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Abstract 

The currently employed tooth extraction methods in dentistry involve mechanical disruption of the periodontal liga-
ment fibers, leading to inevitable trauma to the bundle bone comprising the socket walls. In our previous work, we 
have shown that a recombinantly expressed truncated version of clostridial collagenase G (ColG) purified from Escheri-
chia coli efficiently reduced the force needed for tooth extraction in an ex-situ porcine jaw model, when injected 
into the periodontal ligament. Considering that enhanced thermostability often leads to higher enzymatic activity 
and to set the basis for additional rounds of optimization, we used a computational protein design approach to gen-
erate an enzyme to be more thermostable while conserving the key catalytic residues. This process generated a novel 
collagenase (ColG-variant) harboring sixteen mutations compared to ColG, with a nearly 4℃ increase in melting tem-
perature. Herein, we explored the potential of ColG-variant to further decrease the physical effort required for tooth 
delivery using our established ex-situ porcine jaw model. An average reduction of 11% was recorded in the force 
applied to extract roots of mandibular split first and second premolar teeth treated with ColG-variant, relative to those 
treated with ColG. Our results show for the first time the potential of engineering enzyme properties for dental medi-
cine and further contribute to minimally invasive tooth extraction.
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Introduction
Exodontia (i.e., tooth extraction) is among the most com-
mon clinical procedures in dentistry [1, 2]. The attach-
ment of the tooth to the alveolar bone is primarily carried 
out with a group of collagen fibers known as periodontal 
ligament (PDL). Thus, regardless of the tooth extraction 
method, an important component required for safe tooth 
removal is careful disruption of the collagen fibers of 
the PDL, followed by the accurate delivery of the intact 
tooth [3, 4]. However, given the need for the application 
of additional surgical procedures such as root separation, 
reflection of a mucoperiosteal flap and removal of alve-
olar bone to gain access to the remnants of tooth roots, 
dental extraction potentially becomes a considerably 
invasive procedure [5, 6]. Such a procedure often creates 
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damage to the surrounding soft and hard tissues, causing 
clinical complications [7–11]. Several breakthroughs in 
exodontia, such as periotomes, physics forceps, piezosur-
gery and various tooth extraction systems, have advanced 
safe tooth extraction. However, tools such as periotomes 
and piezosurgery implement the mechanical disruption 
of the PDL fibers while other appliances assisting in pre-
serving bone socket dimensions by limiting the applied 
force to the vertical direction (e.g., the Benex® extraction 
system) [12–17]. Overall, these methods are based solely 
on the mechanical component, offering only a slight 
reduction in the amount of physical force required for 
tooth extraction.

Since enzymes can boost biochemical reaction rates 
[18], enzymatic degradation of the collagen fibers of the 
PDL prior to extraction per se could actually lead to a sig-
nificant reduction in the physical force required for tooth 
delivery. Unlike mammalian collagenases that are part 
of matrix metalloproteinases (MMPs) [19–21] and usu-
ally cleave collagen at a single site, bacterial collagenases 
degrade collagen at multiple sites, turning collagen into 
short peptide fragments [22]. A variety of bacterial col-
lagenases have been structurally and functionally char-
acterized [23–30]. Among these, a truncated version of 
collagenase G of Clostridium histolyticum (ColG) was 
recombinantly expressed in Escherichia coli (E. coli), 
showing high expression yields [23, 31]. Indeed, several 
studies have analyzed and utilized enzymes or bacteria’s 
ability to degrade collagen in the PDL, showing the fea-
sibility of such biological-driven approaches [32–34]. 
Furthermore, native collagenase G extracted directly 
from Clostridium histolyticum is approved by the United 
States Food and Drug Administration (FDA) for treating 
Dupuytren’s contracture and Peyronie diseases, charac-
terized by abnormal collagen deposition [35–37], further 
confirming the feasibility of enzymatically-driven degra-
dation of the PDL collagen fibers in-vivo.

Various biotechnological applications require highly 
stable recombinant proteins that do not negatively affect 
enzymatic activity rates. However, natural enzymes 
often evolve with a tradeoff between stability and activ-
ity [38], which may not always be suitable for the desired 
application. This necessitates enzyme optimization to 
achieve a specific profile. Indeed, therapeutic enzymes 
could greatly benefit from a higher thermal stability pro-
file, resulting in longer shelf life, lower aggregation rates, 
reduced immunogenicity, and improved activity in tis-
sues. Moreover, although this correlation does not apply 
to all enzymes, in many instances, a thermally stable 
structure is associated with better function and higher 
yields of recombinant expression [39–44].

Enzyme durability with a longer half-life can be 
achieved through alternative approaches such as 

encapsulation or engineering of its structural features 
[45]. The latter can be accomplished using various com-
putational approaches that have been developed to engi-
neer protein variants with enhanced thermostability 
[46–51]. Although protein engineering is well established 
in a broad range of biotechnological and clinical appli-
cations [52, 53], its significance in dental medicine has 
not been demonstrated. Previous in-silico studies of col-
lagenase focused on understanding the enzyme activity 
or analysis of the binding site, mainly for inhibiting the 
enzyme’s catalytic activity [54–57]. However, enhanced 
thermostability of ColG and the effect on collagen deg-
radation were not explored. Inspired by the successful 
application of collagenase in medicine [58, 59], we have 
previously shown that injection of ColG into the PDL 
significantly reduces the force required to extract roots 
of split first and second mandibular premolar teeth in an 
ex-situ jaw model of 6-month-old domestic swine [60]. 
Herein, we harnessed the PROSS computational protein 
engineering techniques and seek for mutations in the 
primary sequence of ColG to further improve its ther-
mostability and collagenolytic activity. Implementing the 
PROSS algorithm was shown to improve protein stability 
and heterologous expression levels for a variety of chal-
lenging enzymes and proteins [61, 62]. The PROSS web 
server assembles new backbone combinations, starting 
from a set of homologous yet structurally diverse enzyme 
structures, to optimize the amino acid sequence while 
conserving key catalytic residues [63]. Our results show 
that the novel enzyme resulting from the PROSS com-
putational engineering (ColG-variant) reduces the force 
required for tooth extraction compared to ColG.

Results
Computational design of ColG‑variant
Having an established assay for ex-situ evaluation of 
forces required for tooth extraction [60], we embarked 
on the engineering of a collagenase with enhanced ther-
mostability. From the various alternative solutions of 
PROSS, we selected the least permissive one, which 
involved replacing 17 amino acids along the protein 
backbone. These replacements accounted for ~ 2.5% of 
the total active site protein length. This design ensures 
that the enzyme maintains its overall structure and activ-
ity. Indeed, in a benchmark study that evaluated multiple 
PROSS designs, the least permissive design exhibited sig-
nificant improvement in expressions levels and thermal 
stability profile.

In addition to the N-terminus collagenase cata-
lytic domain (Tyr119-Gly790), the overall structure of 
ColG is composed of a single polycystic kidney disease-
like (PKD-like) domain, and various collagen-bind-
ing domains (CBD) [23]. The crystal structure of the 
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N-terminus ColG reveals a saddle shape two-domain 
architecture. This latter shows full collagenolytic activ-
ity and is therefore selected as our template for further 
optimization. The catalytic domain comprises a highly 
conserved HEXXH Zn+2 binding motif as well as an 
Ca+2 binding site. Within this region, two conserved 
Gly, Gly493 and Gly494, the following edge strand—
Leu495-Glu498 as well as Gln511-Phe515 are part of the 
collagenase substrate recognition site [29]. Figure  1A 
illustrates the position of the mutated amino acids on 
the ColG structure. As expected, most substitutions are 

positioned on the protein’s surface (purple residues in 
Fig. 1A), far from the active site of the enzyme. Moreo-
ver, the mutations do not interfere with the conserved 
Zn binding site residues or with the important colla-
gen recognition site. This resulted in the replacement of 
surface-exposed hydrophobic groups into more hydro-
philic residues. For example, F and G hydrophobic resi-
dues were mutated to Y/N/T hydrophilic residues in the 
F295Y, G670N and G672T positions. Figure 1B shows the 
sequence alignment of ColG and ColG-variant. In addi-
tion to hydrophobic to hydrophilic substitution, several 

Fig. 1  Illustration of ColG-variant. A The ColG structure is shown in brown, while mutations implemented in ColG-variant are depicted in purple 
(Selected mutations are shown). B Sequence alignment of ColG and ColG-variant in the specific regions, where mutations occurred (mutations 
in ColG-variant are denoted in red)
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new interactions contribute to enhanced stability, such 
as hydrogen bonding. For instance, Met 183 to Asp sets 
an H bond with Gly 185, and Ala 709 to Glu forms an H 
bond with the side chain of Tyr 693. The G672T muta-
tion also permits the formation of a Hydrogen bond of 
the side chain of the Thr with the back bone of Ile 673. 
Although contribution of a single hydrogen bonding to 
stability is not substantial, such a network is essential for 
determining protein folding and structure. An additional 
interaction that plays a role in protein stability is the cou-
lomb interaction, driven by the aromatic side chains [64]. 
The stacking interaction is formed via the substitution of 
Asn 203 Tyr, which constructs a pi–pi interaction with 
Tyr 150. Moreover, the replacement of Asn 287 with Tyr 
leads to a stabilizing of its alpha helix [65]. Additional 
stabilizing mutations of residues that are located within 
a flexible loop are the substitution of Ala 458 and Asp 
536 with Pro, leading to a more rigid conformation of the 
protein [66].

Evaluation of ColG‑variant’s thermostability
To evaluate the thermostability of ColG-variant, we exam-
ined its ability to digest native collagen following the incu-
bation of the enzyme at variable temperatures, ranging 
from 30  °C to 90  °C. For this purpose, we relied on the 
biochemical collagenolytic activity assay of 3,4-DHPAA 
[31, 67]. This experimental approach enables evaluation of 
the activity of collagenase on a native full-length collagen, 
rather than on collagen-derived peptides. Figure  2 shows 
the relative residual collagenolytic activity of ColG and 
ColG-variant as a function of the temperature. Before the 
activity assay, the enzymes were incubated at variable tem-
peratures for one hour and then cooled down to 25℃. The 

temperature at which the enzyme activity dropped to 50% 
relative to the activity of the non-heated enzyme is consid-
ered the melting temperature (Tm) of the enzyme. Thus, 
higher Tm suggests that the enzyme retained its activity at 
a higher temperature and is thus more thermostable. The 
Tm of ColG and the engineered ColG-variant were 52.9℃ 
and 56.6℃, respectively. This suggests the enhanced ther-
mostability of ColG-variant.

Measurement of force required for root extraction
To further evaluate the ability of the new enzyme to 
degrade collagen, we injected ColG-variant into the PDL of 
the split first and second mandibular premolar tooth roots 
(marked in Fig. 3A as T1 [mesial root of premolar 1], T2 
[distal root of premolar 1], T3 [mesial root of premolar 2], 
and T4 [distal root of premolar 2]), in an ex-situ jaw model 
of 6-month-old domestic swine, as previously described 
[60]. ColG was injected into the corresponding roots on 
the contralateral side. Following incubation of 16  h, real-
time recording of the pulling force vs. tooth displacement 
was performed using the tensile strength testing machine 
(Fig.  3A). Figure  3B shows the mean force (marked by a 
horizontal black line), as well as the values and dispersion 
of the root-specific maximal force applied to extract T1–4 
in all jaws following treatment with ColG (blue) or ColG-
variant (red). We found that the force required for extrac-
tion of each root was reduced with ColG-variant, by 12%, 
13%, 8% and 6% for T1, T2, T3 and T4, respectively, with a 
total average reduction of 11%.

Discussion
Protein engineering is a robust approach commonly 
used for imparting specific activity profiles to proteins 
for a broad range of applications. However, the use of 
bio enzymes in the field of dental medicine was rarely 
explored. Herein, relying on the ability of collagenase G 
to degrade PDL collagen fibers ex-situ, we aimed to engi-
neer an enzyme with enhanced thermostability. The latter 
characteristic is often associated with improved activity or 
used as the starting point for further optimization of the 
enzyme. The engineering of new protein variants is com-
monly achieved by directed evolution methods. In a typical 
directed evolution experiment, random or semi-rational 
mutagenesis is used to generate a library of the target gene 
from which optimized variants are isolated following sev-
eral screening and selection rounds [68, 69]. However, wet-
lab methods generally require extensive experiments and 
are not efficient, especially for discovering optimized cata-
lytic activity of enzymes. On the other hand, computational 
approaches have been shown to be effective in design-
ing new proteins de-novo or based on the structure of a 
native protein as the starting point [70–73]. Here, we have 
used the PROSS algorithm to improve ColG stability. The 

Fig. 2  Tm Evaluation of ColG and ColG-variant. Enzymes were 
incubated at temperatures ranging from 30 °C to 90 °C for one 
hour and cooled down to 25 °C prior to the collagenolytic activity 
assay. Residual collagenolytic activity was plotted as a function 
of temperature for ColG (Black) and ColG-variant (Red). The data 
represent the mean of three replicates ± standard deviation
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Fig. 3  (See legend on next page.)
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algorithm has been successfully applied to various chal-
lenging enzymes and binding proteins, showing remarka-
ble success in improving protein stability and expressibility, 
while maintaining wild-type activity levels [61]. Among 
the most dominant effects that govern protein folding and 
stability is the hydrophobic effect, whereby a-polar resi-
dues are buried within the stable protein structure, form-
ing favorable Van Der Waals contact, while polar residues 
are presented at the protein surface [64]. Indeed, the point 
mutations in the ColG-variant (Fig. 1A) are located at the 
protein surface. Therefore, although every single mutation 
has a relatively low contribution to stability, the overall 
effect is not negligible.

The new ColG-variant was tested in two orthogo-
nal assays. The first assay determined its thermostabil-
ity by evaluating the ability of the enzyme to degrade 
collagen in-vitro, following incubation at varied tem-
peratures. Enhanced thermostability is often correlated 
with improved characteristics that are important for an 
enzyme therapeutic application. In the context of enzy-
matically-driven exodontia, improved thermostability 
could mean accelerated degradation of the PDL colla-
gen fibers due to better activity in the tissue and longer 
shelf life of the enzyme. We also noticed that albeit in a 
higher temperature, ColG-variant has a sharper activity 
decrease vs. temperature than its counterpart wild-type 
enzyme. This behavior is attributed to the enzyme’s net of 
new interactions, however, with no expected implications 
on clinical aspects. The second assay tested the superior-
ity of ColG-variant in reducing the forces required for 
tooth extraction ex-situ, compared to ColG [60]. This 
may have a significant impact on the morbidity, imply-
ing fewer intra- and post-operative complications and 
reduced damage to soft and hard tissues surrounding the 
tooth being extracted. Furthermore, atraumatic or mini-
mally invasive exodontia can facilitate the subsequent 
implant placement and restoration, thus shortening the 
overall time from procedure to final rehabilitation. Addi-
tional factors should be examined further, such as the 
reduction of the time period required from the moment 
of injection of the enzyme to extraction per se and the 
evaluation of minimal enzyme concentration that could 
lead to sufficient force reduction. Moreover, future 
research should evaluate the potency of ColG-variant 
in an in-vivo environment, additionally characterized 

by blood circulation and efficient regulatory immune 
system, which could affect the enzyme’s activity as well 
as its half-life in the tissue. Ultimately, considering the 
existing clinical applications of collagenase G, purified 
directly from Clostridium histolyticum, in orthopedics 
(i.e., Dupuytern’s contracture) [74, 75] and urology (i.e., 
Peyronie disease) [76], dental application of ColG-vari-
ant, characterized by enhanced thermostability, should 
be feasible.

Conclusions
The research shows for the first time the application of 
engineered proteins in dental medicine. The engineer-
ing of an improved thermal-stable collagenase further 
reduces the force required for tooth extraction. It is con-
cluded that the application of engineered biomolecules to 
impart a desired activity profile can advance non-invasive 
dental medicine.

Methods
Computational enzyme design
The initial structure of ColG is based on collagenase G 
from Clostridium histolyticum (PDB 4ARE) [25]. The cat-
alytic domain of ColG comprises Tyr 119—Ala 790 [23], 
while the catalytic pocket itself ranges from Asp 398 to 
Gly 790 [29]. Zn2+ and Ca2+ ions are located at the cata-
lytic domain and are essential for the enzymatic catalytic 
reaction [25]. To generate a more thermally stable vari-
ant, we initially relied on PDB structure 4ARE, maintain-
ing its catalytic domain and the Zn2+ ion. However, the 
structure lacks the active Ca2+ ion. Therefore, as a pre-
liminary preparation step, we replaced a water molecule 
within the enzyme cavity, with a Ca2+ ion. The latter was 
based on the well-resolved structure of collagenase H 
(ColH), PDB 4ARF. The modified structure was inserted 
into the PROSS web server (https://​pross.​weizm​ann.​
ac.​il/​step/​pross-​terms/). The PROSS web server assem-
bles new backbone combinations, starting from a set of 
homologous yet structurally diverse enzyme structures, 
to optimize the amino acid sequence while conserv-
ing key catalytic residues [63]. PROSS uses phylogenetic 
analysis in combination with Rosetta atomistic design 
calculation in order to generate a set of mutations that 
are assumed to improve protein stability. PROSS con-
serves the essential amino acid sequence and side-chain 

(See figure on previous page.)
Fig. 3  Measurement of tooth extraction forces in porcine jaw. A The first and second porcine mandibular premolar teeth were split to form 
four roots labeled as T1, T2, T3 and T4. Following 16 h from the injection of ColG or its variant, the extraction was performed using the tensile 
strength testing machine along the longitudinal axes of each extracted root, and the force vs. displacement was recorded. B Mean and dispersion 
of extraction forces of ColG (blue) and ColG-variant (red). Each contralateral pair of roots is marked by black circles and connective lines, 
and the horizontal line marks the mean force for each root. Statistically significant values are indicated above each paired data, *:p < 0.01, **:p < 0.001

https://pross.weizmann.ac.il/step/pross-terms/
https://pross.weizmann.ac.il/step/pross-terms/
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conformations at the active site, yet, applies stabilizing 
mutations that are not rare among other homologs [61]. 
The two ions and their surrounding residues, especially 
the highly conserved residues, important for ion bind-
ing,—Glu 498, His 523, Glu 524 and His 527, were held 
constant throughout the calculations.

Protein expression and purification
Hans Brandstetter [23, 25] generously provided the gene 
of ColG containing residues Tyr119-Lys1118 with an 
N-terminus His-tag followed by a TEV cleavage site. The 
gene of the new enzyme variant originating from PROSS 
was synthesized and cloned into the same pET15b vec-
tor. The plasmid was transformed into competent E.coli 
BL21(DE3) on an ampicillin agar plate. Colonies were 
transferred to Luria Browth (LB) medium supplemented 
with ampicillin (100ug/ul), and at OD600 = 0.8, protein 
expression was induced with the addition of 1 mM IPTG. 
For protein purification, cells were centrifuged, resus-
pended in a lysis buffer (50  mM NaPi, 300  mM NaCl, 
10 mM Imidazole, pH = 8) and sonicated so as to disrupt 
them. The soluble protein fraction was isolated by centrif-
ugation at 10,000 g, and the supernatant was applied to a 
5  ml Ni2+ HisTrap FF column (Cytiva, USA). Following 
extensive washing with buffer-1 (50 mM NaPi, 300 mM 
NaCl, 40  mM imidazole, pH = 8), buffer-2 (50  mM 
NaPi, 1 M NaCl, 10 mM imidazole, pH = 8) and buffer-3 
(50 mM NaPi, 300 mM NaCl, 20% Glycerol, pH = 8), the 
protein was eluted with buffer-1 containing 300  mM 
Imidazole. The elution fraction was concentrated using 
an Amicon Ultra-15 (Merck, USA) concentration tube 
(30,000-MWCO), and the buffer was changed to PBS by 
dialysis.

Thermal stability assay
Thermal stability was evaluated by incubating 80  µl of 
the purified enzymes in a concentration of 200 µg/ml in 
50 mM TRIS 5 Mm CaCl2 pH = 7.5 for 30 min in a PCR 
thermal cycler (C1000 touch, Bio-Rad, Germany). Incu-
bation was carried out in variable temperatures, ranging 
from 37℃ to 90℃. Residual activity was then measured 
and compared with the activity of the unheated enzyme. 
The biochemical assay was performed based on the pre-
viously described protocol [31, 67]. The purified enzyme 
was incubated with collagen-I, and aliquots were mixed 
with 50  mM Tris buffer (pH = 7.5), 5  mM CaCl2 at a 
total volume of 200  µl in a 96 well plate at 37  °C. Ali-
quots of 50  µl were then mixed with 50  µl of 0.75  mM 
3,4-DHPAA, 50ul of 125  mM sodium borate (pH = 8.0) 
and 50 µl of 1.25 mM NaIO4; and incubated for 30 min 
at 37 °C. The fluorescence intensity of the reaction mix-
ture was measured by a spectrofluorometer (BioTek, 

Winoosky, VT, USA). The excitation and emission max-
ima were 375 nm and 465 nm, respectively.

Jaw preparation and injection of collagenase into the PDL
The whole mandibles of a 6-month-old (90–100  kg) 
domestic swine close to slaughter were obtained from a 
local abattoir (Marsel Brothers Company, Haifa, Israel). A 
specially designed jaw stabilization device was employed, 
as previously described [60] and illustrated in Fig.  3A. 
Either ColG or its variant was injected into the PDL of 
contralateral roots of a mandibular porcine split first 
and second premolar teeth with the Wand Single Tooth 
Anesthesia System (Milestone Scientific, New Jersey, 
USA), as previously described [60]. Briefly, the outer soft 
tissues adjacent to the teeth were removed. Then, the first 
and second mandibular premolar teeth (PM1 and PM2, 
respectively), which contain two divergent roots, were 
split into four different roots T1, T2, T3 and T4 (Fig. 3A) 
[60]. Standard cartridges containing the local anesthetic 
solution for dental injection were emptied of their con-
tent and filled with either ColG or ColG-variant at a 
concentration of 4ug/ul. The injection was performed 
using a needle of 30G 2.54  cm that was inserted into 
the PDL space and advanced apically until stopped by 
the resistance of the alveolar bone proper. The injection 
was repeated at four sites around each root, on the buc-
cal, lingual, mesial, and distal aspects. A total of 0.3  ml 
of 4 μg/μl was injected. Concentration was selected based 
on previous studies and clinical practice for injection of 
wild-type collagenase G for Dupuytren’s disease [60, 77].

Measurement of force required for root extraction
The extraction force was applied by a loading machine 
(Instron Series 6800; Instron Corp., Canton, MA, USA) 
using a load cell of 2 kilonewtons and a crosshead speed 
of 10 mm/minute, until the root was completely removed 
from the alveolar socket. The force was recorded at a rate 
of 10  Hz. Assessment of the tensile force and displace-
ment during the root extraction process was achieved 
via the designated software (Instron Series IX; Instron 
Corp.).

Statistical analysis
Statistical comparisons between the force of the different 
extracted roots were performed by a paired t-test with 
two-tail distribution with unequal variance. For statis-
tical analysis, significance was set as * = 0.01 ≤ p < 0.05; 
** = p < 0.01.

Graphics
Figure 3 was created with BioRender.
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