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Introduction
Acute myocardial infarction (AMI) is associated with 
nursing acute syndrome caused by a sharp blockage of 
the coronary arteries. AMI causes massive necrosis of 
cardiomyocytes, which are non-renewable cells, and 
the more cardiomyocytes that die, the more severe the 
damage to the heart. Destruction of myocardial cells 
and scar proliferation activate the neurohumoral system 
and cause ventricular remodeling [1]. Cardiac remodel-
ing will lead to enlargement of the heart and a significant 
decrease in contractility. When the heart contracts, the 
amount of blood expelled will be significantly reduced 
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Abstract
Aims  Heart failure (HF) is one of the common adverse cardiovascular events after acute myocardial infarction (AMI), 
but the predictive efficacy of numerous machine learning (ML) built models is unclear. This study aimed to build an 
optimal model to predict the occurrence of HF in AMI patients by comparing seven ML algorithms.

Methods  Cohort 1 included AMI patients from 2018 to 2019 divided into HF and control groups. All first routine test 
data of the study subjects were collected as the features to be selected for the model, and seven ML algorithms with 
screenable features were evaluated. Cohort 2 contains AMI patients from 2020 to 2021 to establish an early warning 
model with external validation. ROC curve and DCA curve to analyze the diagnostic efficacy and clinical benefit of the 
model respectively.

Results  The best performer among the seven ML algorithms was XgBoost, and the features of XgBoost algorithm 
for troponin I, triglycerides, urine red blood cell count, γ-glutamyl transpeptidase, glucose, urine specific gravity, 
prothrombin time, prealbumin, and urea were ranked high in importance. The AUC of the HF-Lab9 prediction model 
built by the XgBoost algorithm was 0.966 and had good clinical benefits.

Conclusions  This study screened the optimal ML algorithm as XgBoost and developed the model HF-Lab9 will 
improve the accuracy of clinicians in assessing the occurrence of HF after AMI and provide a reference for the 
selection of subsequent model-building algorithms.
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and a large amount of blood will accumulate in the heart. 
When the heart cannot bear it, the blood flows upward 
back to the lungs, causing the patient to suffer from 
chest tightness and difficulty breathing, which is a seri-
ous threat to life. Approximately 13% of AMI patients are 
diagnosed with HF 30 days after discharge, and 20–30% 
of AMI patients are diagnosed with heart failure (HF) 1 
year after discharge [2, 3]. HF occurs in about a quarter 
of AMI patients and is a major cause of increased mortal-
ity [4]. The European Society of Cardiology [5] and the 
American Heart Association [6] indicate that the preven-
tion of HF is an urgent public health need. The post-AMI 
patient population is at high risk for the development of 
HF, of which HF screening and prevention are particu-
larly important. Missed or delayed diagnosis of HF can 
jeopardize a patient prognosis and increase the cost of 
treatment. Therefore, it is essential to explore effective 
methods and markers for the development of HF after 
AMI, and early identification of patients with a high risk 
of poor prognosis can save lives and improve the quality 
of patient survival through personalized treatment [7].

Traditional ML algorithms such as Logistic Regression 
(LR), Decision Tree (DT), and Random Forest (RF) have 
been used with good success in various fields of medi-
cine. For example, the use of LR to identify heart failure 
in patients with coronary heart disease [8]; DT analysis 
to identify patients at risk of death or hospitalization due 
to worsening heart failure [9]; RF classifier to detect con-
gestive heart failure [10]. In recent years, ML algorithms 
other than traditional ML algorithms have increasingly 
penetrated into various medical fields, such as extreme 
gradient boosting (Xgboost) methods have shown supe-
rior diagnostic capabilities among many ML algorithms 
[11]. Then the advantages of various ML algorithms may 
differ in different diseases and different statistical con-
texts. Before building a model, the best and most appro-
priate algorithms should be evaluated and compared so 
that clinicians can provide better healthcare to patients. 
A large amount of patient test information resides in 
the healthcare system, and the value of this test infor-
mation should not stop at surface abnormal values. ML 
can explore the potential connections in a large amount 
of test information and uncover the “deep language” to 
provide higher value for disease prediction and diagno-
sis. In this study, we propose to use seven ML algorithms 
to develop an early warning model that can accurately 
predict the risk of HF after AMI from a large amount 
of test information, and compare the prediction perfor-
mance of the seven algorithms in order to provide a reli-
able method and biomarker for predicting HF after AMI, 
which can help improve the prognosis and survival qual-
ity of patients.

Materials and methods
Study design and subject statistics
Study participants were recruited from the First Hospital 
of Jilin University and divided into 2 cohorts: (1) Algo-
rithm and feature selection of HF early warning model 
(cohort 1): patients with confirmed AMI from January 
2018 to December 2019, divided into HF group and non-
HF group (control group); (2) HF early warning model 
development and comparison (cohort 2): patients with 
confirmed AMI from January 2020 to December 2021, 
were also divided into HF and control groups. Inclu-
sion criteria for patients with AMI: (a) age > 18 years; 
(b) first diagnosis of AMI at admission, including clini-
cal symptoms, typical changes in the electrocardiogram, 
are elevated cardiac biomarkers, in accordance with 
the current guidelines for the diagnosis of AMI [12]; (c) 
No HF on admission. Exclusion criteria: (a) pulmonary 
fibrosis or other serious diseases that prevented image 
acquisition (massive pleural effusion, severe emphysema, 
lung cancer, etc.); (b) non-obstructive myocardial infarc-
tion; (c) serious immune system diseases; (d) malignant 
tumors with malignant hematological diseases; (e) seri-
ous infections; (f ) death during hospitalization. The HF 
group included patients with AMI who developed HF 
during hospitalization and patients with AMI who were 
readmitted for HF after discharge from the hospital. This 
study was approved by the institution’s ethics committee 
of the First Hospital of Jilin University (2016–306).

Data cleansing and normalization
Demographic and case information (age, gender, medical 
history) for all participants were obtained from the medi-
cal record system. Extracting the first test data (routine 
blood test, routine urine test, coagulation function, liver 
function, kidney function, lipids, blood glucose, cardiac 
protein, BNP, and other tests) from the laboratory infor-
mation system after the study subjects were admitted 
to the hospital, and each study subject corresponds to 
a unique ID number. (a) data cleaning: exclude patients 
with missing test data or outliers. A normality test is 
performed on continuous variables, a padding method 
(median, mean, or plurality) that reflects the central char-
acteristics of the variable is chosen for missing value pad-
ding, and the differential analysis of the performance of 
models built before and after data interpolation to assess 
the robustness of the interpolation method; (b) data nor-
malization: data are normalized according to four param-
eters: the origin of the specimen, name of the test item, 
the unit of the test item, and reference interval.

ML algorithms and model building
The cohort 1 data set is divided into 5 folds by 5-fold 
cross-validation, and 4 of the folds are used as the train-
ing set to train the model, and the remaining 1 fold is 
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used as the validation model, which is repeated 5 times to 
take the average value. The algorithms used are Xgboost, 
random gradient descent (RGD), linear support vec-
tor classification (linear SVC), Adaptive Boosting (Ada-
Boost), LR, RF, and DT, which are seven common and 
filterable features. ML algorithms to build early warning 
models of HF and compare the results of internal 5-fold 
cross-validation of the 7 classifiers. Based on the compar-
ison results, the optimal ML algorithm is selected as the 
subsequent algorithm for model building and validation, 
and the selected features of the model are screened.

The cohort 2 dataset is divided into training and valida-
tion sets in the ratio of 7:3, and the post-AMI HF pre-
diction model is built based on the optimal algorithm 
and model features screened in Cohort 1 and externally 
validated.

Statistical analysis
Excel 2016, SPSS 22.0, and GraphPad 8.0.2 were utilized 
for data management and statistical analysis. Feature 
selection and model development were performed using 
the Deepwise & Beckman Coulter DxAI platform (http://
dxonline.deepwisecom). Receiver operating characteris-
tic (ROC) curves assessed the predictive capability of the 
HF model, while decision curve analysis (DCA) evaluated 
its clinical benefits. Continuous variables were subjected 
to normality tests; normally distributed variables were 
presented as mean ± standard deviation, and non-nor-
mally distributed variables as median (Q25, Q75). Com-
parisons of variable distributions between groups were 
conducted using Student’s t-test, Mann-Whitney U test, 
ANOVA, or Kruskal-Wallis H test. Categorical variables 

were expressed as composition ratios, with Pearson’s χ² 
test or Fisher’s exact test employed for comparing distri-
butions between groups. A two-sided P-value of < 0.05 
was considered to indicate a statistically significant 
difference.

Results
Enrolled population and demographic characteristics
A total of 3312 patients with AMI were included in this 
study, cohort 1 contained 1625 cases, 801 (49.3%) in the 
HF group and 824 (50.7%) in the control group; cohort 
2 contained 1687 cases, 820 (48.6%) in the HF group and 
867 (51.4%) in the control group. There was no statisti-
cally significant difference in the distribution of study 
subjects between cohort 1 and cohort 2 (P = 0.780). Both 
cohort 1 and cohort 2 exhibited significant differences 
in age (P < 0.001) and gender (P < 0.001) between the HF 
and control groups. Consequently, age and gender were 
included as characteristics for selection in the HF early 
warning model. The hypertensive population percentage 
in the HF group was 52.3% and 52.8% in cohorts 1 and 
2, respectively, with no statistically significant difference 
compared to the control group (Table  1). The diabetic 
population percentage was 17.6% and 19.1%, respectively, 
and the difference compared to the diabetic population 
percentage in the control group was not statistically sig-
nificant (Table 1).

ML algorithm and model feature selection
Cohort 1 was chosen based on specific criteria: the ini-
tial test data from AMI patients after admission and 
test items with a missing rate of less than 30%. Out of 
664 routine laboratory tests, 70 items were extracted as 
potential features for model selection. Median replace-
ment interpolation, representing the central tendency of 
variables, was selected as the method for filling in miss-
ing values in quantitative data. Age and gender were also 
included as potential features due to significant differ-
ences between the HF and control groups, resulting in a 
total of 72 possible features for the ML model.

The internal 5-fold cross-validation results of seven 
algorithms revealed that XgBoost had the highest AUC 
(0.973), sensitivity (0.896), and specificity (0.955) in pre-
dicting HF after AMI (Table  2). Consequently, XgBoost 
was chosen as the algorithm for further modeling, and 
the top nine features with the highest feature importance 
in the XgBoost algorithm were utilized (For a decision 
tree, the feature importance is measured by the amount 
by which each attribute partition point improves the 
performance metric, weighted by the number of obser-
vations for which that node is responsible. The feature 
importance is averaged over all decision trees within 
the model.). These features included Troponin I (cTnI), 
Triglycerides (TG), Urine red blood cell count (URBC), 

Table 1  Demographic characteristics of the subjects
Items All 

enrollees 
(n = 3312)

Cohort 1 
(n = 1625)

P 
values

Cohort 2 
(n = 1687)

P 
values

All patients 
(%)

  HF 1621(48.9) 801 (49.3) 820(48.6)

  Control 1691(51.1) 824(50.7) 867(51.4) 0.780

Age ± SD

  HF 63.0 ± 12.0 64.0 ± 12.0 63.0 ± 12.0

  Control 61.0 ± 12.0 60.0 ± 12.0 < 0.001 61.0 ± 11.0 < 0.001

Gender ( 
male %)

  HF 963(59.4) 469 (58.6) 494 (60.2)

  Control 1220(72.1) 601 (72.9) < 0.001 619 (71.4) < 0.001

High blood 
pressure (%)

  HF 852(52.6) 419(52.3) 433(52.8)

  Control 849(50.2) 420(51.0) 0.620 429(49.5) 0.173

Diabetes (%)

  HF 298(18.4) 141(17.6) 157(19.1)

  Control 269(15.9) 129(15.6) 0.317 140(16.1) 0.110

http://dxonline.deepwisecom
http://dxonline.deepwisecom
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Glucose (GLU), Urine specific gravity (SG), Thrombin 
time (TT), γ-Glutamyl transferase (γ-GT), Prealbumin 
(PAB), and Urea. Table  3 displays the distribution of 
these nine characteristics between the groups in cohort 
1. The HF group exhibited significantly higher levels of 
cTnI, TG, GLU, γ-GT, and Urea compared to the control 
group (P < 0.001), while SG, TT, and PAB were signifi-
cantly lower (P < 0.001).

HF early warning model development and external 
validation
In cohort 2 First Hospital of Jilin University all enrolled 
study subjects from January 1, 2020, to December 31, 
2021, the XgBoost algorithm was used to construct an 
HF warning model based on the above 9 model features, 
named HF-Lab9. The most important feature in the HF-
Lab9 model was cTnI (Feature importance: 0.265), fol-
lowed by TG, URBC, Urea, PAB, TT, γ-GT, GLU, and 
SG and in that order (Fig.  1). The distribution of the 9 
model features among groups in cohort 2 is shown in 
Table  3. The ROC curve results showed that HF-Lab9 
AUC = 0.966 in the validation set, and the decision curve 

analysis showed that both the training and validation sets 
HF-Lab9 showed high clinical benefits (Fig. 2).

External validation of the HF-Lab9 model was per-
formed using 819 AMI patients from January to Decem-
ber 2022, including 398 patients who had a heart 
failure event.ROC curve results showed AUC = 0.94 
[95%CI = 0.9237–0.9577], sensitivity = 0.849, and 
specificity = 0.914.

Discussion
With the continuous development of society, people’s 
dietary habits have changed significantly and the stress 
of life has increased significantly, resulting in a gradual 
increase in the incidence of AMI. HF is one of the major 
adverse cardiovascular events after the onset of AMI. In 
recent years, most countries have experienced an aging 
population [13], HF is considered a major aging-related 
disease [14, 15], and the mean age of the study subjects in 
this study was greater than 60 years. However, except for 
heart transplantation for end-stage HF, there is no cura-
tive treatment available [16]. Accurately predicting the 
occurrence of HF after AMI remains a daunting task for 

Table 2  Diagnostic efficacy of Seven classifiers
Classifier AUC [95%CI] Sensitivity Specifity Accuracy Precision Recall F1 

score
Positive 
predic-
tive 
value

Nega-
tive pre-
dictive 
value

Decision Tree 0.939 [0.9274–0.9505] 0.875 0.881 0.878 0.877 0.875 0.876 0.877 0.879

AdaBoost 0.940 [0.9289–0.9503] 0.829 0.885 0.857 0.875 0.829 0.851 0.875 0.842

Linear SVC 0.915 [0.9382–0.9584] 0.814 0.869 0.842 0.858 0.814 0.835 0.858 0.828

XgBoost 0.973 [0.9658–0.9797] 0.896 0.955 0.926 0.951 0.896 0.923 0.951 0.905

Random Forest 0.955 [0.9456–0.9646] 0.820 0.952 0.887 0.943 0.820 0.877 0.943 0.845

Random gradient descent 0.906 [0.8916–0.9204] 0.812 0.850 0.831 0.840 0.812 0.825 0.840 0.823

Logistic Regression 0.914 [0.9007–0.9281] 0.810 0.865 0.838 0.854 0.810 0.832 0.854 0.824
*Sensitiity = True Positive /( True Positive + False Negative); Specificity = True Negative/( True Negative + False Positive); Accuracy = (True Positive + True Negative)/( 
Positive + Negative); Precision = True Positive/( True Positive + False Positive); Recall = True Positive /( True Positive + False Negative); F1 score = = 2*Precision*Recal /
(Precision + Recal); Positive predictive value = True Positive/( True Positive + False Positive); Negative predictive value = True Negative/( True Negative + False Negative)

Table 3  Distribution of the 9 features between groups in cohort 1 and cohort 2
Indicators Queue 1 (n = 1625) Queue 2 (n = 1687)

HF (n = 801) Control (n = 824) P values HF (n = 820) Control (n = 867) P values
Troponin I
ng/mL

20.000(11.200–29.300) 13.600(4.250-35.000) < 0.001 20.000(11.832–29.225) 16.100(4.780-38.175) < 0.001

Triglycerides
(mmol/L)

1.800(1.520–2.190) 1.570(1.110–2.060) < 0.001 1.825(1.540–2.272) 1.600(1.150–2.090) < 0.001

Urine red blood cell count (106/L) 6.100(2.700–6.600) 5.600(3.000-8.100) 0.866 6.200(3.200–6.900) 5.600(3.100–8.100) 0.287

Glucose (mmol/L) 7.770(7.250–8.725) 7.250(6.060–8.500) < 0.001 8.512 ± 2.578 7.621 ± 2.123 < 0.001

Urine specific gravity 1.015(1.011–1.020) 1.027(1.017–1.046) < 0.001 1.016(1.013–1.022) 1.028(1.018–1.045) < 0.001

Thrombin time (s) 16.600(14.700–17.400) 17.400(16.700–18.000) < 0.001 16.600(14.900–17.400) 17.400(16.700–18.100) < 0.001

γ- Glutamyl
transferase (U/L)

35.000(23.900–47.800) 27.150(18.875-39.000) < 0.001 35.250(24.475–47.175) 28.100(18.850–38.950) < 0.001

Prealbumin (g/L) 0.200(0.160–0.240) 0.240(0.210–0.270) < 0.001 0.210(0.170–0.250) 0.240(0.210–0.270) < 0.001

Urea (mmol/L) 6.210(5.840–8.338) 5.580(4.570–6.725) < 0.001 6.210(6.128–8.338) 5.593(4.550–6.680) < 0.001
*Normally distributed variables are expressed as mean ± standard deviation, and non-normally distributed variables are expressed as median (Q25, Q75)
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clinicians because of the complex individualized varia-
tion exhibited among patients.

As electronic health records become more common, a 
large amount of information on patient visits is retained 
in hospital information systems around the world, pro-
viding suitable conditions for the application of ML. Tra-
ditional regression methods have difficulty in effectively 
handling high-dimensional interaction information in 
large datasets, which mechanistically limits the ability 
of models to predict complex relationships, and ML can 
overcome these difficulties. When dealing with complex 
data relationships, ML does not require assumptions 
about the type of data distribution and linear or non-lin-
ear relationships between features. ML can help identify 
potential predictor variables and improve the predictive 
accuracy of the model by modeling with computation-
ally intensive iterative algorithms rather than manually 
selecting features [17]. In recent years, ML has been 
increasingly used in cardiovascular medicine, especially 
for patients with HF. For example, ML has been applied 
to the diagnosis of HF, mortality prediction, and read-
mission rates, with good performance [18, 19]. Previous 
studies have confirmed the excellent ability of random 
forest models in identifying risk factors in patients with 
HF and have successfully identified left ventricular ejec-
tion fraction as the most relevant feature in predicting 
the risk of death in patients [20]. Random Forest algo-
rithm is a reliable method to improve the prediction 
accuracy of HF using a combined model containing 4 fea-
tures [21]. In addition, the logistic regression model has 
been widely used in the prediction of HF in recent years 

and has performed well [22, 23]. XgBoost outperformed 
LR, RF, and support vector machines in predicting the 
incidence of heart failure and non-metastatic cervical 
cancer with AUCs of 0.8409 and 0.8365, respectively [24, 
25]. In addition, XgBoost stood out among six ML algo-
rithms in predicting lymph node metastasis in laryngeal 
cancer patients [26]. In this study, seven ML algorithms 
were evaluated, and the XgBoost algorithm stood out 
among the seven algorithms, demonstrating that it has 
the best predictive power for specific populations. The 
XgBoost algorithm has performed best in many studies 
probably because of its advantages as an integrated ML 
algorithm based on decision trees with fast computation, 
maximized prediction performance, minimized model 
complexity, and low overfitting [27].

Current HF diagnosis and management rely on physi-
cal examination, including laboratory and imaging data 
of patients [28]. In this study, we developed a model 
based on laboratory data for a new composite index, HF-
Lab9, for predicting the risk of developing HF after AMI. 
cTnI was the first-ranked feature in HF-Lab9 in terms of 
importance, and cTnI levels were significantly higher in 
the HF group than in the control group. High-sensitivity 
cTnI is a predictor of mortality and vascular events in 
patients after ischemic stroke, and elevated high-sensi-
tivity cTnI increases the risk of adverse cardiovascular 
and cerebrovascular events [29]. In addition, high-sen-
sitivity cTnI has significant prognostic value in patients 
with non-ischemic HF, which can further significantly 
improve risk stratification and prediction in patients with 
non-ischemic HF [30]. In the model of this study, TG and 

Fig. 1  Feature importance ranking of the 9 features in the HF-Lab9 model
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Fig. 2  (A) The ROC curves of HF-Lab9 model constructed by machine learning XgBoost algorithm, (B) The DCA of HF-Lab9 model constructed by ma-
chine learning XgBoost algorithm
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GLU were also predictors of the development of HF after 
AMI. Studies show that high levels of triglycerides and 
cholesterol levels are risk markers for the late develop-
ment of HF [31]. After myocardial infarction in non-dia-
betic patients, elevated blood glucose levels on admission 
are associated with the risk of developing HF [32]. Urea 
might be a possible biomarker of hormonal activation in 
the neurohumoral system of patients with HF [33]. Urea 
has been shown to be an important correlate of death 
after heart failure [34]. There is substantial evidence that 
elevated γ-GT activity is associated with an increased 
risk of cardiovascular diseases, such as HF and arrhyth-
mias, but the evidence for an association with myocardial 
infarction is weaker. Therefore, γ-GT can be a valid pre-
dictive marker after the development of HF in patients 
with AMI [35]. Compared with past studies [36, 37], this 
study demonstrates that this novel composite index has 
a unique and high predictive ability for mortality risk in 
this specific population, providing a reliable assessment 
of the risk of developing HF after AMI.

Several advantages exist in this research study. First, 
the model included in this study has a wide range of 
features to be selected, with more than 70 routine tests, 
and effective references are provided in the modeling of 
screening and selection variables, such as modeling in 
pharmacology [38, 39] and genomics. In addition, the 
model is simple and easy to use, making secondary use of 
the huge amount of test data deposited by hospitals with-
out adding additional economic burden. Second, the test 
data used in the model are all test results from the first 
admission of AMI patients, and the model has excellent 
advanced prediction capability, which provides sufficient 
lead time for preventing the occurrence of HF after AMI. 
In addition, the model was repeatedly validated with two 
cohorts containing four years of data, and the results 
were highly consistent and accurate. Third, the variety of 
ML algorithms evaluated in this study for comparison is 
large, which provides a good foundation for future model 
building. At the same time, there are some limitations to 
this study. First, this is a single-center cohort study, and 
the study population represents only one region and 
needs to be validated in multiple regions and multiple 
countries. Second, because the average age of the study 
population was older than 60 years, it belonged to the 
elderly population. The elderly population usually takes 
some medications, which may affect the model. Third, 
the characteristics to be selected in this study were lim-
ited to clinical tests and did not include electrocardio-
gram, imaging, and other findings.

This study compares seven ML algorithms to mine and 
examines the test big data, and finally the HF-Lab9 model 
containing 9 features of cTnI, TG, URBC, Urea, PAB, TT, 
γ-GT, GLU, and SG were constructed using the XgBoost 
algorithm. This model has high predictive efficacy and 

clinical benefit, provides a reliable model for predicting 
the risk of HF in AMI patients in clinical settings and 
evaluates multiple model-building algorithms for clinical 
prediction models.
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