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Abstract 

Background  Due to anthropogenic climate change and historic fire suppression, wildfire frequency and severity 
are increasing across the western United States. Whereas the indirect effects of fire on wildlife via habitat change 
are well studied, less is known about the impacts of wildfire smoke on animal health and behavior. In this study, we 
explore the effects of wildfire smoke on the behavior of eight medium- to large-bodied mammalian species in a het-
erogenous study area in Washington, USA. We linked population-level activity metrics derived from camera trap data 
to concentrations of fire-specific fine particulate matter (PM2.5). We hypothesized that mammalian activity would 
decline during smoke events, as animals attempt to reduce potential health impacts of smoke inhalation. We used 
occupancy models and Poisson regression models to test the effect of fire-specific PM2.5 levels on daily detection 
probability and the number of detections per day, respectively, for each study species.

Results  While we did not observe any significant responses to daily mean concentrations of PM2.5 in the occupancy 
models, we found three species with significant responses in their rates of detections per day in the Poisson regres-
sion. Specifically, for each standard deviation increase in the daily mean concentration of PM2.5, there was a 12.9% 
decrease in the number of bobcat detections per day, an 11.2% decrease in the number of moose detections per day, 
and a 5.8% increase in the number of mule deer detections per day. In general, the effects of PM2.5 were small com-
pared to other relevant covariates.

Conclusions  We generally found little evidence to support our hypothesis that animals would reduce their activity 
in response to wildfire smoke. However, our study demonstrated that mammals exhibited species-specific behavioral 
responses to smoke, which are possibly adaptive responses to reduce health impacts from smoke inhalation. Though 
we found only a few immediate behavioral responses to smoke exposure, we note that longer-term health conse-
quences of smoke exposure for wildlife are also likely and generally unknown. Our study shows how camera traps, 
which are already widely used to study wildlife, can also be used to investigate the impacts of wildfire smoke on ani-
mal behavior and provides a step towards developing methods to better understand this increasing source of envi-
ronmental stress on wildlife.
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Resumen 

Antecedentes  Debido al cambio climático de origen antrópico y la histórica supresión de fuegos, la frecuencia 
e intensidad de los incendios se están incrementando a lo largo y ancho del oeste de los EEUU. Mientras que los 
efectos indirectos del fuego sobre la fauna, a través de los cambios en el hábitat, han sido bien estudiados, es menos 
conocido el impacto del humo causado por los incendios sobre la salud y el comportamiento animal. En este trabajo, 
exploramos los efectos del humo causado por incendios en el comportamiento de ocho mamíferos, de tamaños 
medianos a grandes, en un área de estudios heterogénea en Washington, EEUU. Relacionamos las medidas de activi-
dad a nivel de poblaciones, derivadas de datos de cámaras trampas, con concentraciones de partículas finas (PM2,5) 
generadas específicamente por fuegos. Hipotetizamos que la actividad de los mamíferos podría declinar durante 
eventos que producen humos, dado que los animales tienden a reducir el riesgo potencial sobre su salud al inhalar 
esos humos. Usamos modelos de ocupación y regresiones de Poisson para probar los efectos específicos de niveles 
de PM2,5 en la probabilidad de detección diaria y en el número de detecciones diarias para cada especie en estudio, 
respectivamente.

Resultados  Aunque no observamos ninguna respuesta significativa a las concentraciones diarias de PM2,5 en los 
modelos de ocupación, encontramos tres especies con respuestas significativas en su tasa de detección diaria medi-
ante el modelo de regresión de Poisson.

Específicamente, para cada incremento en la desviación estándar en la concentración media de PM2,5, hubo un 
12.9% de decrecimiento en la detección de linces por día, un 11,2% de decremento en el número de alces america-
nos detectados, y un 5,8% de incremento en la detección de ciervos mulos por día. En general, los efectos del PM2,5 
fueron muy pequeños en relación a otras covariables relevantes.

Conclusiones  Encontramos en general poca evidencia para avalar nuestra hipótesis de que los animales podrían 
reducir su actividad en respuesta al humo de incendios de vegetación. Sin embargo, nuestro estudio demostró que 
los mamíferos exhibieron respuestas de comportamiento especie-específicas al efecto del humo, las cuales podrían 
revelar respuestas adaptativas para reducir impactos en su salud por inhalación de humo. Aunque encontramos 
solamente muy pocas indicaciones de comportamiento inmediatas a la exposición al humo, notamos que las conse-
cuencias a largo plazo en la salud para la fauna son posibles, aunque desconocidas. Nuestro estudio mostró como las 
cámaras trampa, que son ampliamente usadas para estudiar la fauna silvestre, pueden ser usadas para investigar los 
impactos del humo de los incendios sobre la conducta animal, y que proveen de un paso más para el desarrollo de 
métodos para entender mejor esta fuente incremental de estrés ambiental sobre la fauna.

Background
Wildfire activity is increasing globally, including in the 
western United States, exacerbated by anthropogenic 
climate change and the build-up of fuels from decades 
of fire suppression (Abatzoglou and Williams 2016). 
Many studies of the effects of wildfires on wildlife focus 
on indirect impacts, such as habitat loss in post-fire 
landscapes. However, an increasing and understudied 
threat to wildlife is large-scale smoke exposure (Sand-
erfoot et  al. 2022). Wildfire smoke is a known threat 
to human health—exposure to smoke has been linked 
to increases in short-term mortality rates and hospi-
tal admissions for respiratory illness (Kollanus et  al. 
2016; Chen et al. 2021). Fine particulate matter (PM2.5; 
solid and liquid particles less than 2.5  µm in diam-
eter), a major component of wildfire smoke, as well as 
of other sources of pollution (Chen et  al. 2021), is the 
leading cause of outdoor air pollution-related mortal-
ity globally (Lelieveld et  al. 2015). Just as communi-
ties worldwide are increasingly exposed to wildfire 

smoke, wildlife is also experiencing more frequent and 
severe wildfire smoke events. However, research on the 
impacts of smoke on the health and behavior of wild 
animals is extremely limited, and the impacts of wild-
fire smoke on wildlife populations are largely unknown 
(Sanderfoot et al. 2022). As a result, understanding the 
consequences of wildfire smoke for wildlife populations 
is becoming increasingly relevant for conservation.

Smoke inhalation affects animal physiology and 
behavior. Smoke inhalation can lead to carbon mon-
oxide poisoning, immunosuppression, and respiratory, 
cardiovascular, and neurological pathologies and may 
result in mortality (Drobatz et al. 1999a, b; Sanderfoot 
and Holloway 2017). Behavioral responses to smoke 
could be indicative of such underlying, adverse health 
effects. For example, mounting an immune response 
to smoke would consume energy that could otherwise 
be used for behaviors such as defending territories or 
attracting mates, resulting in decreased activity (Erb 
et  al. 2018; Sanderfoot et  al. 2022). Several studies of 
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the impacts of air pollution on domestic and captive 
animals suggest that wildfire smoke is likely to affect 
the health of large mammals in the wild. Air pollution 
(specifically ozone, PM10, and nitrogen dioxide) was 
linked to increased mortality of dairy cows (Bos tau-
rus) on a farm in Belgium (Cox et al. 2016). In contrast, 
for cattle in the Netherlands, no consistent effect of air 
pollution (ozone, PM10, nitrogen dioxide, or ammonia) 
on mortality was observed (Egberts et al. 2019). Other 
health metrics provide a more nuanced picture of the 
effects of smoke in particular on large animal health. 
For example, a recent study directly linked exposure to 
PM2.5 from wildfire smoke to negative health effects in 
dairy cows, including reduced milk production, altered 
metabolism, and changes in blood immune cell com-
position (Anderson et al. 2022), and a study of captive 
rhesus macaque monkeys (Macaca mulatta) found 
that exposure to smoke as infants led to reduced lung 
volume as adolescents (Black et al. 2017). Case studies 
from veterinary medicine indicate respiratory and neu-
rological effects of smoke exposure for cats (Felis catus) 
and dogs (Canis familiaris) (Drobatz et  al. 1999a, b). 
While studies of domestic and captive animals are use-
ful in considering potential impacts of smoke exposure 
for wildlife, animal behaviors in the wild often differ 
from those in captivity.

Smoke may also drive behavioral changes that are unre-
lated to health effects. For example, wildfire smoke alters 
the visual and olfactory cues that wildlife use for forag-
ing (Jetz et al. 2003), navigation and migration (Hegedüs 
et  al. 2007), and predator/prey detection (Apfelbach 
et  al. 2005), which can also lead to behavioral changes. 
Research has shown that smoke prompts some mam-
mals to exhibit energy-conserving behaviors, such as tor-
por, that presumably help animals avoid hostile fire and 
post-fire environments (Dickinson et al. 2009; Matthews 
et al. 2017; Geiser et al. 2018). Other animals adjust their 
behavior to take advantage of resources available in post-
fire landscapes; for example, predators have been known 
to hunt animals that flee fire and smoke (Hovick et  al. 
2017). Wildlife use odors and chemosensory cues to 
detect prey or predators (Apfelbach et  al. 2005; Garvey 
et al. 2017; Hughes et al. 2010; Kats and Dill 1998), forage, 
or find mates (Finnerty et al. 2022). Thus, the disruption 
of these cues and odors by the chemical composition of 
smoke can alter the mechanisms that animals use in for-
aging, risk aversion, and mating behavior which impacts 
their movement patterns (Finnerty et  al. 2022). Smoke 
also affects sky polarization used for navigation in wildlife 
(Hegedüs et al. 2007); in fact, elevated PM2.5 levels were 
associated with longer foraging trips for honeybees (Apis 
mellifera, Cho et al. 2021). Similarly, high concentrations 
of smoke were related to tule greater white-fronted geese 

(Anser albifrons) stopping their migration or changing 
direction resulting in longer migration times and dis-
tances (Overton et al. 2022). Though the specific mech-
anism for this changed behavior is unknown, the result 
was energetic deficits (Overton et al. 2022). Thus, while 
responses to smoke may vary by species, these behavio-
ral and physiological effects could compound to impact 
population-level rates such as changes in survival or 
fecundity, with consequences for the conservation and 
management of wildlife (Sanderfoot et al. 2022).

Monitoring the health of wild animals, especially large 
animals, is expensive and invasive, making it difficult to 
directly examine the effects of wildfire smoke and sub-
sequent population-level impacts. However, behavioral 
responses are more easily observed and can serve as a 
proxy for underlying health effects, as demonstrated in 
a study of orangutans (Pongo pygmaeus; Erb et al. 2018). 
Erb et al. (2018) documented the behavior of four oran-
gutans in Indonesia during a severe smoke event and 
found that they rested more and traveled less when it was 
smoky. Additionally, ketones in the orangutans’ urine 
were elevated during and after the smoke event, indi-
cating fat burning from elevated calorie expenditure—
likely due to an immune response to smoke inhalation 
(Erb et al. 2018). During the same severe fire season, Lee 
et al. (2017) documented rapid declines in acoustic activ-
ity in bird and Orthoptera communities in Singapore 
in response to air pollution associated with wildfires, 
although they were unable to determine the mecha-
nisms driving this response. Similarly, gibbons (Hylobates 
albibarbis) were observed to sing less on smoky days in 
Borneo, despite otherwise good weather conditions, 
an effect hypothesized to be related to poorer health 
(Cheyne 2008). While valuable examples of behavioral 
responses to wildfire smoke, these studies are limited in 
their spatial and temporal extent. With the increasing use 
of non-invasive monitoring devices such as camera traps 
that can sample over broad spatial and temporal scales, it 
is possible to study impacts of smoke on wildlife at much 
larger scales (O’Connell and Bailey 2011).

Camera traps are widely used to study wildlife habi-
tat use and activity and provide an opportunity to con-
nect data on smoke exposure with wildlife behavioral 
data (Burton et  al. 2015). Frequency of photo-captures 
of animals at camera traps is the result of several under-
lying processes, including animal density, activity, and 
habitat selection (Parsons et al. 2017; Neilson et al. 2018; 
Hofmeester et al. 2019). Occupancy models can explain 
variation in photo-capture data by separating the ecologi-
cal process of species occurrence from the observational 
processes of whether or not a species is detected, given 
that it is present (MacKenzie et  al. 2002). Occupancy 
models also provide a flexible framework to explore 
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how environmental covariates influence species occur-
rence versus species detection (MacKenzie et  al. 2002). 
While estimating occupancy is often the primary goal 
of occupancy models, estimating detection can also pro-
vide ecological insights. The detection process has been 
used to investigate the intensity of habitat use at a cam-
era site (Stewart et  al. 2018). Detection may also indi-
cate frequent transit past the camera trap, implying that 
camera trap detections can be used to quantify activity 
(Stewart et al. 2018). Therefore, decreased activity due to 
wildfire smoke may be observable via decreased camera 
trap detection probabilities. Given the widespread use 
of camera traps in wildlife research (Burton et al. 2015) 
and their ability to detect changes in wildlife activity 
(Stewart et al. 2018), researchers may be able to leverage 
established camera trap networks to study the effects of 
wildfire smoke on wildlife.

In this study, we explored impacts of wildfire smoke 
on mammalian activity and aimed to provide proof of 
concept that camera trap data can be used as a tool for 
exploring smoke effects on wildlife. We studied camera 
trap detections of eight large mammal species in Eastern 
Washington, a mixed-severity, fire-adapted system (Perry 
et  al. 2011) with more severe than average fire seasons 
in 2018 and 2020, and less severe than average fire sea-
son in 2019, providing an opportunity to test for effects 
of wildfire smoke on wildlife activity. We used hierarchi-
cal occupancy models (MacKenzie et  al. 2002) to test 
whether daily detection probability was related to fire-
specific PM2.5 forecasts. We also applied Poisson regres-
sion to test whether PM2.5 influenced the number of 
detections per day, a proxy for activity at a finer temporal 

scale. We hypothesized that wildlife behavior would be 
affected by smoke events, in terms of reduced activity, 
and we predicted that this would be indicated by lower 
daily detection probabilities and fewer detections per day 
when fire-specific PM2.5 levels increased.

Methods
Study area
We deployed camera traps in two study areas in east-
ern Washington (Fig. 1). The Northeast study area (4535 
km2) is predominantly owned and managed by private 
individuals and industrial timber companies (77%), with a 
smaller portion managed by the US Forest Service (USFS; 
16%) and other federal and state agencies (Esri 2018). 
The Northeast supports populations of white-tailed deer 
(Odocoileus virginianus) and elk (Cervus canadensis) that 
occur in relatively high densities along with smaller pop-
ulations of mule deer (O. hemionus) and moose (Alces 
alces). The predator community is primarily comprised 
of cougars (Puma concolor), black bears (Ursus ameri-
canus), coyotes (Canis latrans), bobcats (Rufus lynx), 
and gray wolves (C. lupus, Bassing et  al. 2023; Ganz 
et al. 2023; Washington Department of Fish and Wildlife 
2016; Washington Department of Fish and Wildlife et al. 
2019). This region lies between the Selkirk and Huckle-
berry Mountains (elevation ranging 378–2079 m) and is 
dominated by mixed-conifer forests of grand fir (Abies 
grandis), Douglas fir (Pseudotsuga menziesii), ponderosa 
pine (Pinus ponderosa), western hemlock (Tsuga hetero-
phylla), and western red cedar (Thuja plicata; Williams 
et  al. 1995). Agriculture and extensive timber harvest 
occur throughout the area. Lower-elevation dry forests of 

Fig. 1  Outlines of the Okanagan (left) and Northeast (right) study areas, located in the northeast corner of Washington state (top). Camera 
traps (dots) were placed on roads or trails in a random sampling design and were redeployed using the same design each year. Dots are shaded 
to represent the locations of camera traps deployed in each year of the study. Figure designed using ggplot2 (Wickham 2016), cowplot (Wilke 
2020), ggsn (Santos Baquero 2019), and spData (Bivand et al. 2021)



Page 5 of 15Ayars et al. Fire Ecology           (2023) 19:49 	

Douglas fir have a historic fire regime of frequent, low-
severity fire (USDA Forest Service 2019). Current condi-
tions after a century of fire suppression have led to closed 
canopy forests that are prone to stand-replacing events. 
At higher elevations and cooler microclimates, stands of 
western red cedar and western hemlock were historically 
and are currently typified by stand-replacing fire (USDA 
Forest Service 2019). During our study, one large wildfire 
burned near the study area: the Williams Flat Fire (44,446 
acres burned) in 2019 (BLM and USFS 2018; WADNR 
2019, 2020a, b).

The Okanogan study area (5300 km2) is predomi-
nantly managed by the USFS (64%), although approxi-
mately one-third is privately owned and managed by 
individual landowners (32%; Esri 2018). Mule deer are 
the primary ungulate species in this region, although 
white-tailed deer, moose, and elk are also present. The 
predator community is similar to that in the Northeast 
study area (Bassing et al. 2023; Ganz et al. 2023; Wash-
ington Department of Fish and Wildlife 2016; Washing-
ton Department of Fish and Wildlife et  al. 2019). This 
region is characterized by the steep, high elevation 
terrain of the North Cascade Range (elevation ranging 
225–2790  m; Williams and Lillybridge 1983). Forests 
are dominated by stands of grand fir, Douglas fir, and 
ponderosa pine, and open regions are dominated by 
big sagebrush (Artemisia tridentate) and antelope bit-
terbrush (Purshia tridentat; Williams and Lillybridge 
1983). Timber harvest and agriculture occur within the 
Okanogan study area, particularly in the southeastern 
region. Fire regimes in this region vary: dry forests of 
ponderosa pine were historically open and park-like, 
and characterized by frequent, low-intensity fires, 
but after a century of fire suppression have been filled 
in with shade-tolerant species like grand and Doug-
las fir which create dense stands that promote lethal 
crown fires (Townsley et  al. 2004). Cold, moist forests 
in higher elevations and microclimates such as ripar-
ian areas historically had infrequent, stand-replacing 
wildfires (Townsley et  al. 2004). This regime is still in 
place, but higher fuel buildups in adjacent dry forests 
have created the potential for unusually large crown 
fires (Townsley et  al. 2004). Open areas of big sage-
brush have moderate fire frequencies, and as fire kills 
sagebrush, are stand-replacing (Innes and Zouhar 
2018). Compared to nearby forests, the Okanogan 
burns more frequently due to drier vegetation and ter-
rain conducive to wildfire spread (Townsley et al. 2004). 
During our 3-year study, there were four large fires near 
the Okanogan study area: the Crescent Mountain Fire 
(21,290 hectares burned) and the McLeod Fire (9878 
hectares) in 2018 which occurred within the study area 
boundary, and the Cold Spring Fire (76,859 hectares) 

and the Pearl Hill Fire (90,540 hectares) in 2020 which 
occurred just east of the study area (BLM and USFS 
2018; WADNR 2019, 2020a, b). The fire season in the 
Pacific Northwest can be as long as May–October 
(Bureau of Land Management n.d.), although this varies 
annually.

Camera trap data collection
Starting in June 2018, we deployed 120 Reconyx Hyper-
Fire2 trail cameras (Reconyx Inc., Holmen, WI) across 
the Northeast and Okanogan study areas (Fig.  1). Full 
camera deployment and image processing details are 
reported in Bassing et  al. (2023), but briefly, we imple-
mented a stratified random sampling design to select 
camera trap locations (O’Connell and Bailey 2011) by 
stratifying each study area into four elevation bands. To 
avoid sampling alpine habitat, we capped the maximum 
elevation in the Okanogan study area at approximately 
2100 m. We randomly selected 55 and 65 one-km2 grid 
cells within the Northeast and Okanogan study areas, 
respectively, by area-weighting each stratum and select-
ing the number of grid cells proportional to the land area 
within each stratum per study area. We deployed a sin-
gle, unbaited camera trap within 250 m of the centroid of 
each selected grid cell. Following this same random sam-
pling design, we redeployed the 120 cameras at new ran-
domly selected locations in June 2019 and again in June 
2020. Cameras were maintained for a full year before 
being moved to a new location.

Camera traps were placed on secondary (unpaved) 
roads, human-use trails, or game trails to target lin-
ear features that would funnel animal movement and 
increase the likelihood of detecting rarer species that 
occur at low densities (Cusack et al. 2015). We recorded 
the geographic location of each camera, as well as site-
specific data including the type of linear feature moni-
tored (road, human-use trail, or game trail), habitat type 
(agriculture, burned, grassland, mixed conifer, and shrub-
steppe), land management type, distance to linear feature 
monitored, and height of camera from the ground. The 
cameras recorded the date and time when each photo 
was taken.

We processed photo-capture data using the program 
Timelapse2 (Greenberg et al. 2019) and the Microsoft 
AI for Earth machine learning algorithm (“MegaDetec-
tor”; Beery et al. 2019). We used a three-tiered approach 
to process images (Bassing et al. 2023). First, the Mega-
Detector classified the primary object in each image. 
Then, two independent reviewers recorded the species 
in each image in Timelapse2. Finally, a third expert 
reviewer compared the independent datasets and made 
corrections as needed.
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Covariates
To estimate exposure to smoke at camera trap loca-
tions, we used forecasts from the High-Resolution 
Rapid Refresh Smoke (HRRR-Smoke) model, developed 
and run by the National Oceanic and Atmospheric 
Administration (NOAA) Global Systems Laboratory 
(Ahmadov et  al. 2017; James et  al. 2018; Dowell et  al. 
2022). HRRR-Smoke is a chemical transport model 
that uses satellite detections of fire radiative power to 
simulate PM2.5 from fires at a 3-km resolution across 
the contiguous US. We used forecasted fire-specific 
PM2.5 initialized at 00 and 12 UTC in our analysis. 
From these forecasts, we first extracted near-surface, 
fire-specific PM2.5 at an hourly timestep. Next, we 
averaged these hourly smoke predictions to calculate 
the daily mean concentration of fire-specific PM2.5 for 
each grid cell across the contiguous US, following the 
methods of Marlier et al. (2022). We averaged the fore-
casts in Python 3.7 (Van Rossum and Drake 1995) and 
extracted the daily mean concentrations at the location 
of our camera traps for each day of the study period 
in Google Earth Engine (Principe 2016; Gorelick et al. 
2017). This approach allowed us to match the smoke 
data to the temporal resolution (i.e., daily) of our cam-
era trap data. Camera traps were spaced on average 
4478 m apart each year, but across the 3 years, 19 PM2.5 
grid cells were sampled more than once. We removed 
fire-specific PM2.5 forecasts above the 99.9th percen-
tile (267.9 μg/m3) from our analysis (n = 42), which we 
considered to be outliers. The PM2.5 concentrations 
were extremely right-skewed, with a maximum value 
of 4213.3  μg/m3. These extreme values may represent 
exceptionally high smoke exposure. However, as vali-
dating the extreme values was not within the scope of 
our study and the extreme values were sparse and large 
compared with other forecasts (EPA 2020), we removed 
them so that they did not have undue influence on 
parameter estimation.

We also considered the effect of daily mean air tem-
perature, as temperatures can affect animal activity (van 
Beest et al. 2012). We used data from the North Ameri-
can Regional Reanalysis (NARR; Mesinger et  al. 2006), 
run by the National Oceanic and Atmospheric Admin-
istration (NOAA) National Centers for Environmental 
Prediction (NCEP), to characterize daily weather condi-
tions at each monitoring site. NARR data have a spatial 
resolution of about 32 km2. NCEP reanalysis data were 
provided by the NOAA Physical Sciences Laboratory 
(PSL) in Boulder, CO, USA, from their website at https://​
psl.​noaa.​gov/​data/​gridd​ed/​data.​narr.​html (Mesinger 
et  al. 2006). We used the ncdf4 package (Pierce 2019) 
to extract the daily mean air temperature for each day at 
each site included in our analysis, following the methods 

of Sanderfoot and Gardner (2021). We also included the 
day of the fire season to control for seasonality in animal 
movement and activity.

We considered several variables known to influence 
detection probability in our study areas (Bassing et  al. 
2023). Specifically, we considered the type of linear fea-
ture each camera was monitoring to control for species’ 
preferential use of certain types of linear features. Some 
species, especially carnivores, prefer to use human-made 
linear features for transit, whereas other species avoid 
them (Cusack et  al. 2015). The types of linear feature 
were simplified to “road” and “trail” for our analysis. In 
addition, camera height and distance to the linear feature 
on which the camera was placed may have differentially 
affected the detection of study species, as species varied 
substantially in body size. As a result, we included cam-
era height and distance to linear feature to control for 
inherent differences in the probability that a specific spe-
cies would trigger a camera trap (Hofmeester et al. 2019).

Finally, we included several additional covariates — 
habitat type, elevation, and distance to nearest road — to 
account for differences in species’ preferred landscape 
features. We included habitat type (“conifer or “other”, 
recorded in the field when camera traps were deployed) 
and land management type (“public” or “private”). We 
also extracted the elevation at which each camera trap 
was located, using the 30-m Digital Elevation Models 
provided by the USGS National Map Collection (Farr 
et  al. 2007). Distance to nearest road (major or minor) 
was extracted from the Washington Department of Natu-
ral Resources roads database for each study area and rep-
resented isolation from human disturbance (Washington 
State Department of Natural Resources 2020a). We 
examined the correlation between all continuous covari-
ates and did not include variables in the same model with 
|r|> 0.7. Data management was conducted in R (R Core 
Team 2021), using several packages: tidyverse (Wick-
ham et al. 2019), sf (Pebesma 2018), raster (Hijmans 
2022), and sp (Pebesma and Bivand 2005).

Modeling
We used two modeling approaches to address our ques-
tion: (1) a single-species, single-season occupancy model 
(MacKenzie et  al. 2002) to test if detection probability 
was related to fire-specific PM2.5 at the daily temporal 
scale, and (2) a Poisson regression to test if the num-
ber of detections per day (a proxy for activity at a finer 
temporal scale) was related to PM2.5. For both modeling 
approaches, we created species-specific models and dis-
carded observations of the same species that occurred 
within 30  min at an individual camera trap to reduce 
temporal correlation between sequential images of an 
animal, generating independent detection events greater 

https://psl.noaa.gov/data/gridded/data.narr.html
https://psl.noaa.gov/data/gridded/data.narr.html
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than 30  min apart (Burton et  al. 2015; Sollmann 2018). 
For the Poisson model, we used the number of independ-
ent detections per day as the response variable. For the 
occupancy model, we consolidated detection data to 
indicate whether the species was detected at a camera 
trap on a daily basis. For both approaches, we combined 
all 3 years of data, considering each camera location to be 
independent. We standardized all continuous covariates 
by subtracting the mean and dividing by the standard 
deviation to allow for direct comparison of effect sizes.

We used camera trap data from July 1 to October 31 
for 2018, 2019, and 2020. We did not observe any smoke 
events during May and June and thus did not include 
them to reduce seasonal variation in animal move-
ment. We focused on large mammals with > 150 detec-
tions over the course of the study which included black 
bears, bobcats, cougars, coyotes, elk, moose, mule deer, 
and white-tailed deer, but excluded wolves. 93% of mule 
deer detections were in the Okanagan study area, while 
90% of white-tailed deer detections were in the Northeast 
study area. Thus, we only used detection data from those 
respective study areas for these two species.

We used a binary response variable for the occu-
pancy model that indicated whether a given species was 
detected at least once per day during the study period 
(July 1–Oct 31). We created species-specific detection 
histories with 123 one-day sampling occasions at each 
camera site and combined data across all 3  years. We 
used R packages camtrapR (Niedballa et  al. 2016) and 
unmarked (Fiske and Chandler 2011) to organize the 
data and fit the occupancy models. For each species, we 
specified the full model for detection probability at site i 
and occasion j ( pij ) such that:

where day is the day of the fire season, roadType is the 
type of linear feature the camera was placed on (road or 
trail), camHeight is the measured camera height, camDist 
is the distance to linear feature, and temp is the mean 
daily temperature at a site. Similarly, for each species, we 
specified the full model for occupancy probability at site 
i , ψi, such that:

where habType and landMgmt refer to the habitat and 
land management types, respectively, elev is the elevation, 

logit pij = γ0 + γ1 × dayij + γ2 × day2ij + γ3 × roadTypei

+ γ4 × camHeighti + γ5 × camHeight2i

+ γ6 × camDisti + γ7 × camDist2i + γ8 × tempij

+ γ9temp2ij

logit(ψi) = α0 + α1 × habTypei + α2 × landMgmti

+ α3 × elevi + α4 × elev2i + α5 × roadDisti

+ α6 × roadDist2i

and roadDist is the distance to the nearest road. For 
model selection, we first used backwards selection from 
a full model without PM2.5 to remove variables of least 
importance, resulting in a parsimonious model, and then 
added PM2.5 to test whether wildfire smoke was signifi-
cant in the resulting final model. We used this approach 
in order to account for other relevant variables without 
overfitting (Burnham and Anderson 2002). More specifi-
cally, for each species, we determined the top model by 
starting with a full model that did not include PM2.5 and 
eliminated variables with p-values greater than 0.05 one 
at a time, retaining base terms for squared terms, until 
a model with only significant covariates and base terms 
emerged (p < 0.05). We then added PM2.5 to the detection 
portion of the model and determined whether it was sig-
nificant based on a 0.05 significance level. When a model 
did not converge, we switched optimizers in unmarked. 
We used the “BFGS” optimizer for bobcats, elk, and 
moose. BFGS did not result in convergence for the black 
bear, cougar, or coyote models, so we used “L-BFGS-B” 
instead. White-tailed deer and mule deer had occupancy 
rates near one, so we did not include occupancy models 
for these species.

For the Poisson model, we used the number of detec-
tions per day as the response variable. For each spe-
cies, we included all covariates in the full model for the 
expected number of detections, �ij , for each site i and 
occasion j:

We included a random intercept ( β0,i, where β0,i ∼
Normal(β0, σ

2
)) by camera trap site to account for site 

variability and repeated observations at the site; however, 
we did not include a year effect, as cameras sampled dif-
ferent locations each year. We used the “bobyqa” opti-
mizer from the lme4 package in R to fit models (Bates 
et al. 2015). We used the same model selection process as 
in the occupancy models.

Results
The mean fire-specific PM2.5 level at our camera traps 
during our study period was 6.597 μg/m3, with a stand-
ard deviation of 21.247 μg/m3. Sharp spikes in PM2.5 con-
centrations highlight the acute nature of wildfire smoke 
events (Fig.  2). On 3.6% of camera trap days, for which 

log
(

�ij

)

= β0,i + β1 × dayij + β2 × day2ij + β3 × roadTypei

+ β4 × camHeighti + β5 × camHeight2i

+ β6 × camDisti + β7 × camDist2i

++β8 × tempij + β9 × temp2ij + β10 × habTypei

+ β11 × landMgmti + β12 × elevi + β13 × elev2i

+ β14 × roadDisti + β15 × roadDist2i
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25% of camera traps were represented, PM2.5 concentra-
tions were greater than the concentration classified as 
unhealthy by the US Environmental Protection Agency 
(55.5 μg/m3, EPA 2012).

The effect of fire specific PM2.5 differed among species 
and between the two temporal scales of the detection 
response variables (Table 1). While we found no evidence 
that PM2.5 was related to the probability of daily detec-
tion in the occupancy models for any species, we did find 
evidence that PM2.5 influenced number of detections per 
day in the Poisson models for bobcats, moose, and mule 
deer (Table 1). We found a marginally significant, 12.9% 
decrease in the expected number of bobcat detections 
per day for each standard deviation increase in PM2.5 
(21.247  μg/m3, p = 0.066, Table  1, Fig.  3, Supplementary 
table  4). For moose, we found an 11.2% decrease in the 
expected number of moose detections per day for each 
standard deviation increase in PM2.5 (p = 0.043, Table 1, 
Supplementary table 12, Fig. 3). Lastly, for mule deer, we 
found a 5.8% increase in the expected number of detec-
tions per day for each standard deviation increase in 
PM2.5 (p = 0.007, Table 1, Supplementary table 13, Fig. 4). 
However, the size of the effect of PM2.5 was small for all 
species and models, except in the Poisson model for bob-
cats, where it was comparable to other covariates in the 
top model—the coefficient for PM2.5 was − 0.138, while 
other coefficients ranged from − 0.081 (temperature) 
to − 0.859 (habitat type, Supplementary table 4).

We found a number of significant effects of covariates 
other than PM2.5 on occupancy and detection for the 
daily detection (Supplementary Tables  1, 3, 5, 7, 9, and 

11) and number of detections per day (Supplementary 
Tables  2, 4, 6, 8, 10, 12, 13 and 14) response variables. 
In the occupancy models, elevation was a statistically 
significant predictor of occupancy for all species except 
cougars (Table 1), although the direction and magnitude 
varied by species. Road type was an important predic-
tor of detection for all species except elk and, consist-
ently, detection was lower on trails than on roads. In the 
Poisson regression models, elevation and day of the fire 
season were both important predictors of number of 
detections per day for the majority of species (Table 1).

Discussion
This study is the first to use camera trap data to link 
population-level activity patterns with wildfire smoke 
events. We hypothesized that mammals would exhibit 
reduced activity as smoke intensified, due to underlying 
health effects, which would be observable via decreased 
camera trap detection rates. Contrary to our expecta-
tions, we found little to no evidence of this for most spe-
cies; however, we did find support for our hypothesis for 
detections per day for bobcat and moose. Surprisingly, 
mule deer showed small, positive effects of PM2.5 on 
detections per day. Fire-specific PM2.5 did not influence 
the detection of five of our eight species: black bears, 
cougars, coyotes, elk, or white-tailed deer. Known drivers 
of mammalian distributions (i.e., elevation) and detection 
probabilities (i.e., day of fire season, road type, and cam-
era height) were consistently included in our top models. 
While effects of PM2.5 from smoke were often smaller 
than the effects of other covariates, this was not always 

Fig. 2  Daily median fire-specific surface-level PM2.5 concentration (μg/m3) at active camera traps during the eastern Washington fire season. 
Forecasts were generated by the High-Resolution Rapid Refresh Smoke (HRRR-Smoke) chemical transport model, which uses satellite detection 
of fire radiative power to simulate PM2.5 from fires at a 3-km radius. Twice-daily forecasts were averaged to arrive at a daily mean concentration 
of fire-specific PM2.5 at each camera trap location. The median of the daily mean PM2.5 value at each camera trap is presented here. For reference, 
we included the PM2.5 threshold considered unhealthy by public health standards (red line, 55.5 μg/m3). Note that our study area is primarily rural 
and not highly developed; as such, sources of PM2.5 other than smoke are negligible. Figure designed using ggplot2 (Wickham 2016)
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the case, as the effect for bobcats was comparable to the 
effects of other significant variables. Our results demon-
strate that mammals exhibit species-specific behavioral 
responses to wildfire smoke which can be observed via 
changes in detection rates, suggesting smoke is an envi-
ronmental stressor in mammalian communities.

Moose detections per day exhibited a negative 
response to PM2.5, implying that their known sensitivity 
to environmental extremes may extend to wildfire smoke. 
Moose are at the edge of their geographic range in East-
ern Washington and are known to be sensitive to other 
environmental extremes, namely high temperatures. 
Captive moose can become heat stressed above 17–24 °C 
(McCann et al. 2013) and wild moose likely have similar 
thermal limitations. Moose tend to modify their activity 
during times of excessive heat by becoming less active 
during the hottest part of the day, more active during 
twilight and night, and selecting thermal refuges in hot 

afternoons (Dussault et al. 2004; Street et al. 2016; Mont-
gomery et al. 2019). During our study, the average tem-
perature was above the range in which moose become 
heat stressed for 3.8–33.8% of days across camera trap 
sites, although we observed no effect of temperature on 
moose detections. Temperature and PM2.5 levels were 
not correlated (Pearson’s correlation coefficient = 0.099), 
indicating that the PM2.5 effect we observed was inde-
pendent of any heat sensitivity effects. Since moose are 
already thermally stressed at the southern range of their 
distribution, it is plausible they may be more sensitive to 
other environmental stressors, like wildfire smoke, lead-
ing to behavioral responses that reduce their detection 
rates.

We used detection rate as a proxy for mammalian 
activity, with lower detection rates indicating a decrease 
in activity. However, some animals may increase their 
activity to engage in fire or smoke avoidance behaviors 

Table 1  Summary of results for top models plus PM2.5, with PM2.5 coefficient, standard error, and p-value for each species and model. 
One standard deviation in PM2.5 is equivalent to 30.0 μg/m3. Ψ refers to occupancy covariates, and p refers to detection covariates for 
the occupancy model. camDist indicates the distance from the camera to the linear feature it was placed on, while roadDist indicates 
the distance from the camera to the nearest road in the WADNR roads database. Significant p-values (< 0.05) for the effect of PM2.5 are 
indicated with a **, while marginally significant p-values (< 0.1) are indicated with a *. N refers to number of detections for each species 
in our dataset; ST indicates the number of the Supplementary table containing the parameter estimates for the model. All Poisson 
models include the camera site ID as a random intercept

Species Model type Covariates PM2.5 SE P-value

Bear, n = 902 Occupancy
ST 1

Ψ(elev + elev2), p(day + day2 + roadType + camHeight + temp + PM2.5) −0.057 0.039 0.142

Poisson
ST 2

day + day2 + roadType + elev + elev2 + PM2.5 −0.031 0.036 0.388

Bobcat, n = 400 Occupancy
ST 3

Ψ(habType + elev + roadDist + roadDist2), p(day + day2 + roadType + cam-
Height + camHeight2 + camDist + temp + temp2 + PM2.5)

−0.067 0.063 0.289

Poisson
ST 4

day + day2 + roadType + camDist + camDist^2 + temp + temp2 + hab-
Type + elev + PM2.5

−0.138 0.075 0.066*

Cougar, n = 293 Occupancy
ST 5

Ψ(habType), p(roadType + camDist + PM2.5) −0.043 0.066 0.519

Poisson
ST 6

roadType + habType + PM2.5 −0.005 0.057 0.936

Coyote, n = 1825 Occupancy
ST 7

Ψ(habType + elev + elev2 + roadDist + roadDist2), p(roadType + cam-
Height + camHeight2 + PM2.5)

0.003 0.026 0.903

Poisson
ST 8

day + day2 + roadType + habType + elev + elev2 + roadDist + PM2.5 −0.011 0.024 0.634

Elk, n = 279 Occupancy
ST 9

Ψ(habType + elev + elev2), p(camHeight + camHeight2 + cam-
Dist + camDist2 + temp + PM2.5)

0.052 0.050 0.298

Poisson
ST 10

day + day2 + habType + landMgmt + elev + elev2 + PM2.5 0.052 0.043 0.227

Moose, n = 584 Occupancy
ST 11

Ψ(elev + elev2 + roadDist), p(roadType + camHeight + camHeight2 + cam-
Dist + camDist2 + PM2.5)

−0.064 0.055 0.241

Poisson
ST 12

roadType + elev + elev2 + roadDist + PM2.5 −0.119 0.059 0.043**

Mule deer, n = 2710 Poisson
ST 13

day + day2 + temp + temp2 + PM2.5 0.056 0.021 0.007**

White-tailed deer, n = 4019 Poisson
ST 14

day + camDist + camDist2 + temp + temp2 + elev + elev2 + PM2.5 −0.018 0.018 0.300
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(Sanderfoot et  al. 2022), which could increase detec-
tion rates. For example, we found a small positive effect 
of PM2.5 on detections per day of mule deer. Mule deer 

migrate to lower elevations in the fall (Kucera 1992), 
which typically occurs from mid-October to mid-
November in the Okanogan study area (Ganz et al. 2023). 

Fig. 3  Predicted number of detections per day for a range of PM2.5 concentrations (μg/m3) for bobcat and moose. Solid lines represent mean 
values predicted by the top model, accounting for variance from fixed effects only. All covariates were held at their averages and estimates were 
averaged across factor levels. Shaded ribbons represent 95% confidence intervals. Figure designed using ggplot2 (Wickham 2016); color palette 
provided by Pedersen and Crameri (2021)

Fig. 4  Predicted number of detections per day for a range of PM2.5 concentrations (μg/m3) for mule deer. The solid line represent mean values 
predicted by the top model, accounting for variance from fixed effects only. All covariates were held at their averages and estimates were averaged 
across factor levels. The solid ribbon represent 95% confidence intervals. Figure designed using ggplot2 (Wickham 2016); color palette provided 
by Pedersen and Crameri (2021)
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Given that our study period (July 1–October 31) partially 
overlapped with fall migration, it is possible the PM2.5 
effect was confounded with migratory behaviors. How-
ever, we think this is unlikely, as day of the fire season and 
smoke PM2.5 were not correlated (Pearson’s correlation 
coefficient =  − 0.018). Instead, it is likely that mule deer 
are responding to their environment changing as a result 
of smoke, for example, moving more potentially to avoid 
predators if visual or olfactory cues of predation risk are 
affected by smoke. As wildfire activity increases, wild-
life may be forced to engage in smoke avoidance behav-
iors more often, resulting in higher costs of navigation 
(Hegedüs et al. 2007; Overton et al. 2022), foraging (Cho 
et al. 2021), vigilance, and other behaviors.

Modeling the effect of PM2.5 on both daily detection 
and detections per day allowed us to consider which 
scale may be most useful in assessing impacts of wildfire 
smoke on mammalian behavior. We observed responses 
to smoke in the number of detections per day for bob-
cats, moose, and mule deer in the Poisson regression, 
but we observed no response to smoke in daily detec-
tion probabilities, suggesting that monitoring animal 
activity at finer temporal resolutions may be necessary 
to evaluate effects of smoke on animal behavior. Our 
occupancy models, which reduced data to just a binary 
indicator of whether a species was detected at least once 
per day, may have been too temporally coarse to reveal 
changes in behavioral activity for most of our focal spe-
cies. Instead of detection/non-detection data at the daily 
scale, numbers of individuals, travel speed, or behaviors 
such as climbing or vigilance could be estimated from 
camera trap photos (Rowcliffe et  al. 2016; Stewart et  al. 
2016; Schuttler et al. 2017). Additionally, other sources of 
animal movement data, such as GPS tracking, may enable 
ecologists to directly tie smoke exposure to changes in 
animal behavior at a finer scale (Stewart et al. 2018).

One challenge, particularly for wildlife research which 
is often conducted in remote areas, is acquiring reliable 
smoke (PM2.5) data. Our study area had very few EPA Air 
Quality System monitors, which are a commonly used, 
high-quality source of PM2.5 concentrations (Diao et  al. 
2019). The monitors ranged from 4 to 450 km from our 
camera locations. Thus, we needed another way to char-
acterize smoke levels during our study. HRRR-Smoke 
is a relatively new tool for real-time smoke monitoring 
that supports high-quality forecasts of PM2.5 from fires 
at a fine spatial (3  km) and temporal (hourly) resolu-
tion. It has been used to inform public health (Marlier 
et  al. 2022) and wildlife science (Overton et  al. 2022) 
applications. While HRRR-Smoke only provides simu-
lated values of smoke PM2.5, existing comparisons to 
ground-based measurements demonstrate that HRRR-
Smoke effectively captures the distribution and intensity 

of smoke plumes (Chow et  al. 2022). However, HRRR-
Smoke may underestimate PM2.5 due to the limited avail-
ability of sub-daily measurements of fire radiative power 
collected by polar-orbiting satellites (Chow et  al. 2022). 
Therefore, by relying on forecasts from HRRR-Smoke, we 
may have underestimated the effect of smoke in our anal-
ysis. There were also some unvalidated extreme values in 
the HRRR smoke forecasts which we removed but may 
have represented high PM2.5 concentrations. It is likely 
that wildlife responses are more extreme in the rare but 
increasingly common cases when PM2.5 is catastrophi-
cally high during the fire season. For example, when 
tule geese encountered average PM2.5 concentrations 
of 161 μg/m3 during migration, they stopped or went in 
other directions (Overton et  al. 2022). Additionally, the 
small number of camera-trap days with very high PM2.5 
levels likely limited our ability to detect a relationship 
between animal activity and wildfire smoke, despite the 
extensive camera-trap dataset we used. Model develop-
ment for simulating fire behavior and smoke plumes is 
an active area of research in atmospheric science, with 
different products designed to meet specific stakeholder 
needs and minimize diverse types of uncertainty.

Our results show that multiple study species exhibited 
changes in detection rates on smoky days; however, our 
hypothesis that animal activity would be reduced with 
increasing smoke levels was generally not supported. 
While we noted some issues in detecting responses to 
PM2.5 concentrations in our dataset above, it is also pos-
sible that we did not observe responses because the ani-
mals in our study did not change their movement and 
behavior in response to smoke. This suggests that the 
immediate effects of increased smoke (e.g., health effects 
or changes to olfactory cues) do not impact these species’ 
behavior. This could be a result of tradeoffs with factors 
such as dietary requirements or predator-prey interac-
tions that prevent wildlife from modifying their behav-
ior in response to smoke events. Alternatively, this could 
indicate that smoke is not as important of a factor for 
wildlife populations as other direct and indirect effects 
of fire (Engstrom 2010; Jolly et  al. 2022). However, we 
caution that while we did not find much support for our 
hypothesis, which focused on short-term effects of smoke 
exposure, the long-term effects of increased PM2.5 levels 
on wildlife populations which were not observable in this 
study may be of greater consequence. Smoke exposure 
has been found to be energetically costly for free-living 
wildlife species including orangutans (Erb et  al. 2018), 
geese (Overton et  al. 2022), and bees (Cho et  al. 2021) 
and is likely to increase susceptibility to disease (Albery 
et  al. 2021). In addition, Black et  al. (2017) found that 
captive rhesus macaque monkeys exposed to elevated 
smoke levels (about 2  weeks during infancy) developed 
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immune dysfunction, which resulted in reduced lung vol-
ume and capacity in adulthood (Bassein et al. 2019). We 
recommend that future studies directly examine fitness 
outcomes that result from smoke exposure by connecting 
survival or reproductive success to individual, marked 
animals’ exposure to smoke pollution.

Wildlife responses to wildfire smoke is an emerging 
question in ecology (Sanderfoot et al. 2022), and for most 
of our study species, we were unable to find research to 
contextualize our results. For example, we did not find 
relevant literature on bobcat responses to wildfire smoke 
even though this was the species where we observed the 
largest effect size. Even studies looking at direct effects 
of fire on wildlife mortality are lacking (Jolly et al. 2022). 
Climate change is expected to intensify fire and thus 
smoke, influencing the health and behavior of wildlife in 
myriad ways (Engstrom 2010; Erb et  al. 2018; Overton 
et al. 2022; Cho et al. 2021; Sanderfoot et al. 2022), and 
more research is urgently needed to quantify the magni-
tude of these effects and to inform conservation.

Conclusions
Our results suggested that some mammals alter their 
behavior in response to smoke exposure, possibly due to 
underlying health effects or changes in environmental 
cues. Importantly, we demonstrated how combining rela-
tively inexpensive wildlife sampling methods (i.e., camera 
traps) with large-scale smoke data (i.e., fire-specific PM2.5 
concentrations) can be effective for studying some of 
the effects of smoke on wildlife populations. Finally, our 
study adds to limited research on smoke impacts on wild-
life and emphasizes the need to rapidly expand research 
in this area to inform wildlife conservation (Lee et  al. 
2017; Erb et al. 2018; Sanderfoot and Gardner 2021).
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