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Abstract
This paper investigates reduced-order modeling of the Korteweg de Vries regularized
long-wave Rosenau (KdV-RLW-Rosenau) equation using semi- and fully-discrete
B-spline Galerkin approximations. The approach involves the application of a proper
orthogonal decomposition (POD) method to a Galerkin finite element (GFE)
formulation, resulting in a POD GFE formulation with lower dimensions and high
accuracy. The error between the reduced POD GFE solution and the traditional GFE
solution is analyzed using the Crank-Nicolson method. Numerical examples show
that the theoretical conclusions are consistent with the results of the numerical
computation, and that the POD method is effective and feasible.
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1 Introduction
The study of nonlinear waves is helpful to clarify the law of motion changes of physi-
cal systems under nonlinear effects, and to reasonably explain related natural phenom-
ena. Therefore, many models have been proposed to describe their behaviors. In fact,
we can find various mathematical descriptions of wave dynamics, such as regular long
waves (RLW), Korteweg-de Vries (KdV), and Rosenau equations; see, e.g., [1–3]. Among
them Benjamin et al. [1] determined the exact expression of the RLW model under the
constraints of initial conditions and boundary conditions and proved the existence and
uniqueness of the solution of the RLW model. Bon et al. [4] adopted RLW modeling for
small-amplitude long waves on the water surface; As pointed out by Abdulloev et al. [5],
an important feature of the RLW problem is that the collision between two solitary waves
either produces a sinusoidal solution or secondary solitary waves.

It is worth mentioning that the KdV equation has applications in many fields of physics
and is widely used in the description of dynamic effects such as ion acoustics, magneto-
hydrodynamic waves, and longitudinal astigmatism; see [6–11] for details; moreover, the
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existence, regularity, and convergence of solutions for KdV-type equations were proved in
[12–14]. Recently, Kaya and Aassila in [15] computed explicit solutions to the KdV equa-
tion with initial conditions using the Adomian decomposition method. Özer et al. [16]
solved the KdV equation by an analytical-numerical method.

Rosenau proposed a new model to solve the KdV equation cannot describe the wave–
full-wave and wave–wave interaction, it is called the Rosenau equation, used to describe
the dynamic behavior of dense discrete systems; see, e.g., [3, 9]. Later, Zuo [8] solitary
waves and periodic solutions of the Rosenau-KdV model were studied. Barreto et al. [17]
discussed the existence of solutions of the Rosenau equation and using Galerkin, multi-
pliers, and energy estimation techniques, obtained the Rosenau equation with a plus sign
in the advection-like term in the motion domain.

It is known that Rosenau equation adds a dissipative effect term uxx, which is usually
called Rosenau-RLW (or Rosenau-Burgers) equation. A study of the Cauchy problem and
the stability of traveling or diffusing waves for the Rosenau-RLW equations is given in
[18–21]. Particularly, Piao et al. [22] reported the error of quadratic B-spline FEM solu-
tion for the Rosenau-RLW equation. Besides, many researchers have solved Rosenau-RLW
equation by using different methods, such as B-spline collocation, GFE, finite difference,
conservative difference scheme; see, e.g., [24–28].

On the other hand, many scholars have studied the (inviscid) Rosenau-KdV-RLW equa-
tion both analytically and numerically. Here are the following examples: Razborova et al.
[29] and [30] determined their impulsive and kink (or topological soliton) solutions us-
ing sech and tanh ansatzs, and the singular solutions of the same equations using cosech
ansatz. In addition to this, Razborova et al. [31] found a third invariant of the (inviscid)
Rosenau-KdV-RLW equation under the condition that the mass and energy of the ho-
mogeneous boundary conditions are constant Lying symmetry. In addition, Wong sai-
jai et al. used the cubic level method to solve the Rosenau-KdV-RLW equation in [32]
and performed an implicit finite difference method for the equation and compared the
numerical results obtained with the sine-cosine function approximate. In [33], the invis-
cid Rosennau-KdV-RLW equations were numerically solved using the pseudo-compact
method and the trapezoidal scheme in time. In [34], A. Biswas et al. used the quintic B-
spline finite element method, a local-structure preserving technique that includes multi-
symplectic and energy- and momentum-preserving procedures [35], a linearly implicit
conservative finite difference technique [36], and a local meshless technique and the finite
difference method [37].

In this paper, we consider the higher order equation of wave propagation in unidirec-
tional water:

ut – μuxx – δuxxt + ηuxxxx + νuxxxxt + θuxxx + fx(u) = 0, x ∈ �, t ∈ (0, T], (1.1a)

with the initial condition:

u(x, 0) = u0(x), x ∈ �, (1.1b)

and boundary conditions:

u(x, t) = 0, ux(x, t) = 0, x ∈ ∂�, t ∈ (0, T], (1.1c)
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where f (u) = αu + β

p+1 up+1, u(x, t), t > 0 and � ∈ (0, 1) denote the (nondimensional) ampli-
tude, time coordinate, and space coordinate of the wave, respectively. δ and ν are pos-
itive constants, and α, β , μ, η, θ are arbitrary parameters. p ≥ 1 is a positive integer,
which makes f (u) a non-linear term. In equation (1.1a), different types of equations are ob-
tained by assigning appropriate values to the parameters. For example, if μ = η = ν = θ = 0,
α = β = δ = 1 and p = 1, we can get the RLW equation; if α = μ = δ = η = ν = 0, β = θ = 1
and p = 1, we can get the KdV equation; if μ = δ = η = 0, α = β = ν = θ = 1 and p = 1, we
can get the Rosenau-KdV equation, etc.

Note that solving numerical solutions of nonlinear complex systems requires high stor-
age and CPU costs. Solving complex, turbulent, and chaotic systems remains a daunting
task for us, even with optimal mesh generators, discretization schemes, and solution algo-
rithms. Therefore, how to simplify the actual calculation load and save time and resource
demand is an important problem. In the simplification process, it is also necessary to en-
sure that the numerical solution is accurate and efficient enough. In addition, it makes
sense to use the reduced-order method if the underlying PDE must be solved multiple
times, i.e. under optimal control or in the case of different parameter studies using the
same PDE; see, e.g., [38–40].

Actually, among many reduced-order modeling techniques, the most frequently used
method is based on a proper orthogonal decomposition (POD) technique. In other words,
POD is a technique that provides sufficient approximation to represent fluid flows with
fewer degrees of freedom, i.e., low-dimensional models that reduce computing load and
save memory requirements(see [41]). Indeed, POD in combination with Galerkin projec-
tion has been used for many years to formulate reduced-order modelings for dynamic
systems; see, e.g., [23, 42–56].

Compared with the work [57], in which the authors solved solution of the Eq. (1.1a)–
(1.1c) with compact method in the domain (–∞, +∞), in this article, we will mainly dis-
cuss the theoretical analysis and present a quadratic B-spline GFE approximation for Eq.
(1.1a)–(1.1c), and further study the reduced-order modeling of Eq. (1.1a)–(1.1c) based on
POD GFE approximation.

The remainder of this paper is organized as follows: The existence and uniqueness of
weak solutions of Eq. (1.1a)–(1.1c) are proved in Sect. 2. In Sect. 3, the semidiscrete B-
spline Galerkin approximation is discussed, and the second-order spatial error estimation
in L∞(�) norm is derived. In Sect. 4, a fully discrete scheme based on the Crank-Nicolson
method is proposed and the second-order accuracy of the scheme in the time direction is
proved. In Sect. 5, the method for generating POD basis is introduced and the reduced-
order modeling is constructed. The error estimates between the reduced-order modeling
solution and the usual GFE solution are deduced below. In Sect. 6, some numerical exper-
iments are given to verify the effectiveness and accuracy of the proposed method. Finally,
the conclusion of this paper is given.

2 Existence and uniqueness
For open interval � = (0, 1), Hk(�) be the standard Sobolev space of real-valued functions
defined on �, so Hk

0 = {v ∈ Hk(�) : djv
dxj = 0 on ∂�, j = 0, 1, . . . , k – 1}, where k is a non-

negative integer. Let L2(�) be the usual Hilbert space on � whose scaler product and
norm are denoted by (·, ·) and ‖ · ‖, respectively. The inner product of L2(�) denoted by
(v, w) =

∫
�

vw dx. The norms of L∞(�) and Hk(�) are denoted by ‖ · ‖∞ and ‖ · ‖k .
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For simplicity, let X = H2
0 (�). At the same time, we assume that u is enough smooth in

time. Find u(·, t) ∈ X for t ∈ (0, T] such that the following weak formulation of equation
(1.1a)–(1.1c) is given by:

⎧
⎪⎪⎨

⎪⎪⎩

(ut ,χ ) + μ(ux,χx) + δ(uxt ,χx) + η(uxx,χxx)

+ ν(uxxt ,χxx) – θ (uxx,χx) = (f (u),χx), ∀χ ∈ X,

u(0) = u0.

(2.1)

And let C represent a positive constant independent of step size h and integer k, which
may have different values in different cases.

Theorem 1 For ∀T > 0, let u(x, 0) = u0 ∈ X, (2.1) exists a unique solution u. Let
‖u‖L∞(H2(�)) = supt∈[0,T] ‖u(·, t)‖H2(�), there exists a constant C depending on T so that:

‖u‖L∞(H2(�)) ≤ C‖u0‖2. (2.2)

Proof For the existence of (2.1), let {vi}∞i=1 be a orthogonal basis for X and V m =
span{v1, v2, . . . , vm}. We define um(t) =

∑m
i=1 gi(t)vi ∈ V m. Then for each t > 0, it satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

(um
t ,χ ) + μ(um

x. ,χx) + δ(um
xt ,χx) + η(um

xx,χxx)

+ ν(um
xxt ,χxx) – θ (um

xx,χx) = (f (um),χx),

um(0) = u0,m,

(2.3)

where u0,m is the orthogonal projection of u0 onto V m and u0,m converges to u0 in X. As a
result, (2.3) becomes a system of nonlinear ODEs. Thus, using Picard’s existence theorem,
there is a positive time tm ∈ (0, T] such that the nonlinear system has a unique solution um

in (0, tm].
The following a priori bounds are needed because we want to prove the global existence

using the continuation argument. Setting χ = um in (2.3) and um = 0 on ∂�, we have:

–
∫ 1

0
um

x f
(
um)

dx =
∫ 1

0
umfx

(
um)

dx

=
∫ 1

0
um

(

αum +
β

p + 1
(
um)p+1

)

x
dx

=
α

2

∫ 1

0

((
um)2)

x dx +
β

(p + 1)(p + 2)

∫ 1

0

((
um)p+2)

x dx

= 0.

From (2.3) and δ,ν > 0, we get the following result:

d
dt

[∥∥um∥
∥2 + δ

∥
∥um

x
∥
∥2 + ν

∥
∥um

xx
∥
∥2] ≤ C

(∥∥um∥
∥2 +

∥
∥um

x
∥
∥2 +

∥
∥um

xx
∥
∥2). (2.4)

Integrating (2.4) from 0 to t gives

min{1, δ,ν}(∥∥um∥
∥2 +

∥
∥um

x
∥
∥2 +

∥
∥um

xx
∥
∥2)
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≤ max{1, δ,ν}(∥∥um(0)
∥
∥2 +

∥
∥um

x (0)
∥
∥2 +

∥
∥um

xx(0)
∥
∥2)

+ C
∫ t

0

(∥∥um(s)
∥
∥2 +

∥
∥um

x (s)
∥
∥2 +

∥
∥um

xx(s)
∥
∥2)ds.

Thus, we have:

∥
∥um∥

∥2 +
∥
∥um

x
∥
∥2 +

∥
∥um

xx
∥
∥2

≤ C
(

∥
∥um(0)

∥
∥2 +

∥
∥um

x (0)
∥
∥2 +

∥
∥um

xx(0)
∥
∥2

+
∫ t

0

(∥
∥um(s)

∥
∥2 +

∥
∥um

x (s)
∥
∥2 +

∥
∥um

xx(s)
∥
∥2)ds

)

.

By using Gronwall’s inequality [16, 17], we get:

∥
∥um(t)

∥
∥2

2 ≤ CeCt∥∥um(0)
∥
∥2

2. (2.5)

For tm ∈ (0, T], using Sobolev’s inequality theorem, we get:

∥
∥um∥

∥
L∞(L∞(�)) ≤ C

∥
∥um∥

∥
L∞(H2(�)) ≤ C(T)‖u0,m‖2. (2.6)

Setting χ = um
t in (2.3), we get:

(
um

t , um
t
)

+ μ
(
um

x , um
xt
)

+ δ
(
um

xt , um
xt
)

+ η
(
um

xx, um
xxt

)

+ ν
(
um

xxt , um
xxt

)
– θ

(
um

xx, um
xt
)

=
(
f
(
um)

, um
xt
)
.

Using Young’s inequality ab ≤ εa2 + 1
4ε

b2 with a, b ∈ R, ε > 0, we have:

∥
∥um

t
∥
∥2 +

∥
∥um

xt
∥
∥2 +

∥
∥um

xxt
∥
∥2

≤ C
[

ε(θ + μ + 1)
∥
∥um

xt
∥
∥2 + εη

∥
∥um

xxt
∥
∥2 +

μ

4ε

∥
∥um

x
∥
∥2

+
1

4ε
(θ + η)

∥
∥um

xx
∥
∥2 +

1
4ε

∥
∥f

(
um)∥

∥2
]

≤ C
(∥∥um

x
∥
∥2 +

∥
∥um

xx
∥
∥2 +

∥
∥f

(
um)∥∥2),

(2.7)

where

∥
∥f

(
um)∥∥2 =

∫

�

(

αum +
ε

p + 1
(
um)p+1

)2

dx

≤ 2α2
∫

�

(
um)2 dx +

2ε2

(p + 1)2

∫

�

(
um)2p+2 dx

≤ C||u0,m‖2
2
(
1 + ‖u0,m‖p+1

2
)
.

(2.8)
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With (2.5) and (2.8), the inequality (2.7) can be reduced to ‖um
t ‖L∞(H2) ≤ C‖u0,m‖2. Then,

let i be fixed and m > i, in L∞(0, T) space, there exist the following convergence sequences:

(
um, vi

) → (u, vi),
(
um

t , vi
) → (ut , vi),

(
um

x , vi,x
) → (ux, vi,x),

(
um

xt , vi,x
) → (uxt , vi,x),

(
um

xx, vi,x
) → (uxx, vi,x),

(
um

xxt , vi,xx
) → (uxxt , vi,xx),

(
f
(
um)

, vi,x
) → (

f (u), vi,x
)
.

Thus, we have:

(ut , vi) + μ(ux, vi,x) + δ(uxt , vi,x) + η(uxx, vi,xx) + ν(uxxt , vi,xx) – θ (uxx, vi,x) =
(
f (u), vi,x

)
.

The existence of (2.1) follows from the denseness of the basis vi in X.
For the uniqueness of (2.1), suppose u and v are two solutions of (2.1) and let w = u – v.

We get:

(wt ,χ ) + μ(wx,χx) + δ(wxt ,χx) – θ (wxx,χx)

+ η(wxx,χxx) + ν(wxxt ,χxx) =
(
f (u) – f (v),χx

)
, χ ∈ X.

(2.9)

As ‖u‖∞ and ‖v‖∞ are bounded, we can get that f (u) satisfies the Lipschitz condition.
Setting χ = w in (2.9), we have:

∥
∥w(t)

∥
∥2 +

∥
∥wx(t)

∥
∥2 +

∥
∥wxx(t)

∥
∥2

≤ C
∫ t

0

(∥∥w(s)
∥
∥2 +

∥
∥wx(s)

∥
∥2 +

∥
∥wxx(s)

∥
∥2)ds.

(2.10)

According to Gronwall’s inequality, we have ‖w(t)‖2 + ‖wx(t)‖2 + ‖wxx(t)‖2 = 0, that is to
say, w(t) = 0, i.e., (2.1) has a unique solution. This concludes the proof. �

3 Semi discrete quadratic B-spline Galerkin approximation
The Galerkin finite element method is an effective method for solving differential equa-
tions. For fourth-order differential equations, the Galerkin finite element method with
B-spline basis functions can achieve desired results. Divide the interval � = [0, 1] uni-
formly and denote the partition as 0 = x0 < x1 < · · · < xI = 1 with Ji = (xi–1, xi) and h =
max1≤i≤I(xi – xi–1). A subspace with respect to X is defined as follows:

Xh =
{

v ∈ C1(�), v|Ji ∈ P2(Ji), i = 1, . . . , I, v|∂� = 0, v′|∂� = 0
}

,

where P2(Ji) represents the set of polynomial degree less than or equal to 2 on Ji.
For the function uh : [0, T] → Xh, define the semidiscrete Galerkin approximation of

(1.1.b) with initial value uh(0) = uh0:

(uht ,χ ) + μ(uhx,χx) + δ(uhxt ,χx) – θ (uhxx,χx)

+ η(uhxx,χxx) + ν(uhxxt ,χxx) =
(
f (uh),χx

)
,χ ∈ Xh,

(3.1)

where uh0 ∈ Xh is an appropriate approximation to u0.
Then, the finite element space satisfies the following approximate properties, as shown

in [58–60].
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Lemma 1 Assume v ∈ H4(�) ∩ X and χ ∈ Xh, then there exists a constant C independent
of h, such that:

‖v – χ‖2 ≤ Ch2‖v‖4. (3.2)

With t > 0, we use Picard’s theorem and the continuation argument to prove the exis-
tence of a unique solution uh to (3.1). Let χ = uh in (3.1), with the same approach as the
proof (2.6), the following priori bounds can be obtained:

‖uh‖L∞(L∞(�)) ≤ C‖uh‖L∞(H2(�)) ≤ C‖uh0‖2. (3.3)

To analyze the convergence of the semidiscrete scheme (3.1), we define the bilinear form:

A(w, v) = (w, v) + δ(wx, vx) + ν(wxx, vxx), ∀w, v ∈ X.

Let ũ be an auxiliary projection of u on subspace Xh, as in [15], defined by the following
formula:

A(u – ũ,χ ) = 0, ∀χ ∈ Xh. (3.4)

Now we use the standard error decomposition e = u – uh = ξ – φ, where ξ = u – ũ and
φ = uh – ũ.

In Lemma 2 below, we obtain error estimates for ξ and ξt .

Lemma 2 Assume u ∈ H4(�)∩X and t ∈ [0, T], then there exists a constant C independent
of h, such that

‖ξ‖2 ≤ Ch2‖u‖4, ‖ξt‖2 ≤ Ch2‖ut‖4.

Proof By (3.4) and lemma 1, we have:

min{1, δ,ν}‖u – ũ‖2
2 ≤A(u – ũ, u – ũ)

= A(u – ũ, u – χ )

≤ max{1, δ,ν}‖u – ũ‖2‖u – χ‖2.

(3.5)

Thus, ‖u – ũ‖2 ≤ C‖u – χ‖2 ≤ Ch2‖u‖4, i.e.,

‖ξ‖2 ≤ Ch2‖u‖4. (3.6)

Let û be the project of ut on Xh defined as:

A(ut – û,χ ) = 0, χ ∈ Xh. (3.7)

Moreover, by (3.2), we know:

‖ut – û‖2 ≤ Ch2‖ut‖4. (3.8)
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From (3.4) and (3.7), it follows

min{1, δ,ν}‖ũt – û‖2
2 ≤A(ũt – û, ũt – û)

= A(ũt – ut , ũt – û)

= –
d
dt

A(u – ũ, ũt – û)

= 0.

(3.9)

According to (3.8) and (3.9), we get ‖ut – ũt‖2 ≤ ‖ut – û‖2 + ‖û – ũt‖2 ≤ Ch2‖ut‖4. Con-
sequently, it holds

‖ξt‖2 ≤ Ch2‖ut‖4. �

Theorem 2 For t ∈ [0, T], assume that uh0 is the X projection of u0 onto Xh, there exists a
positive constant C independent of h such that:

‖u – uh‖∞ ≤ C(u, T)h2.

Proof By subtracting (3.1) from (2.1), we can get:

(φt ,χ ) + μ(φx,χx) + δ(φxt ,χx) – θ (φxx,χx) + η(φxx,χxx) + ν(φxxt ,χxx)

= (ξt ,χ ) + μ(ξx,χx) + δ(ξxt ,χx) – θ (ξxx,χx) + η(ξxx,χxx)

+ ν(ξxxt ,χxx) +
(
f (uh) – f (u),χx

)
.

(3.10)

Then, setting χ = φ in (3.10), we obtain:

(φt ,φ) + δ(φxt ,φx) + ν(φxxt ,φxx)

≤ (ξt ,φ) + μ(ξx,φx) + δ(ξxt ,φx) – θ (ξxx,φx) + η(ξxx,φxx)

+ ν(ξxxt ,φxx) + θ (φxx,φx) – η(φxx,φxx) +
(
f (uh) – f (u),φx

)
.

With the help of the Cauchy-Schwarz inequality and the Lipschitz continuity of f , we get:

d
dt

(‖φ‖2 + δ‖φx‖2 + ν‖φxx‖2) ≤ C
(‖ξ‖2

2 + ‖ξt‖2
2 + ‖φ‖2 + ‖φx‖2 + ‖φxx‖2). (3.11)

By using Lemma 2 and uh0 = ũ0, it further yields:

‖φ‖2
2 ≤ C

∫ T

0

(‖ξ‖2
2 + ‖ξt‖2

2 + ‖φ‖2
2
)

ds ≤ C(u, T)h4 + C
∫ T

0
‖φ‖2

2 ds.

Moreover, from the Gronwall’s inequality, it holds

‖φ‖2
2 ≤ C(u, T)eCT h4 ≤ C(u, T)h4.

From Sobolev inequality theorem, we can get:

‖φ‖∞ ≤ C(u, T)h2.

By using Lemma 2 and the triangle inequality, the proof is completed. �
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4 Crank-Nicolson scheme
For a smooth function ζ on [0, T], the time step is expressed as k such that k = T/N with
tn = nk, (n = 0, 1, . . . , N ). We denote ζ n = ζ (tn), ∂tζ

n = ζn–ζn–1

k , ζ n– 1
2 = ζn+ζn–1

2 . The discrete-
time finite element Galerkin approximation un

h of u(tn) is defined as a solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂tun
h,χ ) + δ(∂tun

hx,χx) + ν(∂tun
hxx,χxx) + μ(un– 1

2
hx ,χx)

+ η(un– 1
2

hxx ,χxx) – θ (un– 1
2

hxx ,χx) = (f (un– 1
2

h ),χx), χ ∈ Xh,

u0
h = uh0,

(4.1)

where uh0 ∈ Xh is an appropriate approximation to u0.
The following a priori bound is useful to prove error estimates of the fully-discrete

Galerkin-Crank-Nicolson method.

Theorem 3 Let un
h be a solution of (4.1), for n ≥ 1, then there exists a positive constant C,

such that:

∥
∥un

h
∥
∥∞ ≤ C

∥
∥u0

h
∥
∥

2. (4.2)

Proof Let χ = un– 1
2

h in (4.1), it holds that:

(
∂tun

h, un– 1
2

h
)

+ δ
(
∂tun

hx, un– 1
2

hx
)

+ ν
(
∂tun

hxx, un– 1
2

hxx
)

+ μ
(
un– 1

2
hx , un– 1

2
hx

)

+ η
(
un– 1

2
hxx , un– 1

2
hxx

)
– θ

(
un– 1

2
hxx , un– 1

2
hx

)
=

(
f
(
un– 1

2
h

)
, un– 1

2
hx

)
.

In fact, (f (un– 1
2

h ), un– 1
2

hx ) = 0, thus:

∥
∥un

h
∥
∥2 +

∥
∥un

hx
∥
∥2 +

∥
∥un

hxx
∥
∥2 ≤ C

(∥
∥un–1

h
∥
∥2 +

∥
∥un–1

hx
∥
∥2 +

∥
∥un–1

hxx
∥
∥2).

Then:

∥
∥un

h
∥
∥2

2 ≤ C
∥
∥u0

h
∥
∥2

2.

By using the Sobolev imbedding theorem, we have completed the proof of (4.2). �

4.1 Existence and uniqueness
To prove the existence of the solution un

h of (4.1), we use the following variant of the
Brouwer fixed point theorem.

Lemma 3 Let H be a finite-dimensional Hilbert space with inner product (·, ·)H and norm
‖ · ‖H . Moreover, let F be a continuous mapping of H into itself, such that (F (W ), W )H > 0,
for all W ∈ H with ‖W‖H = σ > 0. Then, there exists W ∗ ∈ H with ‖W ∗‖H ≤ σ , satisfying
that F (W ∗) = 0.

Theorem 4 Suppose that u0
h, u1

h, . . . , un–1
h are given, and then there exists a unique solution

un
h , n > 1, satisfying (4.1).
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Proof Let continuous mapping F : Xh → Xh, for W ,χ ∈ Xh, we denote:

(
F(W ),χ

)
= (W ,χ ) + δ(Wx,χx) + ν(Wxx,χxx) –

(
un–1

h ,χ
)

– δ
(
un–1

hx ,χx
)

– ν
(
un–1

hxx ,χxx
)

+
kμ

2
(Wx,χx) +

kη

2
(Wxx,χxx)

–
kθ

2
(Wxx,χx) –

k
2
(
f (W ),χx

)
.

Let χ = W , using Schwarz’s inequality and for appropriate k, it is easy to get that:

(
F(W ), W

) ≥ ‖W‖2 +
(

δ +
kμ

2
–

kθ

4

)

‖Wx‖2 +
(

ν +
kη

2
–

kθ

4

)

‖Wxx‖2

–
(∥∥un–1

h
∥
∥‖W‖ + δ

∥
∥un–1

hx
∥
∥‖Wx‖ + ν

∥
∥un–1

hxx
∥
∥‖Wxx‖

)

≥ C‖W‖2
(‖W‖2 – C

∥
∥un–1

h
∥
∥

2

)
.

For ‖W‖2 = C‖un–1
h ‖2 +1, we have (F (W ), W ) > 0. From Lemma 3, it can be seen that there

exists W ∗ such that F (W ∗) = 0. Hence, un
h = 2W ∗ – un–1

h satisfies (4.1). This completes the
proof of existence.

Below we prove the uniqueness by induction. Suppose un
h and vn

h are two solutions of
(4.1). Let W n = un

h – vn
h , we get:

(
∂tW n,χ

)
+ δ

(
∂tW n

x ,χx
)

+ ν
(
∂tW n

xx,χxx
)

+ μ
(
W n– 1

2
x ,χx

)

+ η
(
W n– 1

2
xx ,χxx

)
– θ

(
W n– 1

2
xx ,χx

)
=

(
f
(
un– 1

2
h

)
– f

(
vn– 1

2
h

)
,χx

)
.

Let W n–1 = 0 and choose χ = W n– 1
2 , it yields that:

min{1, δ,ν}
2

∂t
∥
∥W n∥∥2

2 ≤ – μ
∥
∥W n– 1

2
x

∥
∥2 + θ

∥
∥W n– 1

2
xx

∥
∥
∥
∥W n– 1

2
x

∥
∥

+
∥
∥f

(
un– 1

2
h

)
– f

(
vn– 1

2
h

)∥∥
∥
∥W n– 1

2
x

∥
∥.

(4.3)

As ‖un
h‖∞ and ‖vn

h‖∞ are bounded. we can get:

∥
∥f

(
un– 1

2
h

)
– f

(
vn– 1

2
h

)∥
∥ ≤ C

∥
∥W n– 1

2
∥
∥. (4.4)

By (4.3) and (4.4), it can be inferred that:

∂t
∥
∥W n∥∥2

2 ≤ C(
∥
∥W n– 1

2
∥
∥2 +

∥
∥W n– 1

2
x

∥
∥2 +

∥
∥W n– 1

2
xx

∥
∥2 ≤ C

(∥∥W n–1∥∥2
2 +

∥
∥W n∥∥2

2

)
.

Using discrete Gronwall’s inequality, for sufficiently small k, we have ‖W n‖2
2 = 0. That is

to say, W n = 0, i.e., un
h = vn

h . The proof is completed. �

4.2 Error estimates
Letting un = u(tn) and using the elliptic projection ũn, we denote the error en := un – un

h =
ξn – φn, where ξn = un – ũn, φn = un

h – ũn.
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Theorem 5 Take uh0 = ũ(0), then there exists a positive constant C, for sufficiently small h
and k, we have:

∥
∥un – un

h
∥
∥∞ ≤ C(u, T)

(
h2 + k2), 1 ≤ n ≤ N .

Proof If we subtract the equation (4.1) from (2.1), let ρn = un– 1
2

t –∂tun, and use the auxiliary
projection, we have:

(
∂tφ

n,χ
)

+ δ
(
∂tφ

n
x ,χx

)
+ ν

(
∂tφ

n
xx,χxx

)

=
(
∂tξ

n,χ
)

+ δ
(
∂tξ

n
x ,χx

)
+ ν

(
∂tξ

n
xx,χxx

)
– μ

(
φ

n– 1
2

x ,χx
)

– η
(
φ

n– 1
2

xx ,χx
)

+ θ
(
φ

n– 1
2

xx ,χx
)

+ μ
(
ξ

n– 1
2

x ,χx
)

+ η
(
ξ

n– 1
2

xx ,χxx
)

– θ
(
ξ

n– 1
2

xx ,χx
)

+
(
ρn,χ

)
+ δ

(
ρn

x ,χx
)

+ ν
(
ρn

xx,χxx
)

+
(
f
(
un– 1

2
h

)
– f

(
un– 1

2
)
,χx

)
, ∀χ ∈ Xh.

(4.5)

Using χ = φn– 1
2 in (4.5), we get that:

∂t
∥
∥φn∥∥2

2 ≤ C
(∥
∥φn– 1

2
∥
∥2

2 +
∥
∥∂tξ

n∥∥2 +
∥
∥∂tξ

n
x
∥
∥2 +

∥
∥∂tξ

n
xx

∥
∥2 +

∥
∥ξ

n– 1
2

x
∥
∥2

+
∥
∥ξ

n– 1
2

xx
∥
∥2 +

∥
∥ρn∥∥2

2 +
∥
∥f

(
un– 1

2
)

– f
(
un– 1

2
h

)∥∥2).
(4.6)

Using the Lipschitz condition of f and the boundedness of ‖un
h‖∞ and ‖un‖∞ yields that:

∥
∥f

(
un– 1

2
)

– f
(
un– 1

2
h

)∥
∥ ≤ C

(∥
∥ξn– 1

2
∥
∥ +

∥
∥φn– 1

2
∥
∥
)
. (4.7)

Then, from (4.6) and (4.7) it follows:

∥
∥φn∥∥2

2 ≤ Ck

( n∑

j=0

∥
∥φj∥∥2

2 +
n∑

j=0

∥
∥ξ j∥∥2

2 +
n∑

j=1

∥
∥ρ j∥∥2

)

. (4.8)

Using discrete Gronwall’s inequality, we have:

∥
∥φn∥∥2

2 ≤ Ck

( n∑

j=0

∥
∥ξ j∥∥2

2 +
n∑

j=1

∥
∥ρ j∥∥2

)

.

From Taylor’s formula, we can get:

∥
∥ρ j∥∥2 ≤ Ck3

∫ tj

tj–1

∥
∥uttt(s)

∥
∥2 ds. (4.9)

Combining (4.8) with (4.9), we obtain:

∥
∥φn∥∥2

2 ≤ c(u, T)
(
h4 + k4).

Consequently, using Lemma 2, the triangle inequality with the Sobolev inequality theo-
rem, we complete the rest of the proof. �
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Given the parameters α, β , μ, δ, η, ν , θ , the spatial step h, the time step increment k, and
finite element space Xh, by solving Eq. (4.1), we can obtain a group of solution ensembles
{un

h}N
n=1 for Eq. (4.1). Thus we choose � (in general, � � N , for example, � = 32, N = 200) in-

stantaneous solutions uni
h (x) (1 ≤ n1 < n2 < · · · < n� ≤ N ) (they are usually evenly selected)

from N solutions instantaneous {un
h(x)} for Eq. (4.1), which are referred to as snapshots.

5 Error estimates for reduced order pod models of generalized
KdV-RLW-Rosenau equation

5.1 Generation of POD basis and reduced GFE formulation
Define V as the space generated by the snapshots {Ui}�i=1, at least one of which is assumed
to be nonzero. For uni

h (x) (1 ≤ n1 < n2 < · · · < n� ≤ N ) in Sect. 4, let Ui(x) = uni
h (x) (1 ≤

i ≤ �), such that V = span(U1, U2, . . . , U�). Let {ψj}l
j=1 denote an orthogonal basis of V with

l = dimV , for (Ui,ψj)X = (uni
hxx,ψjxx), each member of the ensemble can be expressed as:

Ui =
�∑

j=1

(Ui,ψj)Xψj, i = 1, 2, . . . ,�. (5.1)

Definition 1 The POD method lies in finding the orthogonal basis ψj, (j = 1, 2, . . . ,�) such
that for every d (1 ≤ d ≤ l), the mean square error between the elements Ui (1 ≤ i ≤ �)
and corresponding d-th partial sum of (5.1) is minimized on average:

min
{ψj}d

j=1

1
�

�∑

i=1

∥
∥
∥
∥
∥

Ui –
d∑

j=1

(Ui,ψj)Xψj

∥
∥
∥
∥
∥

2

X

, (5.2)

such that:

(ψi,ψj)X = δij, 1 ≤ i ≤ d, 1 ≤ j ≤ i, (5.3)

where ‖Ui‖2
X = ‖uni

hxx‖2
0. A set of solutions {ψj}d

j=1 of (5.2) and (5.3) is called the POD basis
of rank d.

The procedure to handle (5.2) and (5.3) can be found in [39, 42, 43, 45, 49]. Then we
introduce the positive semi-definite matrix G = (Gij)�×� ∈ R�×� with rank l corresponding
to the snapshots {Ui}�i=1 by

Gij =
1
�

(Ui, Uj)X . (5.4)

Proposition 1 Take v1, v2, . . . , vl the associated orthogonal eigenvectors and let λ1 ≥ λ2 ≥
· · · ≥ λl > 0 denote the positive eigenvalues of G. Let (vi)j denote the jth component of the
eigenvector vi, thus, the POD basis of rank d ≤ l is given by:

ψi =
1√
�λi

�∑

j=1

(vi)jUj, 1 ≤ i ≤ d ≤ l. (5.5)
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Moreover, the following error formula holds:

�∑

i=1

∥
∥
∥
∥
∥

Ui –
d∑

j=1

(Ui,ψj)Xψj

∥
∥
∥
∥
∥

2

X

= �

l∑

j=d+1

λj. (5.6)

Let Xd = span{ψ1,ψ2, . . . ,ψd}. Define the Ritz-projection Ph : X → Xh, Ph|Xh = Pd : Xh → Xd

and Ph : X\Xh → Xh\Xd , for U ∈ X, we have:

((
PhU

)
xx, vhxx

)
= (Uxx, vhxx), ∀vh ∈ Xh. (5.7)

Because of (5.7), the linear operators Ph is well-defined and bounded

∥
∥
(
PhU

)
xx

∥
∥ ≤ ‖Uxx‖, ∀U ∈ X. (5.8)

Lemma 4 For every d (d = 1, 2, . . . , l) and uni
h ∈ V is the solution of Eq. (4.1), the projection

operators Pd satisfies:

�∑

i=1

∥
∥
(
uni

h – Pduni
h
)

xx

∥
∥2 ≤ �

l∑

j=d+1

λj, (5.9)

�∑

i=1

∥
∥(

uni
h – Pduni

h
)

x

∥
∥2 ≤ Ch2�

l∑

j=d+1

λj, (5.10)

�∑

i=1

∥
∥uni

h – Pduni
h
∥
∥2 ≤ Ch4�

l∑

j=d+1

λj. (5.11)

Proof By (5.7), for every U ∈ X, it follows that:

∥
∥(

U – PhU
)

xx

∥
∥2 =

((
U – PhU

)
xx,

(
U – PhU

)
xx

)

=
((

U – PhU
)

xx, (U – vh)xx
)

≤ ∥
∥(

U – PhU
)

xx

∥
∥
∥
∥(U – vh)xx

∥
∥, ∀vh ∈ Xh.

(5.12)

That is to say:

∥
∥(

U – PhU
)

xx

∥
∥ ≤ ∥

∥(U – vh)xx
∥
∥, ∀vh ∈ Xh. (5.13)

In fact, if U = uni
h , we have Phuni

h = Pduni
h ∈ Xd , from (5.6) and let vh =

∑d
j=1(uni

h ,ψj)Xψj ∈
Xd ⊂ Xh in (5.13), then (5.9) can be proved.

To prove (5.11), for ∀v ∈ X, the following variational problem is considered:

(wxx, vxx) =
(
U – PhU , v

)
, (5.14)

hence U – PhU ∈ X, for w ∈ X ∩ H4(�), (5.14) has a unique solution, such that

‖w‖4 ≤ C
∥
∥U – PhU

∥
∥.
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Letting v = U – PhU in (5.14) and using (5.13) yields that:

∥
∥U – PhU

∥
∥2 =

(
wxx,

(
U – PhU

)
xx

)

=
(
(w – wh)xx,

(
U – PhU

)
xx

)

≤ ∥
∥(w – wh)xx

∥
∥
∥
∥(

U – PhU
)

xx

∥
∥, ∀wh ∈ Xh.

(5.15)

Using interpolation theory, taking wh = πhw as interpolation function of w in Xh, we have:

∥
∥U – PhU

∥
∥2 ≤ Ch2‖w‖4

∥
∥(

U – PhU
)

xx

∥
∥

≤ Ch2∥∥U – PhU
∥
∥
∥
∥(

U – PhU
)

xx

∥
∥,

(5.16)

that is to say:

∥
∥U – PhU

∥
∥ ≤ Ch2∥∥(

U – PhU
)

xx

∥
∥. (5.17)

If U = uni
h , we have Phuni

h = Pduni
h ∈ Xd , (5.11) can be derived by using (5.17) and (5.9).

Then we have to prove (5.10):

((
U – PhU

)
x,

(
U – PhU

)
x

)
=

((
U – PhU

)
xx, PhU – U

)

≤ ∥
∥(

U – PhU
)

xx

∥
∥
∥
∥U – PhU

∥
∥.

(5.18)

As we know, if U = uni
h , Phuni

h = Pduni
h ∈ Xd , it follows that:

∥
∥(

uni
h – Pduni

h
)

x

∥
∥2 ≤ ∥

∥(
uni

h – Pduni
h
)

xx

∥
∥
∥
∥uni

h – Pduni
h
∥
∥. (5.19)

(5.10) can be derived by using (5.9), (5.11) and two fundamental inequality
∑

aibi ≤
∑

ai
∑

bi,
∑

ai ≤ C(
∑

a2
i ) 1

2 . The proof is completed. �

Hence, the reduced-order modeling of Eq. (4.1) with initial value u0
d = ud0 is denoted by:

(
∂tun

d,χ
)

+ δ
(
∂tun

dx,χx
)

+ ν
(
∂tun

dxx,χxx
)

+ μ
(
un– 1

2
dx ,χx

)

+ η
(
un– 1

2
dxx ,χxx

)
– θ

(
un– 1

2
dxx ,χx

)
=

(
f
(
un– 1

2
d

)
,χx

)
, χ ∈ Xd.

(5.20)

5.2 Error estimates
By using the same procedure as proofs in Sect. 4, we can easily prove that reduced formu-
lation (5.20) has a unique group of solutions un

d ∈ Xd , such that stability holds. Below, we
recur to usual finite element method to derive the error estimates for Eq. (5.20).

Theorem 6 Let un
h ∈ Xh be the solution of Eq. (4.1) and the un

d ∈ Xd be the solution of
Eq. (5.20), when k = O(h2/3), � = O(N2/3) and snapshots are uniformly selected, we have:

∥
∥un

h – un
d
∥
∥

2 ≤ Ck2 + Ck

(
�∑

j=d+1

λj

)1/2

. (5.21)
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Proof Subtracting Eq. (5.20) from Eq. (4.1), letting χ = vd ∈ Xd ⊂ Xh can get:

(
∂t

(
un

h – un
d
)
, vd

)
+ δ

(
∂t

(
un

hx – un
dx

)
, vdx

)
+ ν

(
∂t

(
un

hxx – un
dxx

)
, vdxx

)

+ μ
(
un– 1

2
hx – un– 1

2
dx , vdx

)
+ η

(
un– 1

2
hxx – un– 1

2
dxx , vdxx

)
+ θ

(
un– 1

2
hx – un– 1

2
dx , vdxx

)

=
(
f
(
un– 1

2
h

)
– f

(
un– 1

2
d

)
, vdx

)
.

(5.22)

The error decomposition is given as follows:

e := un
h – un

d = ξn – φn,

with ξn = un
h – Pdun

h , φn = un
d – Pdun

h . Letting vd = φn + φn–1 and substituting ξn and φn into
(5.22) gives

∥
∥φn∥∥2 + δ

∥
∥φn

x
∥
∥2 + ν

∥
∥φn

xx
∥
∥2

=
∥
∥φn–1∥∥2 + δ

∥
∥φn–1

x
∥
∥2 + ν

∥
∥φn–1

xx
∥
∥2

+
(
ξn – ξn–1,φn + φn–1) + δ

(
ξn

x – ξn–1
x ,φn

x + φn–1
x

)

+ ν
(
ξn

xx – ξn–1
xx ,φn

xx + φn–1
xx

)

+
kμ

2
(
ξn

x + ξn–1
x ,φn

x + φn–1
x

)
–

kμ

2
(
φn

x + φn–1
x ,φn

x + φn–1
x

)

+
kη

2
(
ξn

xx + ξn–1
xx ,φn

xx + φn–1
xx

)

–
kη

2
(
φn

xx + φn–1
xx ,φn

xx + φn–1
xx

)
+

kθ

2
(
ξn

x + ξn–1
x ,φn

xx + φn–1
xx

)

–
kθ

2
(
φn

x + φn–1
x ,φn

xx + φn–1
xx

)

+ k
(
f
(
un– 1

2
d

)
– f

(
un– 1

2
h

)
,φn

x + φn–1
x

)
.

(5.23)

By the Lipschitz condition of f , the boundedness of ‖un
h‖∞ and ‖un

d‖∞, and Young’s in-
equality, we can get:

∣
∣(f

(
un– 1

2
d

)
– f

(
un– 1

2
h

)
,φn

x + φn–1
x

)∣∣

≤ ∥
∥f

(
un– 1

2
d

)
– f

(
un– 1

2
h

)∥
∥
∥
∥φn

x + φn–1
x

∥
∥

≤ C
∥
∥un– 1

2
d – un– 1

2
h

∥
∥
∥
∥φn

x + φn–1
x

∥
∥

≤ C
(∥∥ξn∥∥ +

∥
∥φn∥∥ +

∥
∥ξn–1∥∥ +

∥
∥φn–1∥∥)∥∥φn

x + φn–1
x

∥
∥

≤ C
(∥∥ξn∥∥2 +

∥
∥φn∥∥2 +

∥
∥ξn–1∥∥2 +

∥
∥φn–1∥∥2 +

∥
∥φn

x
∥
∥2 +

∥
∥φn–1

x
∥
∥2).

(5.24)

Combining (5.7), (5.24), and Young’s inequality, (5.23) can be rewritten as:

min{1, δ,ν}∥∥φn∥∥2

≤ max{1, δ,ν}∥∥φn–1∥∥2
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+ (1 + Ck)
(∥
∥ξn∥∥2 +

∥
∥ξn–1∥∥2) +

(

δ +
k(μ + θ )

2

)∥
∥ξn

x
∥
∥2 +

(
k(δ + μ + θ )

2

)∥
∥ξn–1

x
∥
∥2

+ (1 + Ck)
(∥
∥φn∥∥2 +

∥
∥φn–1∥∥2) +

(

δ + Ck +
k(θ + 3μ)

2

)
(∥
∥φn

x
∥
∥2 +

∥
∥φn–1

x
∥
∥2)

+ k(η + θ )
(∥∥φn

xx
∥
∥2 +

∥
∥φn–1

xx
∥
∥2).

Choosing the sufficiently small k yields that:

∥
∥φn∥∥2

2 ≤ C
∥
∥φn–1∥∥2

2 + C
(∥
∥ξn∥∥2

1 +
∥
∥ξn–1∥∥2

1

)
. (5.25)

Summing the above inequality (5.25) from 1 to n gives

∥
∥φn∥∥2

2 ≤ C
n–1∑

j=0

∥
∥φj∥∥2

2 + C

( n∑

j=1

∥
∥ξ j∥∥2

1 +
n–1∑

j=0

∥
∥ξ j∥∥2

1

)

.

With the discrete Growall’s inequality, (5.17) and (5.18), we have:

∥
∥φn∥∥2

2 ≤ Ch2

( n∑

j=1

∥
∥ξ j

xx
∥
∥2 +

n–1∑

j=0

∥
∥ξ j∥∥2

1

)

. (5.26)

Without loss of generality, let ni–1 ≤ n ≤ ni ≤ N (i = 1, 2, . . . ,�) (n = 1, 2, . . . , N ) and n0 =
0. Expanding un

h into Tayor series with respect to tni yields that un
h = uni

h ± εikuth(ξi), tni–1 ≤
ξi ≤ tni , i = 1, 2, . . . ,�, where εi is the step number from tn to tni or to tni–1 (i = 1, 2, . . . ,�). If
the snapshot interval is the same, then εi ≤ N/�. By (5.26), we obtain that:

∥
∥φn∥∥2

2 ≤ Ck2h2
(

N
�

)3

+ Ch2 N
�

ni∑

j=n1

∥
∥ξ j

xx
∥
∥2, 1 ≤ n ≤ N .

Hence, if � = O(N2/3) and k = O(h2/3), by using Lemma 4, we can get:

∥
∥φn∥∥

2 ≤ Ck2 + Ck

(
�∑

j=d+1

λj

)1/2

.

With Lemma 4, (5.17) and the triangle inequality, the proof is completed. �

Using Theorems 5, 6. and Sobolev inequality yields the following result.

Theorem 7 With the hypotheses of Theorem 6, the following error estimates between the
solutions of Eq. (2.1) and Eq. (5.20) hold:

∥
∥un – un

d
∥
∥∞ ≤ Ch2 + Ck2 + Ck

(
�∑

j=d+1

λj

)1/2

.

6 Numerical experiments
We divide the interval [0, 1] into m equidistant subintervals such that 0 = x0 < x1 < · · · <
xm = 1, and denote the subinterval length as h = xi+1 – xi. Let the spline set B–1, B0, . . . , Bm
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constitute the basis function on the interval [0, 1]. Referring to [61, 62], a quadratic B-
spline Bi(x) with the desired properties is defined as:

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(xi+2 – x)2 – 3(xi+1 – x)2 + 3(xi – x)2, [xi–1, xi],

(xi+2 – x)2 – 3(xi+1 – x)2, [xi, xi+1],

(xi+2 – x)2, [xi+1, xi+2],

0, otherwise.

The values of the B-spline functions and their first derivatives at the knots are given by:
⎧
⎨

⎩

Bi(xi–1) = Bi(xi+2) = 0, Bi(xi) = Bi(xi+1) = 1,

B′
i(xi–1) = B′

i(xi+2) = 0, B′
i(xi) = –B′

i(xi + 1) = h
2 .

(6.1)

Therefore, the approximate solution can be written in terms of the quadratic spline func-
tions as:

uh(x, t) =
m∑

i=–1

ai(t)Bi(x), (6.2)

where ai(t) are yet undetermined coefficients.
Since each spline covers three intervals, three splines Bi–1(x), Bi(x), Bi+1(x) cover each

finite element [xi, xi+1]. From formula (6.2) and spline function properties (6.1), we can get
the nodal value of function uh(x, t) and its derivative at node xi and fixed time (t̃), which
can be expressed by coefficient ai(t̃) as follows:

uh(xi, t̃) = ai–1(t̃) + ai(t̃),
∂uh(x, t̃)

∂x

∣
∣
∣
∣
x=xi

=
2(ai(t̃ – ai–1(t̃))

h
. (6.3)

Combining (6.3) and homogeneous boundary conditions (1.1c), we get a–1(t̃) = a0(t̃) = 0,
am–1(t̃) = am(t̃) = 0. And then (6.2) is modified as:

uh(x, t) =
m–2∑

i=1

ai(t)Bi(x).

That is, we must determine the m – 2 unknowns ai(t) (i = 1, 2, . . . , m – 2) at each moment
of t.

6.1 The test problem
In this part, we consider the numerical solutions of the generalized KdV-RLW-Rosenau
equation for the following test problems.

Example Consider the following KdV-RLW-Rosenau equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – uxx – uxxt + uxxxx + uxxxxt + uxxx

+ ux + uux = g(x, t), (x, t) ∈ (0, 1) × (0, 10],

u(0, t) = u(1, t) = ux(0, t) = ux(1, t) = 0, t ∈ (0, 10],

u(x, 0) = x2(1 – x)2, x ∈ [0, 1],

(6.4)
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where
⎧
⎨

⎩

g(x, t) = –e–2t(12et + 7x2et – 6x3et + x4et – 26xet

– 2x3 + 10x4 – 18x5 + 14x6 – 4x7).

The exact solution is:

u(x, t) = e–tx2(x – 1)2.

Table 1 gives the error and second-order convergence of the scheme (4.1) in the time
and space directions, which proves the theoretical results in Theorem 5.

Assuming the space step is h = 0.01 and the time step is k = 0.05, we have k = O(h2/3).
When t = 200k, we first find the usual GFE solution un

h of Eq. (6.4) by scheme (4.1), which
is depicted graphically on the left-hand side in Fig. 1. We output one group of 200 values
at time t = 1k, 2k, . . . , 200k, and choose 32 values from 200 so that every 6 values consist
of one group of snapshots. Finally, using Matlab software, we find one group of 32 eigen-
values, which are arranged in a non-decreasing order. We construct one group of POD
bases by using (5.5), take the first 8 POD bases from a set of 32 POD bases to expand into
subspace Xd and find a set of numerical solutions at t = 200k with Eq. (6.4) by scheme
(5.20), which are depicted graphically on the right-hand side in Fig. 1.

In Table 2, d, λj, and ratio are number of POD basis, eigenvector, and ‖un – un
d‖∞/(h2 +

k2 + k(
∑l

j=d+1 λj)1/2), respectively. Figure 2 shows the errors between reduced order solu-
tions un

d with different number of POD bases and exact solution un (blue piecewise line),
and errors between usual GFE solutions un

h and exact solution (red line), respectively. Ta-
ble 2 and Fig. 2 demonstrate that the result for numerical example is consistent with those

Table 1 Error estimates and convergence order for the Galerkin-Crank-Nicolson scheme (4.1) to the
Eq. (6.4) at t = 10

k ‖un – unh‖∞ Order ‖un – unh‖∞/(h2 + k2)

1/10 2.8080× 10–8 – 1.4040× 10–6

1/20 5.9795× 10–9 2.1670 1.1959× 10–6

1/40 1.4312× 10–9 2.0440 1.1450× 10–6

1/80 3.5376× 10–10 2.0114 1.1320× 10–6

1/160 8.6987× 10–11 2.0166 1.1134× 10–6

Figure 1 Evolutions of the usual GFE solution (on left-hand side) and POD (with 8 bases) GFE solution (on
right-hand side) of the KdV-RLW-Rosenau equation (6.4) with h = 0.01, k = 0.05
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Table 2 Error estimates for the POD-Galerkin-Crank-Nicolson scheme (5.20) to the Eq. (6.4) at t = 10
with h = 0.01, k = 0.05

d k(
∑�

j=d+1 λj)1/2 ‖un – und‖∞ Ratio

2 2.8783× 10–4 5.8492× 10–9 2.0255× 10–6

4 1.8863× 10–4 5.8043× 10–9 2.0814× 10–6

6 1.3610× 10–4 5.7050× 10–9 2.0851× 10–6

8 1.0902× 10–4 5.6895× 10–9 2.1001× 10–6

10 8.1327× 10–5 5.6828× 10–9 2.1194× 10–6

12 5.3441× 10–5 5.6779× 10–9 2.1398× 10–6

14 3.9221× 10–5 5.6678× 10–9 2.1475× 10–6

16 2.5628× 10–5 5.6641× 10–9 2.1532× 10–6

Figure 2 The errors between reduced order modeling with different number of POD bases solution and
exact solution (blue piecewise line) compare with the error between usual GFE solution and exact solution
(red line) at t = 10 with h = 0.01, k = 0.05

obtained for the theoretical case. Obviously, it takes much less time to compute the POD
GFE solution compared to the usual GFE solution, for details see [45].

7 Conclusions
We summarize the reduced-order modeling of the KdV-RLW-Rosenau equation dis-
cussed in the paper from two aspects. First, we analyze the semidiscrete Galerkin method
and obtain L∞-error estimates using the Galerkin-Crank-Nicolson finite element method.
Numerical examples confirm the theoretical results and demonstrate the efficiency of the
fully discrete method. Second, we introduce a proper orthogonal decomposition (POD)
method to derive a reduced POD GFE formulation of the equation. We analyze the error
between the traditional GFE solution and the reduced GFE solution using POD and in-
vestigate the relation between the number of snapshots and the number of solutions in all
time instances. Our approach can also be used for more general cases.
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