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Abstract

Background Healthcare-associated infections involving Gram-negative bacteria (GNB) with difficult-to-treat resist-
ance (DTR) phenotype are associated with impaired patient-centered outcomes and poses daily therapeutic chal-
lenges in most of intensive care units worldwide. Over the recent years, four innovative 3-lactam/-lactamase
inhibitor (BL/BLI) combinations (ceftolozane—tazobactam, ceftazidime—avibactam, imipenem-relebactam and mero-
penem-vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment

of certain DTR-GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical effi-
cacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care
Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unan-
swered questions on these issues.

Methods A systematic search for English-language publications in PUBMED and the Cochrane Library database
from inception to November 15, 2022,

Results These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe
infections for whom polymyxin- and/or aminoglycoside-based regimen were historically used as last-resort strate-
gies—namely, ceftazidime-avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)- or OXA-
48-like-producing Enterobacterales, meropenem-vaborbactam for KPC-producing Enterobacterales, ceftazidime-
avibactam/aztreonam combination or cefiderocol for metallo-f3-lactamase (MBL)-producing Enterobacterales,

and ceftolozane-tazobactam, ceftazidime—avibactam and imipenem-relebactam for non-MBL-producing DTR
Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended-infusion scheme
(except for imipenem-relebactam) may be indicated for DTR-GNB with high minimal inhibitory concentrations and/
or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials
remains under-investigated, notably for the most severe presentations. Other important knowledge gaps include
pharmacokinetic information in particular situations (e.g., pneumonia, other deep-seated infections, and renal
replacement therapy), the hazard of treatment-emergent resistance and possible preventive measures, the safety
of high-dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical
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utilization, and optimal treatment durations. Comparative clinical, ecological, and medico-economic data are needed
for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen.

Conclusions New BL/BLI combinations and cefiderocol represent long-awaited options for improving the manage-
ment of DTR-GNB infections. Several research axes must be explored to better define the positioning and appropriate

administration scheme of these drugs in critically ill patients.

Keywords Cefiderocol, Ceftolozane-tazobactam, Ceftazidime—avibactam, Meropenem-vaborbactam, Imipenem-
relebactam, Aztreonam, Enterobacterales, Pseudomonas aeruginosa, Carbapenem resistance, Intensive care unit

Introduction

Carbapenems stand as the main option for the treat-
ment of severe infections due to Gram-negative bac-
teria (GNB) exhibiting resistance to broad-spectrum
penicillins and cephalosporins [1-3]. Yet, the dis-
semination of carbapenem-resistant GNB, either at an
endemic state or during outbreak phenomenon, now
poses daily therapeutic challenges in most of intensive
care units (ICU) worldwide [4—8]. Infections involving
carbapenem-resistant GNB are associated with a sub-
stantial rise in fatality rates, length of hospital stay and
costs of care when compared to those caused by car-
bapenem-susceptible isolates [9-14]. These impaired
outcomes may result from a higher likelihood of inad-
equate empirical therapy, toxicity attributable to his-
torical last-resort agents (e.g., polymyxin-related acute
kidney injury), and the frailty of individuals in whom
such conditions predominantly occur [15]. In addition,
most of carbapenem-resistant GNB are resistant to
other antimicrobial classes, further complicating the
management of infected patients—hence, co-resist-
ance to carbapenems, all other first-line B-lactams and
fluoroquinolones is consensually defined as difficult-
to-treat resistance (DTR) [1-3].

Over the recent years, four innovative p-lactam/p-
lactamase inhibitor (BL/BLI) combinations (namely,
ceftolozane—tazobactam, ceftazidime—avibactam, imi-
penem-relebactam and meropenem—vaborbactam)
and a new siderophore cephalosporin (cefiderocol)
have been introduced and approved for the treat-
ment of certain DTR-GNB infections. The literature
addressing their microbiological spectrum, pharma-
cokinetics, clinical efficacy and safety in critically ill
patients has been exhaustively audited by our group
to support the guidelines of the French Intensive Care
Society, elaborated during a consensus conference
held in Paris on November 30, 2022 and published in
this issue of Aunnals of Intensive Care. In this narra-
tive review, we summarize the available evidence and
knowledge gaps on these questions, with a focus on
DTR-GNB infections.

Methods

We systematically searched PubMed and the Cochrane
Library database from inception to November 15, 2022.
The search terms are listed in Additional file 1 of this
article. We manually searched the reference lists of the
included studies and systematic reviews to select addi-
tional relevant articles. Studies published in languages
other than English were not retained.

Current epidemiology of DTR-GNB in critically ill
patients
Critically ill patients present a marked predisposition
for DTR-GNB infection as a combined result of massive
exposure to broad-spectrum antimicrobials damaging
the resident microbiotas and their inherent coloniza-
tion resistance functions, and repeated opportunities for
cross-transmission ensuing from invasive procedures
and prolonged hospitalization [16, 17]. Enterobacterales
(primarily Klebsiella pneumoniae and Escherichia coli),
Pseudomonas aeruginosa, Acinetobacter baumannii and
Stenotrophomonas maltophilia account for virtually all
healthcare-associated DTR-GNB infections in the ICU.
Carbapenem resistance in Enterobacterales depends
almost exclusively on the acquisition and expression
of plasmid-borne carbapenemases belonging to the A
(mostly Klebsiella pneumoniae carbapenemase [KPC]), B
(metallo-p-lactamases [MBL], especially New-Delhi MBL
[NDM]) or D (oxacillinases, mainly OXA-48-like carbap-
enemases) classes of the Ambler’s scheme (Table 1) [18,
19]. The prevalence of carbapenemase-producing Enter-
obacterales (CPE) is increasing globally, with a marked
trend for MBL-producing isolates—this pandemic shows
large geographical disparities, with a North/South gra-
dient and higher prevalence in low- and middle-income
countries (Table 2) [8, 20-23]. Endemic states have
been reached in Italy, Greece and the United States for
KPC producers, in the India/Pakistan region for NDM
producers, and in the India/Pakistan and Mediterra-
nean regions for OXA-48 producers; however, sporadic
outbreaks are now regularly reported in other areas,
including Latin America, Oceania, Africa and North-
ern Europe [24]. In 2017, in the 37 European countries
contributing to the eCDC surveillance program, the
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Table 1 In vitro activity of novel 3-lactam/B-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Gram-
negative bacteria

Main mechanisms Enterobacterales Pseudomonas Acinetobacter Stenotrophomonas
of carbapenem aeruginosa baumannii maltophilia
resistance Class A Class D Class B OprD2 mutation OXA® Chromosomal MBL
carbapenemase carbapenemase carbapenemase Efflux®
(KPC) (OXA-48-like®)  (MBLP) MBL¢
Ceftolozane-tazobac- - - - +++ -9 -9
tam 75%-90% °
Ceftazidime-avibactam +++ +++ - ++ -9 -9
96%-99% 96%-99% 60%-70%
Ceftazidime—avibactam +++ " - + (MBL) -9 40
plus aztreonam 96-99% 96%-99% >90% 0-25% ~85%
Meropenem-vabor- +++ - - - - -9
bactam 95-99%
Imipenem-relebactam  +++ + - ++ - -9
88%-95% 70%-90%
Cefiderocol +++ +++ ++ +4++ +++ +++
84-91% 88-93% VIM: 79%-81% >90% MIC<2mg/L  MIC<2 mg/L for>90%
NDM: 41%-51% for>90% of isolates
of isolates

From references [31-35, 38, 40, 42-45, 50, 51, 54, 56-60, 63, 64, 66, 68, 69, 74, 75]
Susceptibility profiles are indicated for carbapenem-resistant isolates only
KPC: Klebsiella pneumoniae carbapenemase; MBL: metallo-B-lactamase; NDM: New-Delhi MBL; MIC: minimal inhibitory concentration

2 OXA-48 and derivatives (e.g., OXA-181 and OXA-232)—note that these B-lactamases hydrolyze penicillins and carbapenems but not broad-spectrum cephalosporins;
PNDM is the main MBL type in Enterobacterales (other types such as VIM are less common); “main efflux pump systems implicated in carbapenem resistance in P.
aeruginosa are MexAB-OprM and MexEF-OprN; dvarious MBL types (VIM, IMP, NDM, SPM)—other carbapenemase types are occasionally documented in P. aeruginosa,
including class A (KPC and GES) and C (OXA-48-like) carbapenemases; °mainly OXA-23-, OXA-24/40-, and OXA-58-like enzymes; ‘ceftolozane-tazobactam is not active
against carbapenemase-producing isolates of P. aeruginosa; intrinsic resistance or limited susceptibility (species); Mactivity resting on the combination of aztreonam
and avibactam (see the text for explanations); ' no defined EUCAST breakpoint (insufficient data)

Table 2 Prevalence of carbapenem resistance among Gram-negative bacteria isolated from clinical samples in selected national and
international surveillance networks

Surveillance network CHINET CDC/NHSN SENTRY SENTRY SENTRY EB-2 EARS-Net SPIADI SPIADI
Geographical area China USA USA Western Europe Eastern Europe Worldwide Europe France France
Sample collection, 2016 2015-2017 2016-2019 2016-2019 2016-2019 2019-2020 2021 2021 2021
period
Infection type HA-BSI DA-HAI Pneumonia?® Pneumonia® Pneumonia® HA-BSI (ICU) AllP VAP HA-CR-BSI
(Icv)
References [20] [21] [22] [22] [22] [23] [8] [211] [211]
Enterobacterales - - - - - - - - 0.6%
Escherichia coli 1.6% 0.7% 0.5% 0.4% 0.5% 7.4% 0.2% - -
Klebsiella pneumoniae ~ 42.9%  6.9% 4.7% 8.7% 17.5% 37.8% 11.7% - -
Pseudomonas aerugi- 24.3% 20.7% 25.2% 23.1% 51.7% 33.2% 18.1% 208%  9.0%
nosa
Acinetobacter bauman-  57.7% 43.2% 41.2% 54.2% 89.6% 84.6% 39.9% 228% -
nii

HA: hospital-acquired; BSI: bloodstream infection; DA-HAI: device-associated healthcare-associated infection; ICU: intensive care unit; VAP: ventilator-associated
pneumoniae; CR: catheter-related

2 Community-onset pneumonia requiring hospitalization and hospital-acquired pneumonia (pooled); P‘community-onset infections and hospital-acquired infections
(pooled)

prevalence of carbapenem resistance among invasive iso-  reported regional or interregional spread of CPE while
lates of K. pneumoniae and E. coli ranged from 0 to 65%  four countries (Greece, Italy, Turkey and Malta) declared
and from 0% to 1.6%, respectively; 16 (43%) countries an endemic situation [25]. In France, CPE infections
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remain infrequent, with less than 1000 cases reported
annually [26], in line with a low prevalence of coloniza-
tion—indeed, in a recent study including 2396 hospital-
ized patients, the rate of intestinal carriage of CPE was
still 1.2% [27].

In Pseudomonas aeruginosa, carbapenem resistance
rests on both plasmid-borne carbapenemases (mostly
MBL such as VIM, IMP, NDM or SPM) and chromo-
somal mutations leading to over-expression of efflux
pump systems or impermeability through porin D2
alterations [18]. The overall prevalence of carbapenem
resistance in invasive isolates of P aeruginosa fluctuates
between 10 and 20% in most geographic areas [8, 20,
22, 23], with a variable proportion of DTR phenotypes
that may locally increase owing to outbreaks related to
certain high-risk clones (Table 2) [28, 29]. Next, as for
Enterobacterales, carbapenem resistance in Acinetobac-
ter baumannii is predominantly driven by plasmid-borne
carbapenemases, with OXA-23 as the leading type [19].
Rates of carbapenem resistance in invasive isolates of A.
baumannii have reached critical levels in the Mediterra-
nean area, South-East Asia and, to a lesser extent, South-
ern Europe (Table 2). In a recent global study including
350 critically ill patients with hospital-acquired blood-
stream infection due to A. baumannii, 296 (84.6%) were
infected by CR isolates [23]. Lastly, Stenotrophomonas
maltophilia expresses a chromosomally encoded MBL
that confers intrinsic carbapenem resistance to the spe-
cies [18]. Infections due to this pathogen mostly occur
in critically ill and/or immunocompromised hosts, espe-
cially in those with prior exposure to carbapenems or
other broad-spectrum f-lactams [30]. Resistance to both
cotrimoxazole and fluoroquinolones may pragmatically
correspond to a DTR phenotype though there is no con-
sensual definition for this species.

Bacterial spectrum of cefiderocol and new BL/BLI
combinations

In vitro activity against carbapenemase-producing
Enterobacterales

Avibactam is a potent inhibitor of serine-p-lactamases
(that is, Ambler’s classes A, C and D); therefore, cef-
tazidime—avibactam is active in vitro against 96-99%
of KPC- and OXA-48-like-producing Enterobacterales
(Table 1) [31-35]. Yet, resistance to ceftazidime—avibac-
tam may emerge following mutations in KPC-encoding
genes (mainly blaypc, and blaypc.3) or genes encoding
outer membrane proteins (OmpK35-37), especially when
associated with a high number of bla, , copies [36-39].
MBL-producing Enterobacterales are resistant to ceftazi-
dime—avibactam since avibactam has no inhibitory effect
on these enzymes. However, the combination of ceftazi-
dime—avibactam plus aztreonam is active against around
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80% of MBL-producing Enterobacterales [40], aztreonam
being not hydrolyzed by MBL and avibactam inhibiting
the other B-lactamases commonly co-produced by such
isolates (e.g., hyperproduced AmpC cephalosporinases,
extended-spectrum p-lactamases [ESBL], or class A car-
bapenemases such as KPC, all including aztreonam in
their hydrolysis spectrum) [41, 42].

Relebactam and vaborbactam inhibit class A
B-lactamases, without effect on MBL or OXA carbapen-
emases [43]. Imipenem-relebactam and meropenem-—
vaborbactam are active in vitro against 88-95% and
95-99% of KPC-producing Enterobacterales, respectively
[43-45]. Certain KPC variants and ESBL co-expres-
sion have been linked with a rise in minimal inhibitory
concentrations (MIC) of imipenem-relebactam while
over-expression of blayp- may increase those of mero-
penem—vaborbactam; in addition, porin mutations
(OmpK35, OmpK 36) can reduce the activity of both
drugs [46-48]. Importantly, these combinations remain
occasionally active against isolates producing KPC-2 or
KPC-3 variants with reduced susceptibility to the inhibi-
tory effect of avibactam [45, 49].

Cefiderocol is a poor substrate for all -lactamase
classes and shows in vitro activity against 84—81%,
88-93%, 79-81% and 41-51% of KPC-, OXA-48-,
VIM- and NDM-producing Enterobacterales, ESBL co-
expression and porin mutations being associated with a
reduced activity of the drug [50, 51]. Also, the inoculum
effect—that is, an elevation of MIC values for high bacte-
rial concentrations [52]—appears more pronounced with
cefiderocol than with other new agents though the clini-
cal significance of this finding is not yet elucidated [53].

The MIC cut-off values of novel BL/BLI combinations
and cefiderocol for Enterobacterales, as defined by the
European Committee on Antimicrobial Susceptibility
Testing (EUCAST), are exposed in Table 3. Importantly,
ceftolozane is hydrolyzed by all described carbapen-
emases, none of which being inhibited by tazobactam;
therefore, ceftolozane—tazobactam exerts no activity
against CPE [54, 55].

In vitro activity against carbapenem-resistant
non-fermenting GNB

Ceftolozane circumvents two major mechanisms of
B-lactam resistance in P aeruginosa—namely, efflux and
AmpC-mediated hydrolysis [56]. This fifth-generation
cephalosporin, independently of its association with
tazobactam, is active in vitro against 75-90% of non-
carbapenemase-producing carbapenem-resistant P aer-
uginosa isolates and, more globally, against 40-80% of
DTR isolates within this species [54, 57—61]. Resistance
to ceftolozane—tazobactam in P aeruginosa depends
on either certain plasmid-borne [-lactamases (e.g.,
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Table 3 EUCAST MIC cut-off values defining susceptibility to new B-lactam/B-lactamase inhibitor combinations and cefiderocol for
Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia

Ceftolozane- Ceftazidime- Imipenem- Meropenem- Cefiderocol
tazobactam avibactam relebactam vaborbactam
Enterobacterales <2mg/L <8mag/L <2mg/L <8 mag/L <2mg/L
Pseudomonas aeruginosa <4 mg/L <8mg/L <2mg/L <8mag/L <2mg/L
Acinetobacter baumannii R NA <2mg/L <2mg/L? NA
Stenotrophomonas maltophilia IR NA IR IR NA

Source: www.eucast.org/clinical_breakpoints

EUCAST: European Committee on Antimicrobial Susceptibility Testing; MIC: minimal inhibitory concentration; IR: intrinsic resistance; NA: non-appropriate (species
with intrinsically weak susceptibility to the considered drug or insufficient data to define a MIC cut-off value)

@ MIC cut-off for meropenem

MBL, OXA-14, OXA-19, OXA-35, GES-9, or PER-1) or
extreme over-expression of chromosomal AmpC [62]. A.
baumannii and S. maltophilia are intrinsically resistant
to ceftolozane.

Both avibactam and relebactam inhibit chromosomal
AmpC in P. aeruginosa. Ceftazidime—avibactam and imi-
penem-relebactam are active against 65%-85% of DTR
isolates of P. aeruginosa [57-59, 63, 64]. Avibactam does
not restore ceftazidime activity in MBL-producing iso-
lates or in those with over-expressed efflux pump systems
for which ceftazidime is a substrate. Relebactam may
restore imipenem activity is isolates with mutated D2
porin and derepressed AmpC, likely due to the limited
but significant hydrolysis of imipenem by this enzyme
[65]. These two combinations lack activity against car-
bapenemase-producing isolates of A. baumannii and
against S. maltophilia, this later species being intrinsi-
cally poorly susceptible to ceftazidime and resistant to
imipenem [18]. Meropenem—vaborbactam is not active
against meropenem-resistant isolates of P aeruginosa
or A. baumannii due to the lack of inhibitory effect of
vaborbactam on mechanisms of meropenem resistance
in these species (that is efflux, impermeability, or carbap-
enemase production).

Cefiderocol is active in vitro against 90% to 95% of car-
bapenem-resistant isolates of P aeruginosa [66—69]. No
MIC threshold of cefiderocol is currently defined by the
EUCAST for A. baumannii and S. maltophilia; however,
more than 90% of isolates within these species show MIC
values below 2 mg/L (i.e., the cut-off value for Enterobac-
terales and P. aeruginosa) [69].

A key-point is that the multiplicity of potentially
involved resistance mechanisms makes unpredictable the
activity of new B-lactams in DTR P, aeruginosa. Indeed, a
substantial proportion of isolates exhibiting resistance to
one agent remains susceptible to others, which implies to
perform susceptibility tests for all novel BL/BLI combi-
nations and cefiderocol in isolates with such phenotypes

[70]. Of note, gradient test strips are not accurate to
measure cefiderocol MICs [71, 72], which should be
determined using broth microdilution methods [73].

Interestingly, a combination of ceftazidime—avibactam
and aztreonam may have high in vitro activity against
cotrimoxazole- and fluoroquinolone-resistant isolates of
S. maltophilia, a species that expresses a chromosomal
AmpC cephalosporinase susceptible to the inhibitory
effect of avibactam in addition to its chromosomal MBL
[74, 75].

In vitro activity against other relevant pathogens
responsible for infections in critically ill patients
ESBL are class A serine-f-lactamases that are susceptible
to the inhibitory effect of both tazobactam and avibac-
tam. Avibactam also inhibits AmpC cephalosporinases
while tazobactam does not. Therefore, both ceftolo-
zane—tazobactam and ceftazidime—avibactam are active
against ESBL-producing Enterobacterales without AmpC
co-expression but only the latter combination is active
against isolates co-producing ESBL and derepressed
ampC (e.g., Enterobacter spp) [76]. Imipenem-—relebac-
tam and meropenem-vaborbactam are highly active
against ESBL-producing Enterobacterales due to the
intrinsic activity of carbapenems on these pathogens [43,
77].

Gram-positive bacteria and most of cultivable anaer-
obes are intrinsically resistant to ceftolozane—tazobac-
tam, ceftazidime—avibactam and cefiderocol [78-80].
The activity of imipenem-relebactam and meropenem—
vaborbactam on these pathogens does not differ from the
one of imipenem and meropenem, respectively.

Clinical efficacy of cefiderocol and new BL/BLI
combinations in DTR-GNB infections

Data from randomized controlled trials

Most of randomized controlled trials (RCT) evaluating
the clinical efficacy and safety of cefiderocol and novel
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BL/BLI combinations were not focused on DTR-GNB
infections and used a carbapenem as comparator [81—
86]. Only three RCTs addressed the input of these new
agents in the specific context of DTR-GNB infections.

In the TANGO 1I trial [87], 47 patients with docu-
mented CPE infection (mostly KPC-producing K
pneumoniae) were treated for 7 to 14 days by either mero-
penem—vaborbactam or best available therapy (BAT),
most often including an aminoglycoside and/or a poly-
myxin according to susceptibility test results. Rates of
clinical success were 66% and 33% (difference, 32%; 95%
confidence interval [CI], 3% to 61%) at end of therapy and
59% and 27% (difference, 33%; 95% CI, 5% to 61%) at test-
of-cure (ToC) visit for meropenem-vaborbactam and
BAT, respectively. Day-28 all-cause mortality rates were
16% and 33% (difference, 18%; 95% CI —45% to 9%). A
composite endpoint of clinical failure and nephrotoxicity
occurred less frequently with meropenem—vaborbactam
when compared to the BAT arm (31% versus 80%; 95% CI
for difference, —75% to —23%). In this trial, the efficacy
of meropenem—vaborbactam was not evaluated accord-
ing to the baseline MIC of this combination for the caus-
ative pathogen. Only one patient in the BAT arm received
ceftazidime—avibactam (single-drug regimen), excluding
any comparison between the two BL/BLI combinations.

In the RESTORE-IMI 1 trial [88], 47 patients infected
with DTR-GNB (mostly DTR P aeruginosa suscepti-
ble to both imipenem-relebactam and colistin) were
treated with imipenem-relebactam or an imipenem/
colistin combination. The overall rates of clinical suc-
cess at Day 28 were 71% and 40% in patients receiving
imipenem-relebactam and controls, respectively (differ-
ence, 26%; 95% CI 1% to 51%) while those of Day-28 all-
cause fatality were 10% and 30% (difference, —17%; 95%
CI —46% to 7%). Drug-related adverse events—especially
nephrotoxicity—were considerably more common in the
imipenem/colistin arm. Of note, MICs of imipenem-rel-
ebactam ranged from 0.5 to 4 mg/L for P. aeruginosa iso-
lates; however, whether this baseline MIC impacted the
clinical response to the drug was not investigated.

In the CREDIBLE-CR trial [89], 152 patients with a
documented DTR-GNB infection (A. baumannii, 46%; K.
pneumoniae, 33%; P. aeruginosa, 19%; MIC,, of cefidero-
col, 1, 4 and 2 mg/L, respectively) received either cefider-
ocol (single-drug therapy, 85%) or BAT (colistin-based,
67%; combination therapy, 45%) for 5 to 21 days. Overall
rates of clinical success at ToC visit were similar in the
two arms (53% versus 50%), including in patients with
hospital-acquired pneumonia. Rates of microbiological
eradication (31% versus 24%) and of relapse (3% versus
11%) were, respectively, higher and lower in the cefi-
derocol arm. However, the rate of all-cause fatality was
numerically higher in the cefiderocol arm at Day 14 (19%
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versus 12%), Day 28 (25% versus 18%) and at follow-up
termination (34% versus 18%). This finding, which could
not be linked to any of baseline patient characteristics,
was mostly attributable to an excess mortality in patients
infected with A. baumannii (fatality rate, 49% versus 18%
in the cefiderocol and BAT arms, respectively)—no dif-
ference was observed between the two arms for patients
infected with P aeruginosa or K. pneumoniae, except
in those with A. baumannii co-infection. The baseline
MIC value did not correlate with the likelihood of clini-
cal or microbiological failure, which was observed even
for isolates with MIC<0.5 mg/L. Hetero-resistance has
been evocated as an underlying mechanism for such
observations, notably for A. baumannii [90]; nonetheless,
whether this phenomenon correlates with the hazard
of treatment failure is debated and necessitates further
investigations. Following the publication of this trial, the
Food and Drug Administration issued a warning state-
ment that advocated for restricting the use of cefiderocol
to patients in whom no other therapeutic option is avail-
able [91].

Data from observational and post hoc studies

Regarding CPE, several cohort studies reported clinical
success rates above 65—-70% with ceftazidime—avibactam
for severe infections due to KPC- or OXA-48-like-pro-
ducing Enterobacterales [92—-101] and with meropenem—
vaborbactam for severe infections due to KPC-producing
Enterobacterales [102-105]. An ancillary study from the
CREDIBLE-CR and ASPEK-NP RCT evaluated cefidero-
col versus BAT for infections due to MBL-producing
Enterobacterales and reported numerically higher rate of
clinical success and lower rate of mortality with cefider-
ocol [106]. Another ancillary study from the same trials
and including 10 patients infected with OXA-48-like-
producing Enterobacterales reported clinical cure in 7
of them [107]. The clinical efficacy of cefiderocol in CPE
infections has also been reported in numerous case-
reports and small observational studies [108]. Relevant
clinical success rates—similar to those observed with
cefiderocol—have equally been observed with the com-
bination of ceftazidime—avibactam and aztreonam for
infections due to MBL-producing Enterobacterales [109—
111]. No clinical study focused on the efficacy of imipe-
nem-relebactam for infections due to KPC-producing
Enterobacterales has been published so far.

To our knowledge, the efficacy of novel BL/BLI com-
binations in CPE infections has been directly compared
in only one study. This work focused on infections due
to KPC-producing Enterobacterales (72% of cases) and
including roughly half of critically ill patients, ceftazi-
dime—avibactam (#=105) and meropenem-vaborbac-
tam (n=26) showed similar results in terms of clinical
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and microbiological successes, length of hospital stay,
incidence of adverse events, and mortality [112].

Most of cohort studies centered on patients infected
with non-MBL-producing DTR P aeruginosa reported
clinical success rates above 60% with ceftolozane—tazo-
bactam [92, 113-117] and ceftazidime—avibactam [101,
118-123]. Observational data on the clinical efficacy
of imipenem-relebactam are lacking for this patient
population.

Lastly, a single-center study with propensity-score
analyses using inverse probability of treatment weighting
reported a lower mortality rate with cefiderocol versus
colistin-based regimen in patients with DTR A. bauman-
nii infection (except for those with ventilator-associated
pneumonia), contrasting with the results of the CREDI-
BLE-CR trial [124]. In this work, microbiological failure
was twice more frequent in the cefiderocol arm. Nephro-
toxicity was more common in the colistin arm [124].

The cohort studies cited above were mostly retrospec-
tive and not devoted to critically ill patients. To date,
real-life data on the efficacy of these new B-lactams in
patients with life-threatening DTR-GNB infection (e.g.,
septic shock) are dramatically scarce.

Combination therapy—what clinical evidence?
Enhanced bacterial killing and a reduced risk of resist-
ance emergence are usual arguments for the use of anti-
microbial combinations in critically ill patients with GNB
infection. Nevertheless, combining antibiotics may also
raises concerns related to safety issues including toxicity,
drug—drug interactions, and potential ecological impact.
Hence, despite decades of extensive research in the field,
the benefit-to-risk ratio of combination therapy in this
population is still debated, with fragmentary evidence for
improved survival only in the most severe presentations
[125].

Two meta-analyses of observational studies and RCT
found no survival benefit with ceftazidime—avibactam
combined with one or more antimicrobials (i.e., fosfo-
mycin, tigecycline, gentamicin, or meropenem) when
compared to ceftazidime—avibactam alone for the treat-
ment of DTR-GNB infections [126, 127]. Two large ret-
rospective multicentre cohort studies including patients
with infections due to KPC-producing K. pneumoniae
and published after the above-mentioned meta-analyses
yielded similar results [128, 129]; of note, one of them
reported a trend toward improved survival with combi-
nation therapy in the subgroup of patients with hospital-
acquired pneumonia [128]. Clinical evidence related to
the potential benefit of combining ceftazidime—avibac-
tam with colistin is limited to case-reports or small case-
series, precluding any conclusion to be drawn [95, 130].
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A meta-analysis of observational studies demonstrated
a significant reduction in all-cause mortality when com-
bining ceftolozane—tazobactam with other antimicrobials
in patients with GNB infections—mostly DTR P. aerugi-
nosa infections—yet without benefit in terms of clinical
cure and microbiological eradication [131]. A subsequent
multicentre study focused on DTR P. aeruginosa infec-
tions in critically ill patients did not confirm this survival
benefit [117].

A multi-center retrospective study including 37
patients with severe KPC-producing K. pneumoniae
infection reported a higher mortality rate with merope-
nem-—vaborbactam combined with another antimicrobial
(mostly colistin or fosfomycin) when compared to mero-
penem-—vaborbactam alone; however, patients receiving
combination therapy were older, had more comorbidi-
ties and presented with higher severity indexes, thereby
inducing obvious bias in the interpretation of this result
[102].

In a post hoc analysis of the CREDIBLE-CR trial, the
proportions of patients with clinical cure and micro-
biological eradication at ToC visit did not differ between
patients receiving cefiderocol as single-drug regimen or
in combination; however, only 14 patients received com-
bination therapy [89]. A single-center retrospective study
including 16 patients with DTR A. baumannii infection
showed similar results [132].

To our knowledge, no published data exist to appraise
the potential benefit of combining imipenem-relebactam
with other antimicrobials for DTR-GNB infections, espe-
cially those involving P. aeruginosa.

Overall, it remains unclear whether cefiderocol and
novel BL/BLI combinations should be associated with
antimicrobial agents from other classes to improve
patient-centered outcomes in severe DTR-GNB infec-
tions, with most of available clinical data coming from
retrospective cohort studies. Pending further evidence,
combination therapies could be considered in certain
situations at high risk for clinical or microbiological fail-
ure such as unachievable source control, high bacterial
inoculum, or infections due to extensively drug-resistant
strains with elevated MICs, as suggested in certain stud-
ies evaluating older antimicrobials in DTR-GNB infec-
tions [133, 134].

Clinical pharmacokinetics and optimization

of dosing schemes

New drugs, old PK/PD concepts

The most efficient pharmacokinetic/pharmacodynamic
(PK/PD) index to predict bacterial cell killing with
B-lactams is the percentage of the dosing interval dur-
ing which the concentration of unbound drug exceeds
the MIC of the strain (%f;>MIC). A reasonable amount
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of evidence corroborates that f;>MIC equal to 100%
(i.e., minimal inter-dose concentration [C;,]/MIC>1)
and even f;>5xMIC equal to 100% (i.e., C,;,/MIC>5)
should be targeted in patients receiving p-lactams for
severe infections [135-140], higher C,; /MIC ratio being
linked with enhanced bacterial killing and reduced emer-
gence of resistant mutants [135, 141-143]. Higher blood
levels also correlate with improved tissue penetration and
bioavailability of the drug at the infection site. As sup-
ported by Monte Carlo simulations [144, 145], extending
the duration of B-lactam infusion increases drug expo-
sure and allows higher C_, targets to be reached, which
could translate into improved patient outcome during
severe infections [146, 147]. Available data suggest that

Consider risk factors for |
under-dosing

Augmented renal clearance
(CrCl >130 mL/min/1.73m?)

and/or high MIC
and/or low tissue penetration
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these concepts apply for new p-lactams and plead for
the routine use of 3-h infusion scheme for cefiderocol
and meropenem—vaborbactam, and 4- to 6-h infusion
scheme for ceftolozane—tazobactam and ceftazidime—
avibactam (Fig. 1) [128, 144, 148-151]. The stability of
the drug in syringes at room temperature must be con-
sidered when using extended or continuous infusion.
Recent studies reported a stability of 4 to 8 h for mero-
penem (in dextrose 5% and normal saline, respectively),
12 h for vaborbactam, and 24 h for ceftazidime—avibac-
tam, ceftolozane—tazobactam, cefiderocol and aztreonam
(either in dextrose 5% or normal saline) [152, 153].

Clinical indication for new B-lactams

Consider routine extended infusion for critically ill patients
3-hour infusion (CFL, MER-VAB), up to 4 or 5-hour infusion (C-TZ, CAZ-AVI, MER-VAB)
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Fig. 1 Administration scheme and dosing adjustments of new -lactam/B-lactamase inhibitor combinations and cefiderocol in critically ill patients.
See the text and Table 4 for references. CFL: cefiderocol; CFL: cefiderocol; C-TZ: ceftolozane—tazobactam; CAZ-AVI: ceftazidime—-avibactam; MER-VAB:
meropenem-vaborbactam; IMI-REL: imipenem-relebactam; CrCl: creatinine clearance; MIC: minimal inhibitory concentration; AKI: acute kidney
injury; TDM: therapeutic drug monitoring; IHD: intermittent haemodialysis; CRRT: continuous renal replacement therapy; LD: loading dose
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Dosing adjustment in particular situations

New BL/BLI combinations and cefiderocol share simi-
lar characteristics with older B-lactams, including high
therapeutic indexes, heterogeneous inoculum effect,
hydrophilicity, small molecular weights, almost exclusive
renal clearance, low protein-binding (except for cefidero-
col) implying effective elimination by renal replacement
therapy (RRT), and variable tissue diffusion (Table 4) [53,
154]. Dosing adjustment may be required in specific clin-
ical situations to ensure sufficient antibiotic concentra-
tion at the infectious site while avoiding toxic levels to be
attained [155, 156].

First, augmented renal clearance (ARC), consensually
defined as a creatinine clearance >130 mL/min/1.73m?,
may reduce C_;, and overall drug exposure, thereby low-
ering the probability of PK/PD target attainment, espe-
cially for bacterial isolates with high MIC values. For
instance, through continuous infusion of ceftolozane—
tazobactam has been shown to ease PK/PD target attain-
ment in most cases, 4-h extended infusion may be more
effective for MIC values >4 mg/L combined with ARC
[144]. Higher-dose regimen appear also needed in this
situation (Fig. 1) [149, 151, 157]. Of note, cefiderocol is
the only new B-lactam for which high-dose schemes were
used in patients with ARC in pivotal randomized stud-
ies—further data are needed for new BL/BLI combina-
tions in this population.

Next, while renal dysfunction exposes to [B-lactam
over-dosing, therapeutic failures have also been reported
in this context, raising the question of inadequate PK/
PD target attainment [158]. For novel agents as for
older p-lactams, recommendations for dose adjustment
in case of renal dysfunction are mostly based on data
from patients with chronic kidney disease. Because of
increased volume of distribution in critically ill patients,
possible resolution of acute renal dysfunction within the
first following days [155, 159], high therapeutic index and
a limited risk of neurotoxicity with short exposure to high
doses, a loading dose is recommended regardless of CICr
and dose adjustment should be applied only after the first
24 to 48 h of therapy [150, 154, 160, 161]. Evidence for
dosing adjustment of cefiderocol and new BI/BLI combi-
nation in critically ill patients receiving RRT is currently
scarce; however, data related to older -lactams suggest
that dosing scheme should be adapted to the overall
effluent flow rate during continuous RRT while system-
atic reinjection at the end of the session may ensure the
achievement of PK/PD objectives during intermittent
hemodialysis [162—165].

Of note, hepatic dysfunction does not induce any clini-
cally relevant variation in -lactam PK; therefore, no dos-
ing adjustment is required in patients with liver failure.
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Data are also lacking to appraise the pharmacokinetic
impact of obesity for the new drugs addressed here. Gen-
erally, the hydrophilic feature of B-lactams explains the
weak variation of their volume of distribution in case
of overweight [166, 167]. Whether using adjusted body
weight may be beneficial in obese patients remains to
be confirmed [166]. Higher dosing could be discussed in
cases of morbid obesity and high MIC values [168].

Case-reports and small case-series suggest that extra-
corporeal membrane oxygenation (ECMO) exerts no
major effect on the pharmacokinetics of ceftolozane—
tazobactam and cefiderocol, with standard dosing ena-
bling the attainment of usual targets [169-172]. No
clinical information is available for other new f-lactams
in patients under ECMO.

Through this approach does not appear justified in all
critically ill patients [173, 174], therapeutic drug moni-
toring combined with MIC measurement (to avoid undue
dose escalation) could be proposed in those at marked
risk for PK/PD impairments (e.g., causative pathogen
with high MIC value, ARC, RRT, or low tissue penetra-
tion rate). Close collaboration between microbiologist,
pharmacist, infectious disease specialist and intensivist is
warranted in these situations.

Safety issues

Non-ecological adverse events

No apparent over-risk of drug-related adverse events was
noticed with cefiderocol or new BL/BLI combinations in
RCTs comparing these agents with meropenem, imipe-
nem plus colistin, or BAT [81, 83, 86—89]. Importantly,
the hazard of acute kidney injury was higher with BAT
in nearly all studies using this regimen as comparator, a
finding mostly attributable to colistin-induced nephro-
toxicity [87-89, 124]. Encephalopathy may conceivably
occur with these drugs as with older B-lactams though
it remains to be explored [175, 176]. A recent large-scale
pharmacovigilance analysis suggested an over-reporting
of agranulocytosis/pancytopenia and acute pancreatitis
with ceftolozane—tazobactam and ceftazidime—avibac-
tam, respectively—these observations require confirma-
tion in clinical cohorts [175].

Impact on the intestinal microbiota

Evidence related to the impact of ceftazidime—avibactam
on the gut microbiota is limited to a single study includ-
ing 12 healthy volunteers receiving standard dosing (2
gr/0.5 gr q8h) for 7 days [177]. This work, based on con-
ventional cultures and not on modern metagenomics
approaches, showed a transient decrease in Enterobacte-
rales counts, an increase in the count of Enterococcus spp
(without return to baseline 14 days after treatment com-
pletion in most of volunteers), a sustained drop in the
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counts of cultivable resident anaerobes and, strikingly,
the acquisition of a toxinogenic strain of Clostridioides
difficile in 5 subjects [177]. This apparent link between
ceftazidime—avibactam exposure and C. difficile acquisi-
tion was not confirmed in clinical studies—indeed, in a
multicentre cohort including 203 patients receiving cef-
tazidime—avibactam, only 3 cases (1.5%) of C. difficile
infection were documented [123]. To date, no data exist
regarding the impact of ceftolozane—tazobactam, imipe-
nem-relebactam, meropenem—vaborbactam or cefidero-
col on the gut microbiota. Clinical studies addressing this
issue appear extremely complex to set up since almost all
patients requiring these drugs present with multiple risk
factors for intestinal dysbiosis, including critical illness
and prior exposure to other broad-spectrum antimicro-
bials [178].

Emergence of resistance under therapy
Treatment-emergent resistance to ceftazidime—avibac-
tam in KPC-producing Enterobacterales mostly results
from mutations of the blaypc-, or blaypcs; genes and
may be involved in up to 30% of clinical failure or relapse
following exposure to this drug [179-184]. Acquired
resistance to meropenem—vaborbactam and imipenem—
relebactam in CPE appears mostly driven by imperme-
ability ensuing from mutation-induced porin loss—this
phenomenon appears rare in patients treated with mero-
penem—vaborbactam (<5%) while its incidence has not
been precisely described in those receiving imipenem—
relebactam [105, 112, 179]. In P aeruginosa, the emer-
gence of resistance to ceftolozane—tazobactam rests on
mutation-induced over-expression of the chromosomal
blayy,,c gene: this mechanism might be involved in up
to 50% of patients with microbiological failure at end of
therapy, especially in case of intermittent infusion (when
compared to extended infusion) and defective source
control [185]. However, in a post hoc analysis of the
ASPECT-NP RCT including 59 patients receiving cef-
tolozane—tazobactam for nosocomial pneumonia due to
P aeruginosa, only 3 (5%) acquired a ceftolozane—tazo-
bactam-resistant isolate under therapy, all with a new
strain (no resistant mutant selection) [186]. Treatment-
emergent resistance to imipenem-relebactam in patients
infected with CR P. aeruginosa has been recently linked
with mutations in the MexAB-OprM and/or MexEF-
OprN efflux operons [187]—the clinical frequency of this
phenomenon is unknown. Lastly, in the CREDIBLE-CR
trial, a fourfold or higher increase in baseline cefidero-
col MIC values of causative pathogens was observed in
15% of microbiologically evaluable patients receiving this
agent—this increase led to values exceeding the EUCAST
susceptibility threshold in one third of cases [89].
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Empirical use of cefiderocol and new BL/BLI
combinations in critically ill patients

Pending dedicated studies on this issue, several key
aspects of antimicrobial stewardship should be taken
in account when considering the potential utilization of
cefiderocol and new BL/BLI combinations for empirical
therapy in patients with suspected DTR-GNB infection.
First, the choice of empirical antimicrobials must be a
“winning bet” in case of severe infection. Indeed, while
delayed appropriate therapy is strongly associated with
impaired outcomes in patients with septic shock [188,
189], unnecessary exposure to broad-spectrum antimi-
crobials may lead to deleterious ecological side-effects
(namely, alteration of the host microbiota, acquisition
of multidrug-resistant bacteria, and Clostridioides dif-
ficile infection) and toxic adverse events [190, 191].
Conversely, evidence exists that a restrictive strategy
for empirical initiation of broad-spectrum antimicrobi-
als in hemodynamically stable patients with suspected
ICU-acquired infection has no negative impact on hos-
pital mortality [192]. Second, the emergence of bacterial
resistance under therapy has been described for virtually
all antimicrobial agents, including cefiderocol and novel
BL/BLI combinations [89, 112, 179, 193, 194]. Hence, a
liberal utilization of these new drugs might compromise
their activity on CR-GNB. Third, not all ICU patients
are at-risk for infection due to DTR-GNB. Identify-
ing such patients is a challenge that can be approached
using known risk factors such as recent exposure to car-
bapenems and other broad-spectrum agents, invasive
healthcare procedures, and, most of all, local epidemi-
ology—that is, endemicity or on-going outbreaks, espe-
cially in case of defective infection prevention measures.
The colonization status is also pivotal since carriage is a
prerequisite for subsequent infection; however, through
negative sequential surveillance cultures have a high
negative predictive value, less than 50% of critically ill
individuals colonized with carbapenem-resistant GNB
will experience a healthcare-associated infection due
to these pathogens during their ICU stay [195-197]. In
addition, full antimicrobial susceptibility test results—or,
at least, information on the determinants of carbapenem
resistance—should be available for clinicians to assist the
choice of the most appropriate drug since these agents
are not identical with respect to their spectrum of activ-
ity and mechanisms of action (Table 1). Multiplex PCR
assays enabling species and carbapenemase identification
directly from clinical samples in short turn-around time
could be useful, but their input warrants further investi-
gation [198]. Of note, these tools are ineffective to detect
carbapenem resistance resulting from chromosomal
mutations—e.g., in P. aeruginosa [199].
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Published evidence on the empirical use of new
B-lactams in critically ill patients is currently lack-
ing. These agents might be administered empirically in
patients at high-risk for DTR-GNB (that is, known car-
riage or local endemicity with high colonization pressure)
and presenting with life-threatening healthcare-asso-
ciated infection (e.g., septic shock). Every probabilistic
prescription should be reevaluated early to avoid unnec-
essary exposure to these drugs, with prompt de-escala-
tion to a narrower-spectrum regimen whenever possible.

Should ceftolozane-tazobactam and ceftazidime-
avibactam be prescribed as carbapenem-sparing
agents in patients infected with ESBL-

or AmpC-produding Enterobacterales?

Published RCT have demonstrated the non-inferiority of
ceftolozane—tazobactam versus meropenem in terms of
clinical cure in patients with complicated intra-abdom-
inal infections (in combination with metronidazole) or
nosocomial pneumonia [82, 83]. In this latest trial, cef-
tolozane—tazobactam was non-inferior to meropenem in
patients with pneumonia due to ESBLE or ceftazidime-
resistant P aeruginosa, for clinical cure as for Day-28
all-cause mortality [83]. Moreover, a multi-center study
including 153 patients with severe ESBLE infections
reported an 84%-overall success rate with ceftolozane—
tazobactam [200]. Yet, important considerations argue
against the use of ceftolozane—tazobactam as a carbap-
enem-sparing option in patients with ESBLE infections,
including the willingness to preserve its efficacy on DTR
P aeruginosa [193], the hazard of co-selection of cef-
tazidime—avibactam resistance in P aeruginosa isolates
with treatment-emergent resistance to ceftolozane—tazo-
bactam [201], and the lack of data regarding a potential
benefit of ceftolozane—tazobactam versus carbapenems
regarding antimicrobial-induced intestinal dysbiosis.
Likewise, the results of several RCT [81, 202-207] and
a meta-analysis [208] support the non-inferiority of cef-
tazidime—avibactam versus carbapenems on mortality
and/or clinical cure endpoints in complicated urinary
tract infections, complicated intra-abdominal infections
(in combination with metronidazole) and nosocomial
pneumonia, even when focusing on ESBL- or AmpC-
producing Enterobacterales [209]. Nevertheless, simi-
lar arguments than for ceftolozane—tazobactam argue
against the liberal use of ceftazidime—avibactam in these
common indications, notably the risk of reduced activ-
ity on KPC-producing Enterobacterales resulting from
mutant selection [182, 210] or the lack of real-world data
demonstrating a more limited impact on commensal
microbiotas when compared to carbapenems. As oth-
ers [1], we believe that the use of these BL/BLI combina-
tions should be restricted to clinical situations in whom
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no first-line safe options are available—that is, infections
due to DTR P, aeruginosa plus, for ceftazidime—avibac-
tam only, those due to KPC- or OXA-48-producing
Enterobacterales.

Summary of evidence and research agenda

New BL/BLI combinations and cefiderocol repre-
sent long-awaited options for improving the man-
agement of DTR-GNB infections. These drugs have
demonstrated relevant clinical success rates and a
reduced renal risk in most of situations for whom poly-
myxin- and/or aminoglycoside-based regimen were
historically used as last-resort strategies—that is, cef-
tazidime—avibactam for infections due to KPC- or
OXA-48-like-producing  Enterobacterales, merope-
nem-vaborbactam for KPC-producing Enterobacte-
rales, ceftazidime—avibactam/aztreonam combination
or cefiderocol for MBL-producing Enterobacterales, and
ceftolozane—tazobactam, ceftazidime—avibactam and
imipenem-relebactam for non-MBL-producing DTR P
aeruginosa. To preserve their efficacy, these drugs should
not be used to treat infections due to multidrug-resistant
but carbapenem-susceptible GNB (e.g., ESBL-producing
Enterobacterales).

Notwithstanding these promising results, limited evi-
dence exists on the use of new B-lactams in critically ill
patients with DTR-GNB infection. Several important
knowledge gaps warrant urgent investigation in this pop-
ulation, including PK/PD information in particular situ-
ations (e.g., pneumonia or other deep-seated infections,
RRT and ARC), the benefit of combination therapy for
the most severe presentations or DTR-GNB with high
MIC values for these new agents, the input of TDM, a
precise appraisal of the hazard of treatment-emergent
resistance and possible preventive measures, safety anal-
yses (especially for high-dose regimen), the potential use-
fulness of multiplex PCR assay and other rapid diagnostic
tools to rationalize their empirical utilization in ICUs
facing endemicity or on-going outbreaks, and optimal
treatment durations. Comparative clinical, ecological and
medico-economic data are equally needed for situations
in whom two or more of these agents exhibit in vitro
activity against the causative pathogen. Further studies
addressing the aforementioned issues will help better
defining the positioning and appropriate administration
scheme of these new B-lactams in critically ill patients.

Abbreviations

ARC Augmented renal clearance

BAT Best available therapy
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