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Abstract
Background  Cardiogenic shock (CS) is a complex state with many underlying causes and associated outcomes. It 
is still difficult to differentiate between various CS phenotypes. We investigated if the CS phenotypes with distinctive 
clinical profiles and prognoses might be found using the machine learning (ML) consensus clustering approach.

Methods  The current study included patients who were diagnosed with CS at the time of admission from the 
electronic ICU (eICU) Collaborative Research Database. Among 21,925 patients with CS, an unsupervised ML 
consensus clustering analysis was conducted. The optimal number of clusters was identified by means of the 
consensus matrix (CM) heat map, cumulative distribution function (CDF), cluster-consensus plots, and the proportion 
of ambiguously clustered pairs (PAC) analysis. We calculated the standardized mean difference (SMD) of each variable 
and used the cutoff of ± 0.3 to identify each cluster’s key features. We examined the relationship between the 
phenotypes and several clinical endpoints utilizing logistic regression (LR) analysis.

Results  The consensus cluster analysis identified two clusters (Cluster 1: n = 9,848; Cluster 2: n = 12,077). The key 
features of patients in Cluster 1, compared with Cluster 2, included: lower blood pressure, lower eGFR (estimated 
glomerular filtration rate), higher BUN (blood urea nitrogen), higher creatinine, lower albumin, higher potassium, 
lower bicarbonate, lower red blood cell (RBC), higher red blood cell distribution width (RDW), higher SOFA score, 
higher APS III score, and higher APACHE IV score on admission. The results of LR analysis showed that the Cluster 2 was 
associated with lower in-hospital mortality (odds ratio [OR]: 0.374; 95% confidence interval [CI]: 0.347–0.402; P < 0.001), 
ICU mortality (OR: 0.349; 95% CI: 0.318–0.382; P < 0.001), and the incidence of acute kidney injury (AKI) after admission 
(OR: 0.478; 95% CI: 0.452–0.505; P < 0.001).

Conclusions  ML consensus clustering analysis synthesized the pattern of clinical and laboratory data to reveal 
distinct CS phenotypes with different clinical outcomes.
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Introduction
Cardiogenic shock (CS), a state of circulatory failure, can 
occur due to acute ischaemic or non-ischaemic cardiac 
events, or from the progression of longstanding under-
lying heart disease [2–4]. Unfortunately, despite recent 
advances in pharmacological intervention or mechani-
cal support, CS mortality remains unacceptably high and 
highly varied, with the 30-day mortality ranging from 
50 to 90% [5]. The disparity in the mortality rates might 
imply CS patients are a heterogeneous population, and 
some phenotypes of CS are so different in clinical fea-
tures and prognoses that they cannot be regarded as a 
whole population, both in clinical practice and research. 
Additionally, most attempts at staging CS have been 
based on expert opinions and consensus [6–9]. To avoid 
complexity, some of these classification systems only use 
few variables and depend on specific, although arbitrary, 
cutoffs, which may introduce bias and fail to capture the 
full variability of patient profiles [10]. Furthermore, the 
traditional logistic regression (LR) method has been used 
to develop most of these classifications, despite the fact 
that the predictors do not interact linearly and additively 
[11]. Therefore, a more accurate and granular classifica-
tion of the CS spectrum is urgently needed to aid in the 
urgent and critical task of selecting proper management, 
including targeting the most appropriate candidates for 
advanced therapies.

Machine learning (ML) algorithms have become more 
commonly utilized in individualized medicine to support 
clinical decision-making as electronic medical records 
and artificial intelligence have advanced [12, 13]. Con-
sensus clustering, an unsupervised ML approach, is used 
to find similarities and differences among numerous 
variables, and then allocate them into distinct pheno-
types. Consensus clustering generates multiple cluster-
ing results by multiple iterations and merges these results 
to arrive at the final clustering result [14]. Additionally, 
consensus clustering can provide a visual display of mul-
tiple clustering results to help understand the clustering 
process and results, enhancing the interpretability of the 
algorithm. Recent studies have reported that ML consen-
sus clustering approach may distinguish clinically distinct 
disease phenotypes such as cardiovascular diseases [9, 
15].

Given the heterogeneity of patients with CS on admis-
sion [16], we aimed to identify clinically meaningful phe-
notypes of patients with CS using an unsupervised ML 
approach and to assess mortality risks among these dis-
tinct clusters.

Methods
Study design and data resource
We conducted a retrospective multi-center analysis 
using all the relevant data extracted from the electronic 
Intensive Care Unit (eICU) Collaborative Research data-
base. The Database was a comprehensive ICU database 
for more than 200,000 admissions from over 200 hos-
pitals across the USA between 2014 and 2015 [17]. We 
finished the “Protecting Human Research Participants” 
curriculum and obtained permission to access the data-
set (authorization codes: 33,281,932). The establishment 
of the eICU database was approved by the Institutional 
Review Boards of the Massachusetts Institute of Technol-
ogy (Cambridge, Massachusetts, USA). All the data were 
anonymized prior to research analyses by the eICU pro-
gram, and hence the requirement for informed consent 
was waived. The study adhered to the ethical standards 
set forth in the 1964 Declaration of Helsinki and its later 
amendments.

Patient selection
We included all critically ill patients with a primary diag-
nosis of CS using International Classification of Diseases, 
Ninth Revision (ICD-9) diagnosis codes from the eICU 
database (ICD-9 codes:758.51 and R57.0). Patients were 
excluded if they had: [1] the age of less than 18; [2] mul-
tiple ICU admissions; [3] a length of stay in the ICU less 
than 24  h; and [4] incomplete information about study 
outcomes (all-cause in-hospital mortality, all-cause ICU 
mortality, and the incidence of acute kidney injury [AKI] 
after admission). For patients with multiple admissions, 
we retained information only on the patient’s first admis-
sion to the ICU.

Data extraction and processing
Demographic data, medical history, vital signs, labora-
tory data, scoring systems, treatment information, and 
others were retrieved from the eICU database using 
structured query language with PostgreSQL (version 
13.6, www.postgresql.org). We only used data that was 
present within 24  h of ICU admission for clustering 
analysis since our aim was to phenotype CS patients 
based on available data at the time of ICU admission. If 
patients received vital signs measurement or laboratory 
tests more than once on the first day of admission, only 
the initial test results were considered for subsequent 
analyses.

The extracted variable included: [1] demographics: age, 
gender, ethnicity and body mass index (BMI); [2] ICU 
type: cardiac intensive care unit (CICU), cardiac surgery 

Keywords  Acute kidney injury, Artificial intelligence, Cardiogenic shock, Cluster, Intensive care unit, Machine learning, 
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intensive care unit (CSICU), medical intensive care unit 
(MICU), surgery intensive care unit (SICU), cardiac care 
unit-cardiac trauma/surgical intensive care unit (CCU-
CTICU), neuro intensive care unit (NICU), cardiac 
trauma intensive care unit (CTICU); [3] Medical his-
tory: myocardial infarction, coronary artery bypass graft-
ing (CABG), percutaneous coronary intervention (PCI), 
pacemaker, congestive heart failure, cardiac arrhyth-
mias, hypertension, peripheral vascular disease, chronic 
obstructive pulmonary disease (COPD), respiratory 
failure, stroke, neurologic disorders, diabetes, anemia, 
lymphoma, liver disease, peptic ulcer, metastatic can-
cer, rheumatoid arthritis, hypothyroidism, and acquired 
immunodeficiency syndrome (AIDS); [4] vital signs: 
systolic blood pressure (SBP), diastolic blood pressure 
(DBP), mean blood pressure (MBP), heart rate, respira-
tory rate, temperature, and oxygen saturation measured 
by pulse oximetry (SpO2); [5] laboratory findings: white 
blood cell (WBC) count, red blood cell (RBC) count, 
platelet count, red blood cell distribution width (RDW), 
blood urea nitrogen (BUN), creatinine, estimated glo-
merular filtration rate (eGFR), glucose, total protein, 
albumin, bilirubin, total calcium, potassium, sodium, 
chloride, and bicarbonate; The eGFR was calculated using 
the modification of diet in renal disease (MDRD) formula 
[18]; [6] prognostic scoring system: systemic inflamma-
tory response syndrome (SIRS) score, Sequential Organ 
Failure Assessment (SOFA) score, acute physiology score 
III (APS III) and Acute Physiology and Chronic Health 
Evaluation IV (APACHE IV) sccore; [7] Treatment infor-
mation: PCI, CABG, intraaortic balloon pump (IABP), 
mechanical ventilation, renal replacement treatment 
(RRT), and vasopressor use (dopamine, epinephrine, nor-
epinephrine, or vasopressin). The definition of vasopres-
sor use was at least one vasopressor was used during the 
first 24 h after admission.

Endpoints
The study endpoints of our study included all-cause in-
hospital mortality, all-cause ICU mortality, and the inci-
dence of AKI after admission. KDIGO (Kidney Disease: 
Improving Global Outcomes) criteria were taken as the 
definition of AKI [19]. KDIGO criteria are as follows: 
increase in serum creatinine to ≥ 1.5 times baseline must 
have occurred within the prior 7 days, or a ≥ 0.3  mg/dl 
increase in serum creatinine occurred within 48  h, or 
urine volume < 0.5ml/kg/h for 6 h or more. The baseline 
serum creatinine was determined by using the minimum 
serum creatinine values available within the 7 days before 
admission. If the pre-admission serum creatinine was not 
available in the eICU database, the first serum creatinine 
measured at admission was used as the baseline serum 
creatinine.

Management of missing data
Variables with more than 20% missing values were 
excluded since large amounts of missing data might cause 
bias. Correspondingly, for variables with fewer than 20% 
missing values, multivariable imputation was applied, 
which was based on 5 replications and a chained equa-
tion approach method. Additionally, the extreme values 
were not omitted and treated as missing data for imputa-
tion [20].

Cluster analysis
We applied an unsupervised ML approach to consensus 
clustering to identify clinical phenotypes of ICU patients 
with CS. To prevent producing an excessive number of 
clusters that would not be clinically helpful, we employed 
a pre-specified subsampling parameter of 80% with 100 
iterations and assigned the number of potential clusters 
(k) to vary from 2 to 8 in sequence with the K-means 
clustering algorithm. The optimal number of clusters was 
determined by cumulative distribution function (CDF) 
plot, delta area plot, consensus matrix (CM) heat map, 
cluster-consensus plot in the within-cluster consensus 
scores, and the proportion of ambiguously clustered pairs 
(PAC) analysis [21]. Pairwise consensus values, defined as 
‘the proportion of clustering runs in which two items are 
grouped together’, are calculated and stored in a CM for 
each k. Then for each k, a final agglomerative hierarchi-
cal consensus clustering using distance of 1 − consensus 
values is completed and pruned to k groups, which are 
called consensus clusters. The within-cluster consensus 
score, ranging from 0 to 1, is defined as the average con-
sensus value for all pairs of individuals within the same 
cluster [22]. A value closer to 1 indicates better cluster 
stability [22]. PAC is calculated as the proportion of all 
sample pairs with consensus values falling within the pre-
determined boundaries [21, 22]. A value closer to zero 
indicates better cluster stability [21].

Statistical analysis
After we identified the clusters of CS patients, we per-
formed analyses to test the differences among the 
clusters. Data were presented as mean ± standardized 
differences (SD) and compared between groups using a 
Student’s t test if the measurement data were normally 
distributed and the variance was homogeneous. If the 
requirements were not satisfied, data were expressed as 
median interquartile range (IQR), and the Kruskal Wal-
lis rank test was used for comparisons between groups. 
Numeration data were reported as absolute numbers and 
percentages, with statistical analysis using Pearson’s χ2 
test or Fisher’s exact test as appropriate.

We determined the clusters’ key features using an 
absolute standardized mean difference (SMD) of > 0.3 
in reference to Thongprayoon’s studies [23–25]. We 
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then compared outcomes among the identified clusters. 
We assessed the association of clusters with CS and in-
hospital mortality, ICU mortality, and the incidence of 
AKI after admission using the LR model. Cluster 1 is 
taken as the reference group in the further analysis. The 
extracted variables were not incorporated into the LR 
analysis because these characteristics were used to iden-
tify clusters through unsupervised ML. We performed 
all analyses using R, version 4.0.5 (RStudio, Inc., Boston, 
MA, USA; http://www.rstudio.com/), with the package 
of Consensus ClusterPlus (version 1.54.0) for consensus 
clustering analysis [22].

Result
Identification of the optimal number of clusters
Out of 34,682 ICU admissions, 21,925 patients with the 
diagnosis of CS were enrolled in the final cohort (Fig. 1). 
The CDF plot shows each cluster’s consensus distribu-
tions (Fig.  2A). The delta area plot displays the relative 
change in the area under the CDF curve, and the largest 
changes in area occurred between k = 2 and k = 5 (Fig. 2B). 
The CM heat map demonstrated that the ML algorithm 
identified cluster 2 and cluster 3 with clear boundaries, 
indicating good cluster stability over repeated iterations 
(Fig. S2A). As shown in the cluster-consensus plot, k = 2 
and k = 3 had high stability given their high mean cluster 
consensus score (Fig. S2B). Additionally, favorable low 
PACs were demonstrated for 2 clusters (Fig. S1). Sum-
marily, the ML consensus clustering approach from base-
line characteristics on admission identified 2 clusters that 
best represented the data.

Selection of Key features of the clusters
Figure S3 shows missing rate for clinical and laboratory 
variables extracted from the database. Cluster 1 had 
9,848 (44.9%) patients, while Cluster 2 had 12,077(55.1%) 
patients. As shown in Table 1, the clinical characteristics 
of the two identified clusters in the CS cohort were sig-
nificantly different. Ages at presentation were 70 (59–80) 
years for Cluster 1 cohort, and 65 (63–76) years for Clus-
ter 2, whereas male sex represented 53.8% and 51.2% of 
patients in these two cohorts, respectively. On the basis 
of the |SMD|>0.3, the key features of patients in Cluster 
1, compared with Cluster 2, included: lower SBP, lower 
MBP, lower DBP, lower eGFR, higher BUN, higher creati-
nine, lower albumin, higher potassium, lower bicarbon-
ate, lower RBC count, higher RDW, higher SOFA, higher 
APS III score, and higher APACHE IV score (Fig. 3 and 
Table 2).

Association of clusters with endpoints
The in-hospital mortality, ICU mortality, and inci-
dence of AKI for Cluster 1 patients were 25%, 16%, and 
66% respectively, and were 11%, 6%, and 49% for Clus-
ter 2 patients, respectively (P < 0.001 for all) (Fig.  4 and 
Table S1). The results of LR analysis showed that the 
cluster 2 was associated with lower in-hospital mortal-
ity (odds ratio [OR]: 0.374; 95% confidence interval [CI]: 
0.347–0.402; P < 0.001), ICU mortality (OR: 0.349; 95% 
CI: 0.318–0.382; P < 0.001), and incidence of AKI after 
admission (OR: 0.478; 95% CI: 0.452–0.505; P < 0.001) 
(Fig. 5).

Discussion
Major findings
The unsupervised ML consensus clustering approach 
provides the ability to more efficiently analyze, identify, 

Fig. 1  Flow diagram of patient inclusion and overview of the statistical 
analysis. Abbreviation: CS: cardiogenic shock; ML: machine learning; eICU: 
electronic Intensive Care Unit; ICD-9: International Classification of Diseases, 
Ninth Revision; CDF: cumulative distribution function; CM: consensus matrix; 
PAC: proportion of ambiguously clustered pairs; SMD, standardized mean dif-
ferences; LR: logistic regression
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and classify phenotypes of patients on admission based 
on large amounts of data. In this study, two distinct clus-
ters of critically ill patients with CS were determined by 
applying the consensus clustering algorithm. Blood pres-
sure (SBP, MBP, and DBP), kidney function (creatinine, 
BUN, and eGFR), electrolytes and acid-base compounds 
(potassium and bicarbonate), liver function (albumin), 
RBC-associated indicators (RBC count and RDW), and 
some scoring systems (SOFA, APS III, and APACHE IV) 
were the key features used to differentiate the phenotypes 
of CS. In addition, these two clusters were also associ-
ated with multiple study endpoints including in-hospital 
mortality, ICU mortality, and the incidence of AKI after 
admission. A more accurate and granular classification 
could deepen our understanding of CS pathophysiology, 
be introduced into clinical practice as a risk assessment 
tool, and provide participant selection information for 
clinical trials.

Relation to other works
Several prognostic classifications or risk stratifications 
of CS have been reported. For example, with regard to 
hemodynamic phenotypes of CS, patients are gener-
ally classified into 4 phenotypes based on cardiac output 
(i.e., insufficient [cold] versus sufficient [warm]) and vol-
ume status (i.e., overloaded [wet] versus euvolemic [dry]) 
which reflect tissue perfusion and congestion, respec-
tively [26, 27]. This classic “cold and wet” profile is the 
most frequent CS phenotype, accounting for nearly two-
thirds of patients with MI-associated CS [28]. Based on 6 
variables with a maximum of 9 points, there are three risk 

categories in the IABP-SHOCK II score [29]. Patients in 
the low, intermediate, and high risk categories have an in-
hospital mortality risk of 20–30%, 40–60%, and 70–90%, 
respectively. The recently proposed Society of Cardio-
vascular Angiography and Interventions (SCAI) staging, 
describing stages of CS from A to E, provides discrimina-
tory potential for morbidity and mortality [6]. It can be 
used to track the severity of shock over the course of a 
hospital stay. However, it was noted that some of these 
classification tools are based on expert consensus and 
theoretical considerations rather than on clinical evi-
dence. To avoid complexity, some of these classifications 
contain only a few characteristics and depend on specific, 
although arbitrary, cutoff values that could result in bias 
and fail to capture the full variability of patient profiles. 
Additionally, some continuous variables in the classifica-
tion were changed into categorized variable, which might 
cause a loss of information on between-subject variabil-
ity. Furthermore, most of these classifications, using the 
traditional LR method, were developed assuming that the 
predictors interact in a linear and additive way, despite 
the reality that the interactions are often non-linear and 
multifactorial [11].

To address these limitations above, clustering analysis 
was used in this study to capture the natural structure of 
multivariate data without a priori knowledge and it has 
been applied extensively in medical science, for example, 
to identify clinical phenotypes [30]. It can also treat mul-
tiple variables independently and continuous variables 
as continuous. Zweck et al. [9] used machine learning, 
and identified 3 distinct CS phenotypes (“Noncongested” 

Fig. 2  (A) CDF plot; (B) Delta area plot. Abbreviation: CDF: cumulative distribution function
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Characteristics Total Cluster 1 
(n = 9848)

Cluster 2 
(n = 12,077)

P 
value

Demographics
Age, year 67 (56, 78) 70 (59, 80) 65 (53, 76) < 0.001
Gender, male, % 11,471 (52.3) 5293 (53.8) 6178 (51.2) < 0.001
Ethnicity, white, % 17,033 (77.7) 7482 (76.0) 9551 (79.1) < 0.001
BMI, kg/m2 27.1 (23.0, 

32.5)
27.4 (23.3, 
33.1)

26.8 (22.8, 
31.9)

< 0.001

ICU type, % < 0.001
CICU 13,246 (60.4) 6026 (61.2) 7220 (59.8)
Others 8679 (39.6) 3822 (38.8) 4857 (40.2)

Past history, % 462 (2.1) 182 (1.9) 280 (2.3)
Myocardial infarction 2130 (9.7) 1070 (10.9) 1060 (8.8) < 0.001
CABG 1411 (6.4) 774 (7.9) 637 (5.3) < 0.001
PCI 1397 (6.4) 704 (7.2) 693 (5.7) < 0.001
Pacemaker 871 (4.0) 518 (5.3) 353 (2.9) < 0.001
Congestive heart failure 4213 (19.2) 2354 (23.9) 1859 (15.4) < 0.001
Cardiac arrhythmias 3238 (14.8) 1725 (17.5) 1513 (12.5) < 0.001
Hypertension 11,536 (52.6) 5704 (57.9) 5832 (48.3) < 0.001
Peripheral vascular disease 1203 (5.5) 667 (6.8) 536 (4.4) < 0.001
COPD 3816 (17.4) 1666 (16.9) 2150 (17.8) 0.089
Respiratory failure 588 (2.7) 245 (2.5) 343 (2.8) 0.118
Stroke 2175 (9.9) 1125 (11.4) 1050 (8.7) < 0.001
Neurologic disorder 4611 (21.0) 2175 (22.1) 2436 (20.2) < 0.001
Diabetes 7233 (33.0) 3888 (39.5) 3345 (27.7) < 0.001
Anemia 181 (0.8) 111 (1.1) 70 (0.6) < 0.001
Lymphoma 184 (0.8) 93 (0.9) 91 (0.8) 0.143
Liver disease 336 (1.5) 211 (2.1) 125 (1.0) < 0.001
Peptic ulcer 606 (2.8) 297 (3.0) 309 (2.6) 0.044
Metastatic cancer 741 (3.4) 360 (3.7) 381 (3.2) 0.045
Rheumatoid arthritis 489 (2.2) 224 (2.3) 265 (2.2) 0.723
Hypothyroidism 2397 (10.9) 1182 (12.0) 1215 (10.1) < 0.001
AIDS 194 (0.9) 96 (1.0) 98 (0.8) 0.225

Vital signs
SBP, mmHg 106 (92, 1) 100 (87, 1) 112 (98, 1) < 0.001
DBP, mmHg 59 (50, 7) 54 (46, 6) 64 (55, 75) < 0.001
MBP, mmHg 72 (62, 85) 67 (58, 78) 77 (67, 90) < 0.001
Heat rate, beats/min 93 (79, 109) 92 (78, 108) 93 (80, 109) < 0.001
Respiratory rate, beats/min 20 (16, 25) 20 (16, 25) 20 (16, 24) < 0.001
Temperature, °C 36.8 (36.4, 

37.2)
36.7 (36.3, 
37.1)

36.8 (36.5, 
37.3)

< 0.001

SpO2, % 98 (95, 100) 98 (95, 100) 98 (95, 100) < 0.001
Laboratory findings

WBC, 109/L 12.1 (8.2, 17.2) 12.6 (8.3, 17.9) 11.8 (8.1, 16.6) < 0.001
RBC, 109/L 3.89 (3.3, 4.5) 3.59 (3.03, 4.2) 4.11 (3.6, 4.6) < 0.001
Platelet, 109/L 209 (149, 281) 192 (127, 264) 222 (165, 291) < 0.001
RDW, % 15.1 (13.9, 

16.8)
15.8 (14.5, 
17.5)

14.6 (13.6, 
16.0)

< 0.001

BUN, mg/dL 26 (17, 42) 41.1 (29, 57) 19 (13, 26) < 0.001
Creatinine, mg/dL 1.32 (0.9, 2.2) 2.28 (1.5, 3.2) 0.99 (0.8, 1.3) < 0.001
eGFR, mL/min/1.73m2 47.4 (25.2, 

73.9)
24.6 (14.0, 
39.5)

67 (48.5, 90.4) < 0.001

Glucose, mg/dL 128 (104, 168) 128 (101, 171) 128 (105, 166) 0.003
Total protein, mg/dL 6.5 (5.7, 7.2) 6.2 (5.4, 6.9) 6.7 (5.9, 7.4) < 0.001
Albumin, mg/dL 3 (2.5, 3.5) 2.7 (2.2, 3.2) 3.2 (2.7, 3.7) < 0.001

Table 1  Baseline characteristics of the clusters



Page 7 of 12Wang et al. BMC Cardiovascular Disorders          (2023) 23:426 

CS, “Cardiorenal” CS and “Cardiometabolic” CS), with 
specific and reproducible associations with mortality. 
However, their study and ours differ in terms of the study 
cohort, sample size, and statistical methods. Addition-
ally, multiple endpoints (in-hospital mortality, all-cause 
ICU mortality, and the incidence of AKI) were set in 
our study. AKI, which is reflected by a rise in serum cre-
atinine and a potential reduction in urinary output, may 
indicate renal hypoperfusion in the setting of CS and is 
associated with poor outcomes [31]. In the current study, 
2 phenotypes were identified. Compared with those in 
Cluster 2, patients in Cluster 1 had worse hemodynamic 
and metabolic parameters, lower scoring systems, and 
worse clinical outcomes, which indicated they were more 
likely to suffer from multisystem organ failure [4, 29].

Through calculating the SMD of each variable, we 
determined that SBP, MBP, DBP, eGFR, BUN, creatinine, 
albumin, potassium, bicarbonate, RBC, RDW, SOFA, 
APS III, and APACHE IV were the key features between 
clusters. Some of these indicators have been found to be 
associated with risk of mortality in CS. A creatinine of 
greater than 1.33 had significantly higher mortality in the 
Intra-aortic Balloon Pump in CS (IABP-SHOCK II) trial 
[32]. Serum bicarbonate, especially when evaluated in the 
early-stage course of CS patients, could offer information 
regarding prognosis. Wigger et al. [33] found that serum 
bicarbonate decreased prior to significant elevation of 

lactate. A low bicarbonate level shows the better ability to 
predict 30-day mortality than the highest recorded lactate 
level. One recent study has reported that higher RDW is 
associated with an increased risk of all-cause mortality in 
critically ill patients with CS [34]. There is mounting evi-
dence that the development of SIRS plays an important 
role in the pathogenesis of CS. Pierce et al. [35] found 
that inflammatory cytokines might cause an increase in 
RDW by affecting iron metabolism and inhibited bone 
marrow. Additionally, CS can cause activation of the 
renin-angiotensin system, which leads to an increase in 
RDW with erythropoiesis [36]. Multiple scoring systems 
derived from the ICU population have been proposed to 
predict clinical outcomes in CS. A small study compar-
ing the APACHE-II, APACHE-III, SAPS-II, and SOFA 
scoring systems in CS reported that APACHE-III and 
SAPS-II had the best mortality discrimination [10]. The 
latest version of APACHE-IV is calculated based on 129 
variables derived within the first 24 h of ICU admission, 
which was assessed from over 110,588 patients admit-
ted to more than 104 ICUs across the USA [37, 38]. The 
application of the APACHE IV score is limited due to its 
complexity. However, as data science advances, the com-
plexity of these scores could be overcome by electronic 
recording techniques and computing power.

Characteristics Total Cluster 1 
(n = 9848)

Cluster 2 
(n = 12,077)

P 
value

Bilirubin, mg/dL 0.6 (0.4, 1.0) 0.7 (0.4, 1.0) 0.6 (0.4, 0.9) < 0.001
Total Calcium, mmol/L 8.6 (8.1, 9.2) 8.4 (7.9, 9.0) 8.8 (8.3, 9.2) < 0.001
Potassium, mmol/L 4.1 (3.7, 4.6) 4.4 (3.9, 5.0) 4 (3.6, 4.4) < 0.001
Sodium, mmol/L 137 (133, 140) 136 (132, 140) 137 (134, 140) < 0.001
Chloride, mmol/L 102 (97, 106) 101 (96, 106) 102 (97, 105) 0.005
Bicarbonate, mmol/L 24 (20, 27) 22 (18, 25) 25 (22, 28) < 0.001

Prognostic scoring system
SOFA 6 (4, 9) 8 (6, 11) 5 (3, 7) < 0.001
SIRS 3 (2, 4) 3 (2, 4) 3 (2, 4) < 0.001
APS III 52 (38, 70) 64 (51, 83) 43 (32, 56) < 0.001
APACHE IV 66 (51, 84) 80 (66, 98) 56 (44, 70) < 0.001

Treatment information, %
PCI 142 (0.7) 37 (0.4) 105 (0.9) < 0.001
CABG 235 (1.1) 46 (0.5) 189 (1.6) < 0.001
IABP 296 (1.4) 114 (1.2) 182 (1.5) 0.030
Mechanical ventilation 10,682 (48.7) 5054 (51.3) 5628 (46.6) < 0.001
RRT 824 (3.8) 697 (7.1) 127 (1.1) < 0.001
Vasopressor use 6052 (27.6) 3329 (33.8) 2723 (22.6) < 0.001

Values are presented as the means (standard deviations) or medians (interquartile ranges) for continuous variables, and categorical variables are presented as total 
numbers and percentages

BMI: body mass index; CICU: cardiac cardiac intensive care unit; CABG: coronary artery bypass grafting; PCI: percutaneous coronary intervention; COPD: chronic obstructive pulmonary 
disease; AIDS: acquired immunodeficiency syndrome; SBP: systolic blood pressure; DBP: diastolic blood pressure; MBP: mean blood pressure; SpO2: oxygen saturation measured by 
pulse oximetry; WBC: white blood cell; RBC: red blood cell; RDW: red blood cell distribution width; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; SIRS: systemic 
inflammatory response syndrome; SOFA: Sequential Organ Failure Assessment; APS III: acute physiology score III, APACHE IV: Acute Physiology and Chronic Health Evaluation IV; IABP: 
intraaortic balloon pump; RRT: renal replacement treatment

Table 1  (continued) 
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Clinical implications
The strengths of our study include innovative findings 
via an unsupervised ML consensus clustering approach 
derived from a large sample size consisting of a multi-
center population of ICU patients with CS covering a 

broad spectrum of etiologies. The identified clusters of 
CS may be used by clinicians in the ICU to quickly assess 
patients with CS, as the key features identified in this 
study are rapid, easy, and inexpensive laboratory tests. 
These clusters may enhance clinical trials by developing 

Fig. 3  The SMD for each of baseline characteristics across clusters. Abbreviation: SMD: standardized mean differences; BMI: body mass index; CICU: cardiac 
cardiac intensive care unit; CSICU: cardiac surgery intensive care unit; MICU: medical intensive care unit; SICU: surgery intensive care unit; CCU-CTICU: cardiac care 
unit-cardiac trauma/surgical intensive care unit; NICU: neuro intensive care unit; CTICU: cardiac trauma intensive care unit; CABG: coronary artery bypass grafting; 
PCI: percutaneous coronary intervention; COPD: chronic obstructive pulmonary disease; AIDS: acquired immunodeficiency syndrome; SBP: systolic blood pressure; 
DBP: diastolic blood pressure; MBP: mean blood pressure; SpO2: oxygen saturation measured by pulse oximetry; WBC: white blood cell; RBC: red blood cell; RDW: 
red blood cell distribution width; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; SIRS: systemic inflammatory response syndrome; SOFA: 
Sequential Organ Failure Assessment; APS III: acute physiology score III, APACHE IV: Acute Physiology and Chronic Health Evaluation IV; IABP: intraaortic balloon 
pump; RRT: renal replacement treatment
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treatment strategies tailored to a shock phenotype 
instead of aiming for a one-size-fits-all solution, thereby 

paving the way for more individualized health care. This 
new classification system of different shock states will 
also help to make different trials of CS better comparable 
and may also trigger new randomized trials on the pre-
shock state.

Limitations
There were several limitations to our current study. First, 
due to the retrospective nature of this study, future stud-
ies may collect comprehensive data in a prospective 
manner and allow for enhanced, even more nuanced 
examination of the CS phenotypes. Second, in the eICU 
database, values for some important variables, includ-
ing lactate, brain natriuretic peptide, and some advanced 
hemodynamic monitoring parameters, were documented 
incompletely and not included for currentanalysis. Third, 
restricted by the eICU database, the etiology of CS has 
not been identified accurately. Future studies should 
attempt to conduct subgroup analyses based on differ-
ent causes of CS. Fourth, consensus clustering was per-
formed on hospital admission and did not include data 
before or during hospitalization, which could affect hos-
pitalization-related outcomes. Lastly, our classification 
tool only enrolled the variable of CS at the early stage, 
and cannot evaluate the severity and progression of CS 
dynamically. Therefore, in the future, we will study the 
association between ML-derived phenotypes and end-
points within individual SCAI stages, whose aim is to 
characterize disease severity as it evolves over the course 
of a hospital stay.

Table 2  Selection of key characteristics of the clusters
Characteristics Cluster 1 

(n = 9848)
Cluster 2 
(n = 12,077)

Blood pressure
SBP 100 (87, 1) low 112 (98, 1) high
DBP 54 (46, 6) low 64 (55, 75) high
MBP 67 (58, 78) low 77 (67, 90) high
Kidney function
eGFR 24.6 (14.0, 39.5) 

low
67 (48.5, 90.4) 
high

BUN 41.1 (29, 57) high 19 (13, 26) low
Creatinine 2.28 (1.5, 3.2) 

high
0.99 (0.8, 1.3) 
low

Liver function
Albumin 2.7 (2.2, 3.2) low 3.2 (2.7, 3.7) 

high
RBC-associated indicators
RBC 3.59 (3.03, 4.2) 

low
4.11 (3.6, 4.6) 
high

RDW 15.8 (14.5, 17.5) 
high

14.6 (13.6, 16.0) 
low

Electrolytes and acid-base 
compounds
Bicarbonate 22 (18, 25) low 25 (22, 28) high
Potassium 4.4 (3.9, 5.0) high 4 (3.6, 4.4) low
Prognostic scoring system
SOFA 8 (6, 11) high 5 (3, 7) low
APS III 64 (51, 83) high 43 (32, 56) low
APACHE IV 80 (66, 98) high 56 (44, 70) low
SBP: systolic blood pressure; DBP: diastolic blood pressure; MBP: mean blood pressure; 
BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; RBC: red blood cell; 
RDW: red blood cell distribution width; SOFA: Sequential Organ Failure Assessment; APS 
III: acute physiology score III, APACHE IV: Acute Physiology and Chronic Health Evaluation 
IV.

Fig. 4  (A) In-hospital mortality, (B) ICU mortality, and (C) Incidence of AKI after admission among different clusters. Abbreviation: AKI: acute kidney injury; 
ICU:intensive care unit
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Conclusions
ML consensus clustering analysis identified distinct clus-
ters of hospitalized CS. Blood pressure (SBP, MBP, and 
DBP), kidney function (creatinine, BUN, and eGFR), elec-
trolytes (potassium and bicarbonate), liver function (total 
protein and albumin), RBC-associated indicators (RBC 
count and RDW), and some scoring systems (SOFA, APS 
III, and APACHE IV) were the key features used to dif-
ferentiate the phenotypes of CS upon admission. Fur-
thermore, the distinct phenotypes of CS have differing 
in-hospital mortality, ICU mortality, and the incidence 
of AKI after admission. Accordingly, these findings may 
help with risk classification and the design of treatment 
algorithms tailored to each phenotype of CS, as well as 
inform participant selection in future clinical trials.
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