
R E V I E W Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Maharati et al. Cancer Cell International          (2023) 23:168 
https://doi.org/10.1186/s12935-023-03004-7

cancers. Chemotherapy approaches are based on the 
chemical anti-cancer substances that affect either tumor 
or normal cells. Consequently, this non-specific function 
causes a wide range of adverse effects in cancer patients 
[1]. The main challenge of chemotherapy is drug resis-
tance that is responsible for approximately 90% of treat-
ment failures and tumor relapses [2]. Tumor relapse can 
be observed in more than half of the Non–small cell 
lung carcinoma (NSCLC) patients following the che-
motherapeutic treatment [3]. There was also 50–70% of 
tumor recurrence after chemotherapy in ovarian cancer 
patients [4]. Therefore, precise identification of molecu-
lar mechanisms involved in drug resistance is necessary 
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Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, 
chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the 
therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, 
it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic 
strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes 
associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-
resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different 
cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in 
the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in 
regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic 
role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, 
polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves 
the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, 
lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM 
resistant cancer patients and define a suitable therapeutic strategy among these patients.

Keywords  Long non-coding RNAs, Gemcitabine, Chemo resistance, Prognosis, Non-invasive marker, Cancer

Role of the long non-coding RNAs 
in regulation of Gemcitabine response 
in tumor cells
Amirhosein Maharati1, Yalda Samsami2, Hanieh Latifi1, Faezeh Tolue Ghasaban2 and Meysam Moghbeli2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-023-03004-7&domain=pdf&date_stamp=2023-8-9


Page 2 of 14Maharati et al. Cancer Cell International          (2023) 23:168 

to improve the chemotherapeutic efficacy. Genetic muta-
tions, epigenetics alterations, drug efflux, DNA repair, 
epithelial–mesenchymal transition (EMT), and tumor 
microenvironment have been associated with drug 
responses in tumor cells [2, 5, 6]. It is noteworthy that 
more information about the molecular mechanisms of 
drug resistance can be useful to present the appropriate 
prognostic markers to minimize the tumor relapse and 
side effects. However, due to the heterogeneity among 
tumor cells and tissues, determining a better strategy 
will be challenging [7]. Gemcitabine (GEM) is a chemo-
therapy drug that has been approved for the treatment of 
late-stage pancreatic cancer (PC). However, it is currently 
used as an adjuvant therapy in various solid tumors. GEM 
acts as a deoxycytidine analog that prevents DNA syn-
thesis, thereby promoting apoptosis in malignant tumor 
cells [8, 9]. Although, GEM is a common drug in cancer 
patients that significantly improves the overall survival, 
GEM resistance is still considered as a big challenge 
among a noticeable rate of cancer patients [10]. Different 
transcription factors, molecular mechanisms, signaling 
pathways, and metabolic enzymes are involved in GEM 
response [8]. Long non-coding RNAs (lncRNAs) are a 
group of the non-coding RNAs that modulate the tran-
scription or translation of target genes [11]. They have 
pivotal functions in various cellular processes such as 
cell proliferation, differentiation, and migration through 
interaction with proteins, DNA, or RNA [12]. LncRNAs 
function as competing endogenous RNAs (ceRNAs) to 
affect miRNAs functions and their target genes. They 
can also directly bind with the DNA and transcription 
factors to repress and promote gene expressions, respec-
tively [13]. Deregulation of lncRNAs is correlated with 
tumor initiation and progression as either oncogenes or 
tumor suppressors [14–18]. As the lncRNAs are exten-
sively participated in various physiological processes and 
tumorigenesis, aberrant expression of lncRNAs can be 
associated with chemotherapy resistance [19]. LncRNAs 
induce the expression of genes that are associated with 
drug resistance via enhancing proliferation while reduc-
ing apoptosis in various cancers [20]. Role of lncRNAs 
in GEM resistance has been frequently reported in dif-
ferent cancers [21–23]. According to the presence of 
lncRNAs in blood samples, they can also be suggested as 
reliable non-invasive prognostic and diagnostic indica-
tors in cancer patients. Therefore, in the present review 
we discussed the role of lncRNAs in regulation of GEM 
response to present them as the probable efficient non-
invasive prognostic markers in cancer patients (Table 1).

PI3K/AKT and MAPK signaling pathways
PI3K/AKT is an important signaling pathway that can 
be activated by growth factors following the binding 
with receptor tyrosine kinases (RTKs). AKT is the most 

important downstream effector of PI3K that has pivotal 
roles in cellular metabolism, growth, and proliferation. 
Therefore, deregulation of PI3K/AKT pathway can be 
associated with drug resistance and tumor relapse [24]. 
LncRNAs have a key role in GEM response of tumor cells 
by regulation of PI3K/AKT signaling pathway (Fig.  1). 
Surgery, chemotherapy, and radiotherapy are the main 
therapeutic plans in osteosarcoma patients. A standard 
chemotherapy regimen including cisplatin, GEM, and 
doxorubicin can improve the 5-years survival rate of 
osteosarcoma patients [25]. However, drug resistance is 
still a big challenge for the effective treatment of osteo-
sarcoma patients [26]. C-MET is a receptor tyrosine 
kinase that increases tumor progression in a wide range 
of tumors [27]. A study has reported that c-Met inhibi-
tion increased the sensitivity of osteosarcoma cells to 
cisplatin by PI3K/Akt suppression [28]. PVT1 activated 
the PI3K/AKT pathway via c-MET to increase the che-
motherapy resistance of osteosarcoma cells. PVT1 had a 
pivotal role in the GEM resistance of osteosarcoma cells 
through miR-152 targeting to regulate the c-MET/PI3K 
pathway [29]. FGFR1 belongs to the RTK protein fam-
ily that promotes MAPK and PI3K/Akt pathways [30]. 
FGFR1 activation has been associated with EMT pro-
cess in several human cancers [31–33]. AGAP2-AS1 up 
regulation was correlated with advanced tumor stage 
and poor survival in CRC patients. AGAP2-AS1 sponged 
miR-497 to promote the growth and metastasis of CRC 
cells and GEM resistance via FGFR1 targeting [34]. YB1 
as a highly conserved transcription factor is involved in 
regulation of a wide variety of biological processes [35]. 
The YB-1 phosphorylation by AKT triggers the mRNA 
translation [36]. PI3K/AKT over-activation is involved 
in GEM resistance. HIF1A-AS1 modulated the HIF1a 
expression in a glycolysis-dependent manner to promote 
GEM resistance in pancreatic tumor cells. HIF1A-AS1 
improved the interaction between p-AKT and p-YB1 to 
induce YB1 phosphorylation. YB1 phosphorylation by 
AKT plays a pivotal role in the progression of GEM resis-
tance in PC via HIF1a regulation by HIF1A-AS1. There 
was also a significant association between HIF1A-AS1/
HIF1a up regulation and the poor prognosis in GEM-
received PC patients [37].

Drug resistance restricts the long-term therapeu-
tic impacts of the cisplatin and GEM in bladder can-
cer treatment [38]. UCA1 induced cisplatin/GEM 
resistance in bladder tumor cells by CREB mediated 
miR-196a-5p regulation. UCA1 triggered the AKT path-
way that resulted in CREB phosphorylation. UCA1 also 
increased cisplatin/GEM resistance via miR-196a-5p up 
regulation by CREB and p27Kip1 regulations in bladder 
cancer [39]. Although, GEM is an effective and widely 
prescribed therapy for NSCLC patients, GEM resistance 
has restricted its clinical application. Curcumin has been 
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Study Year Tumor Type LncRNA Target Samples Results Clinical 
Application

Gao (8) 2021 Non-small cell lung MEG3 PTEN A549 and H520 cell lines
Xenograft models

Decreased 
GEM 
resistance

Diagnosis

Sun (29) 2019 Osteosarcoma PVT1 miR-152/c-MET MG63 and 293 T cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Hong 
(34)

2020 Colorectal AGAP2-AS1 miR-497/ FGFR1 116T 116 N
DLD-1, SW480, HT29, CaCO2, RKO, 
HCT8 and 293T cell lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Xu (37) 2021 Pancreatic HIF1A-AS1 HIF1a 69T(24 GEM-sensitive)
BxPC3 and PANC1 cell lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Pan (39) 2016 Bladder carcinoma UCA1 miR-196a-5p/CREB 35T 18 N
5637 and UMUC-2 cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Xiong 
(46)

2019 Pancreatic GSTM3TV2 Let-7/LAT2 180T 180 N
AsPC-1/GR and MIAPaCa-2 cell 
lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
Prognosis

Xu (49) 2021 Pancreatic DLEU2L BRCA2 PANC-1 cell line
Xenograft model

Decreased 
GEM 
resistance

Diagnosis

Liu (53) 2019 Pancreatic HCP5 miR-214-3p/HDGF 28T 28 N
PANC-1 and SW 1990 cell lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Zhou 
(59)

2020 Pancreatic PVT1 miR-619/Pygo2 PANC-1 and ASPC1 human cell 
lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Lu (60) 2021 Cholangiocarcinoma LINC00665 miR-424-5p/BCL9L 100T 100 N
HuCCT1, HuH28, SNU-1196, SNU-
1079, SNU-308, SNU245, SNU-478, 
SNU-869 and HEK293T cell lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Xie (61) 2018 Bladder CDKN2B-AS let-7/ CTNNB1 81T 34 N
SV-HUC-1, J82 and T24 cell lines

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Yu (66) 2022 Pancreatic SNHG16 SMAD4 SW1990, PANC-1, ASPC-1, BxPC3 
and HPDE cell lines

Increased GEM 
resistance

Diagnosis

Zhuang 
(73)

2017 Bladder LET NF90 and miR-145 60T 48 N
T24, 5637, J82, SW780, BIU87, 
ScaBER and UMUC3 cell lines
Xenograft model

Decreased 
GEM 
resistance

Diagno-
sis and 
prognosis

Liu (75) 2018 Pancreatic GAS5 miR-221/ SOCS3 60T 60 N
HPDE6-C7 s PANC-1, AsPC-1, 
Capan-2, SW1990 and BXPC-3 
cell lines
Xenograft model

Decreased 
GEM 
resistance

Diagno-
sis and 
prognosis

Chi (76) 2021 Pancreatic UCA1 SOCS3 35T 35 N
Human PSC, PANC-1 and HEK-
293T cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Shen 
(85)

2020 Cholangiocarcinoma LINC01714 FOXO3 70T 70 N
HuCCT1 and CCLP1 cell lines
Xenograft model

Decreased 
GEM 
resistance

Diagno-
sis and 
prognosis

Shi (92) 2019 Pancreatic LINC00346 miR-188-3p/ BRD4 24T
PANC-1, MIA PaCa-2, Capan-1 and 
BxPC-3 cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Table 1  LncRNAs that are involved in Gemcitabine (GEM) response in tumor cells
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indicated to play a tumor suppressive role by regulation 
of the signaling pathways in various cancers [40, 41]. Cur-
cumin promotes apoptosis and autophagy in lung tumor 
cells via STAT3 and PI3K/AKT pathways [42, 43]. PTEN 
as a negative regulator of PI3K/AKT pathway has a key 
role in various tumor associated phenotypes such as 
relapse and drug response. It has been shown that high 
concentrations of curcumin enhanced the apoptosis of 
GEM-resistant NSCLC cells. Curcumin up regulated 
the MEG3 that promoted the PTEN pathway in GEM-
resistant NSCLC cells. Curcumin also suppressed the 
GEM-resistant NSCLC proliferation in the xenograft 
model [8]. The mTOR is the main downstream target of 
PI3K/Akt that induces cell growth and protein synthesis 
by activation of S6K and 4EBP1 [44]. LAT2 is a mem-
brane transporter involved in mTOR activation to induce 

chemo resistance in PC cells [45]. GSTM3TV2 up regu-
lated the LAT2 by competitively sponging let-7, resulting 
in increased GEM resistance in pancreatic tumor cells. 
GSTM3TV2 up regulation was associated with poor 
prognosis in PC patients [46]. BRCA2 prevents mutagen-
esis as a tumor-suppressor via regulating DNA double-
strand break repair [47, 48]. GEM is a nucleoside analog 
that suppresses DNA replication in tumor cells. It has 
been found that the DLEU2L down regulated the War-
burg effect modulators including GLUT1, LDHB, HK2, 
and PKM2 in PC cells. DLEU2L decreased ATP produc-
tion and glucose uptake. It also inhibited the phosphor-
ylation of AKT/mTOR, as well as S6K as downstream 
effectors. Moreover, DLEU2L inhibited GEM resistance 
in PC cells via miR-210-3p/BRCA2 axis [49].

Study Year Tumor Type LncRNA Target Samples Results Clinical 
Application

Li (94) 2015 Pancreatic HOTTIP HOXA13 90T
PANC-1, MIA PaCa-2, Capan-2, 
SW1990, and BxPC-3 cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Wang 
(96)

2021 Pancreatic ANRIL miR-181a/ HMGB1 PANC-1, BxPC-3 and HPDE cell 
lines

Increased GEM 
resistance

Diagnosis

Xue 
(124)

2020 Gallbladder SSTR5-AS1 NONO 110T 110 N
GBC-SD, SGC-996 and NOZ cell 
lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Zhang 
(130)

2019 Pancreatic SNHG14 miR-101 SW1990 cell line Increased GEM 
resistance

Diagnosis

Chen 
(137)

2016 Breast ROR miR-34a MDA-MB-231 and
MCF10A cell lines

Increased GEM 
resistance

Diagnosis

An (138) 2020 Pancreatic HOST2 - BxPC-3, CFPAC-1, SU.86.86, PANC-
1, Hs766T and
AsPC-1 cell lines

Increased GEM 
resistance

Diagnosis

Sun 
(141)

2019 Pancreatic MSC-AS1 miR-29b-3p/ CDK14 45T 45 N
PANC-1 and BxPC-3 cell lines

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Li (142) 2019 Bladder GHET1 ABCC1 74T(41 GEM-sensitive)
J82, T24, SV-HUC-1
J82/Gem and T24/Gem cell lines

Increased GEM 
resistance

Diagno-
sis and 
prognosis

An (143) 2018 Bladder FOXD2-AS1 miR-143/ ABCC3 T24 and 5637 cell lines
Xenograft model

Increased GEM 
resistance

Diagnosis

Yang 
(150)

2020 Pancreatic SLC7A11-AS1 NRF2 27T 27 N
BxPC-3, PANC-1 and AsPC-1 cell 
lines
Xenograft model

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Ye (151) 2022 Pancreatic DBH-AS1 miR-3163/ USP44 172T 16 N
HPDE and PC cell lines
Xenograft model

Decreased 
GEM 
resistance

Diagno-
sis and 
prognosis

Hua 
(154)

2019 Pancreatic SBF2-AS1 miR-142-3p/ TWF1 82T 82 N
AsPC-1, HPAC, BxPC-3 and PANC-1 
cell lines

Increased GEM 
resistance

Diagno-
sis and 
prognosis

Xu (157) 2019 Gastric MVIH E-cadherin and 
Vimentin

Human BGC-823 cell lines Decreased 
GEM 
resistance

Diagnosis

* Tumor (T) tissues and Normal (N) margins

Table 1  (continued) 
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Figure 1  LncRNAs have a key role in GEM response of tumor cells by regulation of PI3K/AKT and MAPK/ERK signaling pathway. (Created with BioRender.
com)
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MAPK is a cascade of three kinases that can be acti-
vated by a variety of input signals such as cytokines, 
hormones, growth factors, and stress signals. It finally 
functions as a mitogen by ERK activation or stress 
response through JNK and p38. Therefore, MAPK/ERK 
has an oncogenic function by the induction of cell pro-
liferation, migration, and drug resistance [50]. LncRNAs 
have a pivotal function in GEM response of tumor cells 
by regulation of MAPK/ERK signaling (Fig.  1). TUG1 
up regulation has been shown in PDAC tissues in com-
parison with the normal margins. It promoted the GEM 
resistance in PDAC cells by ERK phosphorylation [51]. 
HDGF is a heparin-binding growth factor that promotes 
cell proliferation by the MAPK and PI3K pathways [52]. 
HCP5 up regulation was indicated in GEM-resistant PC 
tissues that were correlated with poor survival. HCP5 
increased the GEM resistance by miR-214-3p/HDGF axis 
in PC cells [53].

Wnt/β-catenin, TGF-b, and JAK/STAT signaling 
pathways
WNT pathway is essential for cell proliferation, tis-
sue homeostasis, and apoptosis. Wnt ligands bind to 
FZD/LRP receptors that promote β-catenin to enter the 
nucleus to stimulate Wnt target genes expression via 
binding with TCF/LEF transcription factors and BCL9L 
and PYGO2 co-activators [54, 55]. LncRNAs have an 
important function in GEM response of tumor cells by 
regulation of WNT signaling (Fig. 2). Solid tumors recruit 
autophagy to overcome hypoxia, ischemia, radiotherapy, 
and chemotherapy [56, 57]. ATG14 has an important role 
in the autophagosome formation [58]. PVT1 has been 
shown to promote GEM resistance in pancreatic tumor 
cells by increasing WNT and autophagic activities. PVT1 
plays a critical role in modulating the GEM resistance of 
PC cells via the miR-619-5p/Pygo2 and ATG14 axes [59]. 
LINC00665 up regulation has been found in GEM-resis-
tant cholangiocarcinoma (CCA) cells that was correlated 
with the prognosis and chemotherapy resistance of CCA 
patients. LINC00665 sponged miR-424-5p to regulate 

Figure 2  LncRNAs have an important function in GEM response of tumor cells by regulation of WNT and JAK/STAT signaling pathways. (Created with 
BioRender.com)

 



Page 7 of 14Maharati et al. Cancer Cell International          (2023) 23:168 

BCL9L expression and WNT activation. Silencing of the 
LINC00665 reduced GEM-induced EMT and stemness 
in resistant CCA cells by decreasing β-Catenin nucleus 
translocation and BCL9L down regulation [60]. There 
was CDKN2B-AS up regulation in bladder urothelial 
carcinoma (BUC) tissues that was correlated with higher 
grades. CDKN2B-AS increased the GEM resistance of 
BUC via Let-7 sponging to activate the CTNNB1 [61].

TGF-β signaling is a key pathway in regulation of cell 
proliferation, apoptosis, and drug resistance. It is initiated 
by the TGF-β binding with TβR receptors which phos-
phorylates and activates TβR. Then activated TβR phos-
phorylates the R-Smad and Smad2/3 to form a complex 
with Smad4. Subsequently, Smad complexes enter to the 
nucleus to regulate the TGF-β target genes [62]. Smad4/
R-Smad is activated by the TGF-β receptor to modulate 
the expression of genes involved in angiogenesis and 
chemo resistance [63, 64]. Smad4 knockdown induced 
cetuximab-resistance via the MAPK pathway targeting. 
Smad4 also induced the angiogenesis in ovarian cancer 
and increased the tumor development [65]. Smad4 acts 
as a tumor suppressor and inhibits the proliferation of 
tumor cells via Smad4/R-Smad complex. SNHG16 over 
expression has been found in GEM-resistant PC cells. 
SNHG16 recruited the EZH2 to catalyze H3K27me3 and 
suppress the Smad4, resulted in promotion of the AKT-
mediated GEM-resistant PC cells [66]. Cancer stem-like 
cells (CSCs) are a sub-population of chemo-resistant 
tumor cells that are responsible for tumor recurrence 
[67, 68]. NF90 is an RNA-binding protein that has a sig-
nificant role in the stabilization, turnover, and translation 

of various mRNAs [69–71]. TGFβ1 as an essential cyto-
kine that induces EMT is highly correlated with the 
CSCs features [72]. It has been found that CSCs were 
highly abundant in UBC upon GEM treatment. TGFβ1 
was up regulated in GEM-treated UBC cells to deregu-
late the LET/NF90/miR-145 signaling cascade, result-
ing in increased chemo resistance. LET down regulation 
was associated with NF90 protein stability, decreased 
biogenesis of miR-145, and increased stemness markers. 
The miR-145 targeted KLF4 and HMGA2 in UBC cells to 
inhibit stemness of tumor cells [73].

The JAK/STAT signaling pathway is the main way to 
receive cytokines such as interleukins, interferons, and 
colony-stimulating factors. Therefore, it is involved in 
regulation of hematopoiesis, inflammation, and apopto-
sis. JAK/STAT signaling is initiated by cytokine binding 
to their receptors that recruits JAKs. Subsequently, acti-
vated JAKs promote the phosphorylation and dimer-
ization of STATs that finally enter to the nucleus to 
regulate the JAK/STAT target genes. This pathway can 
be negatively regulated by the PIAS, SOCS, and PTPs. 
SOCS family inhibits the recruitment of STAT and JAK 
kinase activity [74]. LncRNAs have a pivotal role in GEM 
response of tumor cells by regulation of JAK/STAT sig-
naling (Fig. 2). GAS5 suppressed GEM resistance in PC 
cells via miR-221/SOCS3 axis [75]. UCA1 suppressed 
SOCS3 via EZH2 recruitment in PC cells, thus promot-
ing malignant traits and Gem resistance in pancreatic 
tumor cells [76].

Figure 3  LncRNAs are involved in GEM response by regulation of structural proteins, autophagy, drug efflux, and cellular metabolism. (Created with 
BioRender.com)
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Transcription factors
Transcription factors are mainly the final effectors of 
various signaling pathways to regulate the expression of 
genes involved in cellular responses toward the intra and 
extra cellular stimuli. Therefore, they can be also involved 
in drug response of tumor cells. It has been shown that 
lnRNAs can affect the Gem response in tumor cells by 
regulation of transcription factors. C-MYC is an onco-
genic transcription factor involved in cellular metabo-
lism, proliferation, and drug resistance [77]. PVT1 plays 
a pivotal role in cancer through co-overexpression with 
the Myc [78, 79]. It has been identified that GEM trig-
gers PVT1 processing into miRNAs through modulat-
ing the activity of the microprocessor in PC cells. After 
GEM exposure, the miR-1207 was upregulated in PC 
cells and inhibited oncogenic signaling by MYC target-
ing. PVT1 processing was mediated by Drosha/DGCR8 
and that GEM modulated miRNA processing via Drosha 
and DGCR8 targeting [80]. FOXO3 belongs to the Fork-
head box transcription factors that is negatively regu-
lated by PI3K/AKT and MAPK/ERK pathways [81, 82]. 
It promotes apoptosis by up regulation of pro-apoptotic 
factors such as Bim and FasL [83]. FOXO3 inactiva-
tion by AKT confers 5-FU resistance [84]. There was 
LINC01714 down regulation in CCA that was related 
with poor prognosis. LINC01714 inhibited the migration 
and aggressiveness of CCA tumor cells, while promoted 
GEM sensitivity via FOXO3 inhibition [85]. The Bromo-
domain-containing Protein 4 (BRD4) is a transcriptional 
regulator by binding to the acetylated histones that is 
involved in modulation of cell proliferation and invasion 
[86, 87]. BRD4 is an important DNA repair regulator, and 
its inhibition has antitumor effects on various cancers. 
It also promotes the chemo sensitivity to GEM treat-
ment [87, 88]. p21 is a negative regulator of cell-cycle 
progression, causing CCNB1 degradation to maintain 
cell-cycle arrest during the G2/M phase [89, 90]. Chk1 
is also a ser/thr kinase that regulates cell-cycle progres-
sion during the G2/M phase [91]. LINC00346 improved 
the pancreatic tumor cell proliferation and colony forma-
tion. LINC00346 down regulation induced G2/M cell-
cycle arrest in pancreatic tumor cells via p21 expression 
and Chk1 phosphorylation. It sponged miR-188-3p to 
enhance PC growth and GEM resistance via BRD4 tar-
geting [92]. The HOX family belongs to the homeobox 
genes that encode transcriptional regulators to control 
cell proliferation and differentiation [93]. There were 
HOTTIP up regulations in human PC tissues and cell 
lines, which promoted tumor cell proliferation, EMT, and 
invasion. HOTTIP also increased GEM resistance via 
HOXA13 targeting [94]. High mobility group (HMG) is 
a family of non-histone DNA-binding proteins that are 
participated in regulation of transcription, DNA repair, 
and nucleosome assembly [95]. It was discovered that 

ANRIL down regulation inhibited PC cell growth and 
invasion and decreased GEM resistance via miR-181a 
targeting to regulate HMGB1-induced cell autophagy. 
MiR-181a activated autophagy via reducing LC3 I/II and 
increasing Beclin1 [96].

Polycomb and RNA binding proteins
The majority of PC patients are detected at advanced 
stages, and there are limited surgical choices and a poor 
prognosis for these patients. Tumor recurrence and drug 
resistance are the most common causes of poor survival 
rate in PC patients [97]. GEM substitutes cytidine during 
DNA replication and blocks the production of deoxyri-
bonucleotides to suppress pancreatic tumor cell growth 
[98]. The serine- and arginine-rich (SR) proteins belong 
to RNA-binding protein family, which regulates alterna-
tive splicing [99]. Serine/arginine-rich splicing factor 3 
(SRSF3) is a SR protein family member that modulates 
cell senescence through detecting the alternative termi-
nal exon [100, 101]. Messenger RNA metabolic processes 
from splicing to translation are regulated by m6A modifi-
cation [102]. EZH2 as the catalytic member of Polycomb 
repressive complex 2 (PRC2) catalyzes the H3K27me3 to 
inhibit gene expression [103, 104]. LncRNAs are involved 
in GEM response by EZH2 promoter recruitment and 
transcriptional regulation of target genes (Fig.  3). There 
was SRSF3 up regulation in PC tissues that was corre-
lated with GEM resistance and poor prognosis. SRSF3 
modulated ANRIL exon inclusion, while improved exon 
skipping was observed by SRSF10 in PC cells. The m6A 
modification of ANRIL regulated its splicing in these 
cells. SRSF3 enhanced GEM resistance through ANRIL 
expression by constructing a complex with Ring1b and 
EZH2 that led to increased DNA homologous recom-
bination repair [105]. HAT1 is a B-type histone acet-
yltransferase that regulates histone H4 N-terminus 
acetylation. Acetyl molecules can be present on cellular 
protein lysine residues as an epigenetic modulator [106]. 
Protein acetylation is a critical regulator of replication-
dependent chromatin assembly, DNA damage repair, 
and gene expression [107, 108]. Mutated HAT1 enhances 
drug resistance in tumor cells. HAT1 improved liver 
tumor cell growth and caused cisplatin resistance [109]. 
EZH2 deregulation was correlated with GEM resistance 
via down regulation of p27Kip1 [110]. HAT1 silencing 
increased GEM sensitivity in PC cells via PVT1/EZH2 
complex targeting. It also enhanced GEM resistance in 
PC cells by facilitating BRD4 binding to the PVT1 pro-
moter and increasing PVT1 expression. Moreover, HAT1 
protected EZH2 by inhibiting BRD4 from attaching to 
the N-terminal domain of EZH2 [111]. Cancer stem cells 
(CSCs) have a high self-renewal capacity that is associ-
ated with chemo resistance in PDAC tumors [112, 113]. 
It has been hypothesized that standard chemotherapy 
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reduces the tumor mass by targeting the proliferating 
PDAC cells, while fails to target the CSCs that results in 
treatment failure [114]. Curcumin is a well-known sup-
pressor of several oncogenes including ERK, AKT, and 
EZH2 in PDACs [115, 116]. PVT1 was up regulated 
in GEM-resistant PDAC cells. Curcumin also targeted 
CSCs and decreased the spheroid-forming capacity of 
GEM-resistant PDAC cells. Curcumin improved GEM 
sensitivity in pancreatic tumor cells via EZH2 block-
ing and its downstream target PVT1 [117]. GEM is a 
first-line chemotherapeutic agent that has been shown 
to enhance patient survival in un-resectable gallblad-
der cancer (GBC) patients [118, 119]. Nevertheless, only 
36% of GBC patients benefit from GEM treatment that 
is related to the drug resistance [120]. NONO is a criti-
cal RNA binding protein in different types of cancers 
[121, 122]. NONO increased oxaliplatin sensitivity in 
CRC cells indicating that NONO has pivotal role in drug 
resistance of tumor cells [123]. There was SSTR5-AS1 up 
regulation in GBC tissues that was associated with poor 
OS in GBC patients. SSTR5-AS1 directly regulated the 
NONO protein, which resulted in increased GEM resis-
tance in these patients [124].

Autophagy and cell cycle regulation
Autophagy is a critical biochemical process that pre-
serves cellular homeostasis and survival by removing 
and recycling unneeded and damaged cellular materials 
and organelles. As a multidimensional catabolic process, 
autophagy has been preserved throughout the evolu-
tion. Drug resistance reduces the apoptotic response 
of tumor cells via abnormal cell autophagy [125–127]. 
Autophagy is a critical regulator of tumor development 
and cancer therapy via promoting cell survival [56]. PI3K 
pathway is one of the main regulators of autophagy in 
response to ROS levels. PI3Kα subunit is a suppres-
sor of autophagy by AKT/mTORC2 axis under moder-
ate ROS levels [128]. Regarding the role of autophagy in 
drug response, lncRNAs can be involved in autophagy 
mediated GEM response in tumor cells (Fig.  3). Inhibi-
tion of autophagy sensitizes the cancer cells to GEM, 
while decreasing the stemness of pancreatic cancer cells 
[129]. It has been shown that the SNHG14 enhanced 
PDAC cells progression and autophagy mediated GEM 
resistance via miR-101 sponging [130]. Neoadjuvant che-
motherapy including capecitabine, bevacizumab, GEM, 
and taxanes, has improved the prognosis for patients 
with metastatic breast cancer [131]. GEM regulates 
autophagy via Beclin1, ATG16L1, and LC3, and pro-
motes apoptosis in tumor cells via Bcl-2 and Bax [132–
135]. Apoptosis is a key mechanism that controls tissue 
homeostasis, whereas autophagy is an essential biologi-
cal process that eliminates damaged cellular components 
[136]. Linc-ROR suppressed histone H3 acetylation in 

the miR-34a promoter to reduce GEM-mediated apop-
tosis and autophagy, resulting in miR-34a down regula-
tion. LincROR inhibition induced the LC3-II, Beclin1, 
and NOTCH1 expressions, while reduced p62 expres-
sion in breast tumor cells [137]. HOST2 down regulation 
reduced GEM resistance to promote apoptosis in pancre-
atic tumor cells [138]. Cyclin-dependent kinases (CDKs) 
have key roles in regulation of the cell cycle progression 
[139]. CDK14 regulates the cell cycle progression by 
interacting with CCND3 and CCNY. It also stimulates 
the WNT pathway by targeting its downstream proteins 
[140]. There were MSC-AS1 up regulations in PAAD and 
PDAC tissues that was directly correlated with CDK14 
up regulation and poor prognosis. There was significant 
down regulation of miR-29b-3p in the PDAC tissues that 
was correlated with a poor outcome in PDAC patients. 
MSC-AS1/miR-29b-3p axis regulated CDK14-mediated 
cell proliferation and GEM-mediated apoptosis in PDAC 
cells [141].

ABC transporters and structural proteins
Structural proteins have not a direct role in transcrip-
tional regulation. However, they have critical roles in 
regulation of cellular metabolism, membrane traffic, 
and cell migration. LncRNAs are also involved in GEM 
response by regulation of structural proteins, ABC trans-
porters, and cellular metabolism (Fig.  3). Multidrug 
resistance-associated protein 1 (MRP1) belongs to the 
ABC transporter protein family that is primarily involved 
in the transport of multiple intracellular and extracel-
lular complexes. As an efflux pump, it removes the che-
motherapy drugs from tumor cells. MRP1 promotes the 
chemotherapeutic resistance in tumor cells via lowering 
intracellular drug concentration. It has been reported 
that there was GHET1 up regulation in BC that was asso-
ciated with higher grades and muscle invasion. GHET1 
enhanced the GEM resistance in BC via ABCC1 up reg-
ulation [142]. There was a dose-dependent association 
between FOXD2-AS1 up regulation and GEM-resistance 
of bladder tumor cells. FOXD2-AS1 enhanced the GEM-
resistance of bladder cancer via miR-143/ABCC3 target-
ing [143].

A low intracellular reactive oxygen species (ROS) level 
is required to maintain the self-renewal of tumor cells 
[144]. GEM triggers the cell apoptosis via ROS produc-
tion [145]. Chemo resistant tumor cells have a strong 
antioxidant system to regulate the excessive generation 
of ROS in order to survive under oxidative stress [146]. 
NRF2 is the major mediator of redox hemostasis that is 
typically up regulated in CSCs [147]. SKP1-Cul1-Rbx1 
(SCFb-TRCP) E3 complex participates in the protea-
somal degradation of NRF2 [148, 149]. SLC7A11-AS1 
up regulation and its association with drug resis-
tance was demonstrated in GEM-resistant PDAC cells. 
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SLC7A11-AS1 preserved NRF2 via inhibiting ubiquitina-
tion mediated by SCFb-TRCP, which is essential to sus-
tain the self-renewal and chemo resistance of PDAC cells. 
SLC7A11-AS1 up regulation was contributed with poor 
prognosis in PDAC patients [150]. USP44 as a deubiqui-
tinase has pivotal roles in regulation of spindle assembly 
and anaphase onset by deubiquitination of CDC20 that 
is an inhibitor of APC/C. There was DNH-AS1 down 
regulation in GEM resistant PC cells which was associ-
ated with prognosis. The m6A methylase knockdown 
has been demonstrated to reduce the levels of DBH-AS 
expressions in PC cells. DNH-AS1 acted as a sponge for 
miR-3163 to up regulate the USP44 that was involved in 
the GEM absorption in tumor cells [151].

Twinfilin 1 (TWF1) as an inhibitor of the actin polym-
erization is involved in regulation of cell migration, drug 
sensitivity, and tumor progression [152, 153]. Inhibition 
of the SBF2-AS1 decreased the levels of TWF1 expres-
sions via miR-142-3p sponging to increase GEM resis-
tance in pancreatic tumor cells [154]. EMT is one of the 
pathophysiological cellular processes that is involved 
in regulation of embryogenesis, tumor metastasis, and 
drug resistance [155]. It is orchestrated by the up regula-
tion of mesenchymal proteins such as CDH2 and VIM, 
while down regulation of CDH1 epithelial marker that 
finally changes the epithelial to mesenchymal pheno-
type to facilitate the tumor cell migration [156]. MVIH 
down regulation increased the expression of CDH1 while 
decreased the Vimentin expression, which induced GEM 
sensitivity in gastric tumor cells [157].

Conclusions
LncRNAs as the regulators of cellular mechanisms such 
as cell proliferation and apoptosis have a critical role in 
chemotherapeutic response. In the present review, we 
discussed the role of lncRNAs in GEM response. It has 
been shown that lncRNAs mainly induced GEM resis-
tance through the regulation of transcription factors, 
autophagy, polycomb complex, and signaling pathways. 
Therefore, lncRNAs can be introduced as the non-inva-
sive prognostic markers to predict the GEM response 
and improve the therapeutic strategy among cancer 
patients. Despite the clinical advantages of lncRNA as 
non-invasive diagnostic and prognostic markers in can-
cer patients, some limitations have slowed down the 
entry of these markers into the clinic. One of the upcom-
ing limitations is the requirement to examine the levels 
of lncRNA expressions in the serum of cancer patients. 
Animal studies are also needed to introduce lncRNA as 
the prognostic markers and therapeutic targets. How-
ever, the majority of reports on the relationship between 
lncRNAs and GEM response are limited to the in-vitro 
studies and assessment of their expression levels in tumor 
tissues. Another existing limitation is the complexity of 

cellular processes affected by lncRNAs, which can be 
related to their ability to bind with DNA, RNA, and pro-
teins that can affect a wide range of cellular processes. 
Therefore, detailed studies on the molecular mechanisms 
of lncRNAs can play a very important role in preclinical 
studies to pave the way to introduce lncRNAs as the reli-
able diagnostic and prognostic markers in the clinic.
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