 
in June (Fig. 4b). Of the ASVs identified in the soil sam-
ples, > 90% of taxa observed in the soil samples were 
not observed in the leaf or fruit communities at each 
time (Additional file 1: Fig S5).

Fig. 2  Bray–Curtis dissimilarity-based non-metric multidimensional scaling (NMDS) ordination of bacterial community composition. Differences 
in bacterial community composition have been averaged to form one representative point for each variable. The trajectory of change in bacterial 
composition is represented by the arrow connecting the month points



Page 9 of 16Louisson et al. Environmental Microbiome           (2023) 18:71 	

Fig. 3  Bray–Curtis dissimilarity-based non-metric multidimensional scaling (NMDS) ordinations of A bacterial community composition and B 
the mean trajectory of temporal change in bacterial composition for each substrate. P-values from PERMANOVA assessing substrate and temporal 
effects and their interaction are displayed in the bottom right corner of plot A 
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Community assembly processes
We identified the dominant community assembly pro-
cesses in the three substrates and examined how they 
varied through time. In the phyllosphere substrates, we 
found stochastic processes were more important than 
deterministic processes in driving community assembly 

(largely drift and dispersal limitation, Fig. 5a and b). In 
the leaf communities, > 70% of all pairwise comparisons 
for each time, except June, did not have significantly 
different phylogenetic or compositional turnover than 
expected if the mechanism shaping turnover were due 
to ecological drift. In June, the dominant assembly pro-
cess in the leaf communities shifted from drift (32.2% 
of all pairwise comparisons) to dispersal limitation 
(64.1% of all pairwise comparisons; Fig.  5a). The fruit 
samples had a similar assembly profile to the leaf sam-
ples, with drift being the dominant mechanism each 
time, except June, where it was the dominant process 
for 47.4% of all pairwise comparisons, while dispersal 
limitation accounted for 50.2% of all pairwise com-
parisons (Fig. 5b). In contrast, in the soil communities, 

Table 2  Pairwise PERMANOVA testing for the effect of substrate 
on bacterial community composition

Pairwise comp d.f Sum of Sqs R2 F P

Leaves × fruit 1 6.10 0.17 26.17  < 0.001

Leaves × soil 1 21.98 0.45 118.06  < 0.001

Fruit × soil 1 19.06 0.42 95.2  < 0.001

Fig. 4  A Boxplots displaying the estimated Shannon diversity index values of the bacterial communities of the leaf, fruit and soil substrates. 
Shannon diversity index values were quantified using the rarefied data. The boxes represent the interquartile range (IQR: 25–75% of the data), 
the horizontal line indicates the median, while the whiskers extend to 1.5 times the IQR. The points represent individual values for each 
of the samples. Boxes with different letters within each panel indicate significant differences from each other (Dunn’s P < 0.05). B Stacked bar plots 
of the percent of taxa found in the leaf and fruit communities that were only found in data from those substrates or also identified in the data 
from the other substrates. Bar plots displaying the percent of shared and unique taxa found in the soil communities are displayed in Additional 
file 1: Fig S5
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deterministic processes were the dominant mechanism 
driving community assembly (largely homogeneous 
selection, Fig.  5c). The proportions of estimated eco-
logical processes varied little through time in the soil 
communities, except for a decrease in homogeneous 
selection from May to June, from 81.3 to 50.5%, and 
an increase of dispersal limitation from 7.8 to 37.2% 
(Fig. 5c).

Influence of environmental factors
Variance partitioning indicated that the largest varia-
tion explained by a single category was time for both 
the leaf and fruit communities, explaining 26% and 
38%, respectively (Fig. 6a and b). For the soil communi-
ties, the largest section of variation explained by a sin-
gle category was 14% by soil chemistry. Soil chemistry 
explained a further 7% of the variance in community 
composition when assessed in combination with the 
other variables (climate; Fig. 6c).

To identify key factors influencing the balance 
between stochastic and deterministic processes, we 
assessed the Pearson’s correlation between each envi-
ronmental variable and the median βNTI value for each 
substrate per orchard. There were no significant corre-
lations between the measured environmental variables 
and the median βNTI of the leaf or fruit communities. 
However, there was a strong relationship between the 
median βNTI of the soil communities and total nitro-
gen (slope = 1.19, R = 0.65, P < 0.05) and a strong rela-
tionship between median βNTI and the minimum July 
(winter) temperature (slope = 0.26, R = 0.75, P < 0.01; 
Fig.  6d and e). There were no significant correlations 
between βNTI of the soil communities and the other 
measured environmental variables.

Discussion
Our study provides new insights into the connectivity of 
soil and phyllosphere bacterial communities in managed 
systems. Overall, our study indicates very restricted con-
nectivity between the communities residing below and 
above ground, with distinct community compositions 
and limited shared taxa. These differences are reflected in 
the contrasting temporal stability observed and the dis-
tinct underlying community assembly processes occur-
ring in the soil and phyllosphere communities. The low 
connectivity between the belowground and aboveground 
communities, combined with the high temporal variabil-
ity and highly stochastic nature of community assembly 
processes in the phyllosphere environment indicates 
that predicting the ecological responses to environmen-
tal changes or disturbance could be challenging for these 
communities.

Soil communities are more stable 
than phyllosphere communities
We observed significantly different bacterial community 
compositions among the communities residing on the 
leaves, fruit and soil substrates, in line with other stud-
ies [24, 74, 77, 84]. Additionally, we observed temporal 
variation in both the diversity and composition of the 
bacterial communities among all the substrates. How-
ever, we showed that the bacterial communities residing 
in the soil were much more stable through time, relative 
to the communities located in the phyllosphere. Tempo-
ral dynamics of soil microbial communities are highly 
complex and vary across different land use systems, with 
both temporal variation [10, 41, 44] and temporal stabil-
ity [31, 60] observed in agricultural and unmanaged sys-
tems. Consistent with our observations, a meta-analysis 
showed that, when compared to other biomes (e.g. air, 

Fig. 5  Stacked bar plots of the percent contribution of various ecological processes, determined as the primary assembly process governing 
the turnover of bacterial communities, for each pairwise comparison between local A leaf, B fruit and C soil communities, and how this varies 
through time
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flowers, marine), soil bacterial communities had con-
sistently less temporal variation [66]. Our results further 
support that land use management and soil physiochemi-
cal properties are the dominant drivers of community 
turnover in soil environments [29–31, 43].

In contrast to soil, the bacterial communities on the 
leaves and fruit were highly variable over time. This is not 
surprising as we were observing microbial community 
succession within new environments as the leaves and 
fruit grow and develop through the season [66]. Although 
the exposed nature of the phyllosphere will undoubt-
edly influence community variability, our variance 

partitioning results suggest that the high temporal vari-
ability in the phyllosphere communities is driven to a 
greater extent by the development of the substrates and 
community succession than changes in the climate or soil 
chemical properties.

Furthering our understanding of the seasonal varia-
tion in bacterial communities can provide insights into 
how the communities will respond to disturbances or 
climate change. The higher temporal stability in the soil 
communities and the higher diversity may indicate that 
the soil communities have a greater buffering capacity 
towards environmental changes than the phyllosphere 

Fig. 6  The amount of variation in bacterial community composition of the A leaf, B fruit and C soil communities, based on variance partitioning 
(VarPart), that could be explained by time (sample dates), kiwifruit variety (Hayward, Gold), soil chemistry (pH, anaerobically mineralisable N: Total N, 
Total nitrogen (TN, %), C: N, Potassium (me/100 g), Sodium (me/100 g)), climate (Jan (summer) max temperature (℃), July (winter) min temperature 
(℃), total precipitation (mm)). D & E display the relationship between the median βNTI value of each orchard in the soil communities and D total 
nitrogen and E July minimum temperature of each orchard. Pearson’s correlation was used to measure the strength of the relationships
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communities [33]. However, although we have observed 
relative stability in the soil communities, greater tem-
poral variation could still be present over a longer time-
frame than our study (for example, ten years), as soil 
bacterial communities appear to respond slowly to envi-
ronmental change [48].

Limited connectivity between the belowground 
and aboveground microbial communities
We observed very limited connectivity between the 
soil microbial communities and the phyllosphere com-
munities, with > 80% and > 90% of taxa observed on the 
fruit and leaves not present in the soil, respectively. This 
indicates that alternative sources such as air, surround-
ing vegetation or animal vectors provide the dominant 
microbial source populations for phyllosphere com-
munities in kiwifruit orchards. This may also include 
human vectors as manual operations are carried out 
in the orchards for pruning and harvesting. Bacterial 
colonisation of the phyllosphere from the air has been 
observed [49], however, limited studies focusing on the 
relative contribution of soil and atmospheric bacteria to 
phyllosphere communities exist in the field. Sampling 
the atmospheric microbial communities in addition to 
the soil and phyllosphere communities can further our 
understanding of phyllosphere colonisation. Our study 
suggests the soil communities have reduced influence 
on phyllosphere colonisation and community turnover. 
This is in contrast to studies of other agricultural plants 
where soil has been identified as the major source of 
phyllosphere microorganisms [24, 27, 85], however it is 
in agreement with observations from a study examin-
ing the strawberry microbiome [55]. These varied results 
highlight the complexity of microbial communities and 
suggest host-specific factors and stochastic processes are 
more important in predicting phyllosphere colonisation 
than soil properties. In combination with our results of 
low connectivity between the belowground and above-
ground communities, this suggests that management 
strategies (such as inoculation or pathogen controls) 
should be considered separately when targeting the soil 
and phyllosphere components as management practices 
undertaken in the soil may not necessarily be reflected in 
the aboveground communities. Alternatively, the differ-
ing results could also be an artifact of the different bio-
informatic analyses of the sequencing reads. The studies 
with more connectivity observed used traditional clus-
tering of sequences into operational taxonomic units 
(OTUs), generally clustered at 97% similarity. However, 
our sequencing reads and Olimi et al. [55] were resolved 
to amplicon sequence variants (ASVs) at single-nucle-
otide resolution [12]. Therefore, our more stringent 

grouping is potentially why we observed fewer shared 
taxa (at the ASV level).

Dominant community assembly processes contrast 
between the soil and phyllosphere communities
Overall, we found that bacterial communities residing 
belowground and aboveground were regulated by dis-
tinct assembly processes (deterministically dominated in 
soil communities compared to stochastically dominated 
in phyllosphere communities). These processes were 
broadly consistent through time. The strong influence of 
homogeneous selection on the soil bacterial community 
assembly was consistent with the larger proportion of 
community composition explained by soil chemical prop-
erties and climatic variables in the variance partitioning 
analysis. Total soil nitrogen and July minimum tempera-
ture were also identified as mediators of deterministic 
processes in the soil communities. No relationship was 
determined between the measured environmental vari-
ables and the phylogenetic turnover of the phyllosphere 
communities. The dominance of deterministic processes 
has been attributed to consistent selective pressure due 
to consistent environmental conditions [69]. Therefore, 
the higher consistency in soil environments relative to 
the phyllosphere likely explains the contrasting assem-
bly processes. Our findings suggest that the responses 
of bacterial communities to environmental change may 
be more predictable than those in the phyllosphere, 
and management strategies targeting soil communities 
should consider environmental conditions.

Although homogeneous selection was the dominant 
mechanism, dispersal limitation was also a driver of soil 
community assembly. Soil pH has been identified as a 
dominant mediator of the balance between determinis-
tic and stochastic processes, with selection increasing in 
environments with extreme pH conditions [34, 71]. There 
was limited variation in the pH levels of the soils in our 
sites, with relatively neutral pH (average pH = 6.7). The 
non-extreme chemical conditions of the soils in our sites 
may explain the influence of stochastic assembly pro-
cesses as described in Tripathi et  al. [71]. However, we 
expect the influence of dispersal limitation to decrease if 
we analysed the assembly processes separately for each 
site, as dispersal limitation has been observed to increase 
with spatial scale in vineyards [45].

Our findings suggest that stochastic processes such as 
drift and dispersal underpin the colonisation of the phyl-
losphere. Dispersal limitation had a higher influence on 
the structure of communities residing on the fruit, com-
pared to the leaves. In kiwifruit orchards, the fruit hangs 
below the leaves and is more sheltered from the wind and 
rain than the exposed leaves. As most bacteria colonising 
the phyllosphere in our study did not originate from the 
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soil, the more sheltered position of the fruit could explain 
the higher importance of limited dispersal observed 
in the fruit communities. Additionally, we saw a large 
increase in the influence of limited dispersal in the leaf 
communities in June. Insects play a role in the dispersal 
of microorganisms, with studies describing the dispersal 
of Saccharomyces cerevisiae by bees [22] and flies [11] in 
vineyards. Therefore, this increase in the relative impor-
tance of dispersal could, in part, be related to reductions 
in insect vectors as the season transitions to winter [5] 
and, in turn, reduced bacterial dispersal. However, we do 
not know the relative influence of insect vectors on phyl-
losphere colonisation in our orchards, so we cannot draw 
strong conclusions. Additionally, management practices 
such as artificial pollination can alter the microbial com-
munities in orchards [39].

The regulation of phyllosphere communities by sto-
chastic processes, combined with the low connectivity 
between the belowground and the aboveground com-
munities, suggests that predicting community dynam-
ics or pathogen establishment in the phyllosphere could 
be challenging. Community structure and phylogenetic 
distance have long been postulated to predict pathogen 
invasion success due to heightened competitive exclu-
sion from closely related taxa. Therefore, higher diver-
sity can theoretically confer higher resistance to invasion 
[50, 80]. However, studies vary in the relative importance 
attributed to phylogenetic relatedness compared with 
the propagule pressure (the abundance of the invading 
pathogen) [38, 80]. In our study, the stochastic nature of 
the community assembly processes observed in the phyl-
losphere suggests that invasion success by a pathogen will 
likely depend on propagule pressure rather than strong 
competition from the resident community. This indicates 
that manipulating the diversity of the resident commu-
nity may not be the most successful preventative measure 
against pathogen invasion, but rather a focus on monitor-
ing or reducing propagule pressure, for example through 
applying phage-based biocontrol strategies [59].

Conclusion
As increasing attention is being directed towards poten-
tial applications of microbes for higher sustainability and 
productivity in agriculture, we are seeing a shift from 
focusing on single beneficial microbes to a more holistic 
community-level perspective [65]. Therefore, increasing 
our understanding of the underlying community dynam-
ics and the mechanisms shaping community assembly 
processes is important, particularly in crop systems. 
Our findings indicate there is limited connectivity in the 
belowground and aboveground bacterial communities 
of kiwifruit  plants in terms of common taxa and domi-
nant community assembly processes. This suggests that 

potential microbiome-targeted management strategies 
could be more effective when customised to the specific 
target area, accounting for the contrasting community 
dynamics.
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