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Abstract 

Background  Our study aimed to explore the potential of radiomics features derived from CT images in predicting 
the prognosis and response to adjuvant chemotherapy (ACT) in patients with Stage II colorectal cancer (CRC).

Methods  A total of 478 patients with confirmed stage II CRC, with 313 from Shanghai (Training set) and 165 from 
Beijing (Validation set) were enrolled. Optimized features were selected using GridSearchCV and Iterative Feature 
Elimination (IFE) algorithm. Subsequently, we developed an ensemble random forest classifier to predict the probabil-
ity of disease relapse.We evaluated the performance of the model using the concordance index (C-index), precision-
recall curves, and area under the precision-recall curves (AUC​PR).

Results  A radiomic model (namely the RF5 model) consisting of four radiomics features and T stage were developed. 
The RF5 model performed better than simple radiomics features or T stage alone, with higher C-index and AUC​PR, as 
well as better sensitivity and specificity (C-indexRF5: 0.836; AUC​PR = 0.711; Sensitivity = 0.610; Specificity = 0.935). We 
identified an optimal cutoff value of 0.1215 to split patients into high- or low-score subgroups, with those in the low-
score group having better disease-free survival (DFS) (Training Set: P = 1.4e-11; Validation Set: P = 0.015). Furthermore, 
patients in the high-score group who received ACT had better DFS compared to those who did not receive ACT 
(P = 0.04). However, no statistical difference was found in low-score patients (P = 0.17).
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Conclusion  The radiomic model can serve as a reliable tool for assessing prognosis and identifying the optimal can-
didates for ACT in Stage II CRC patients.

Trial registration  Retrospectively registered.

Keywords  Radiomics, Computed tomography, Prognosis, Stage II colorectal cancer, Adjuvant chemotherapy

Introduction
Radiomics is a mathematical technique used to analyze 
medical images in a quantitative manner, with the goal of 
providing clinicians with additional data to aid in diag-
nosis and treatment [1]. Imaging evaluations have tradi-
tionally been employed to monitor treatment response 
in tumors. However, with the advent of radiomics, it is 
now possible to extract and analyze thousands of image 
features to predict treatment response [2, 3]. The radi-
omics process involves acquiring and preprocessing vast 
volumes of medical image data, segmenting tumors to 
analyze specific regions, and mining the data for feature 
extraction and modeling [4]. Radiomics has enormous 
research potential in the age of personalized medicine, as 
it can improve survival prediction and help discover new 
molecular pathways in tumor development, rather than 
serving solely as a tool for clinical decision-making [5].

Colorectal cancer (CRC) is the third most common 
cause of cancer death in both men and women in the 
United States and ranks the second considering both 
genders together [6]. Among early stages of the disease, 
Stage II CRC (T3 N0M0 and T4N0M0) is defined in the 
8th edition of the American Joint Committee on Can-
cer (AJCC) staging manual, indicating no lymph node 
or distant organ metastasis. It accounts for about one-
third of patients who have undergone curative resection 
for CRC [6, 7].

Patients with Stage II CRC usually demonstrate widely 
heterogeneous prognosis with the 5-year overall sur-
vival (OS) varying from 50 to 80% [8]. A higher T stage 
in Stage II CRC patients was associated with higher risk 
for disease recurrence. Therapeutic strategy tailored for 
Stage II CRC remains a challenge since ’one size fits all’ is 
not adequate for this setting [7, 9].

For patients with medium to high risk stage II colorec-
tal cancer, adjuvant chemotherapy (ACT) is the estab-
lished postoperative treatment [10, 11]. Regrettably, to 
date, none of the clinically validated biomarkers have 
been able to precisely determine which patients with 
Stage II CRC will derive benefits from ACT [12, 13]. 
Although CT features assessments have proven to be 
valuable in predicting the prognosis of colorectal can-
cer (CRC) patients, an effective method that integrates 
multiple imaging biomarkers into a predictive signature 
has not yet been devised [14–16]. Recent studies dem-
onstrate that radiomics model can predict complete 

response and recurrence risk in a non-invasive manner 
[17, 18]. However, it remains evidence-deficient that the 
radiomics potentially exert effects in benefit evaluation of 
ACT for stage II CRC patients.

Herein, we hypothesized that a set of CT-derived radi-
omics, could act as predictive biomarkers to evaluate 
disease-free survival (DFS) for stage II CRC patients. A 
noninvasive CT-based radiomics signature was devel-
oped and validated to identify the optimal candidates 
who benefit most from postoperative ACT, thus offering 
practical clinical value.

Material and methods
Study design and patients
Records from September 2012 to June 2019 of the colo-
rectal surgery, radiology and pathology departments of 
Fudan University Shanghai Cancer Center (Shanghai, 
China) (Training set), and Peking University People’s 
Hospital (Beijing, China) (Validation set) were reviewed 
and cross-referenced. To create a study group of suit-
able cases, we used the following inclusion criteria: (a) 
pathologically confirmed stage II CRC, (b) available clini-
cal data (including TNM, survival information, age, sex), 
(c) available contrast-enhanced CT (portal venous phase) 
images. We chose portal venous phase images consider-
ing the operability of image segmentation. Exclusion cri-
teria were as below: (a) patients received any treatments 
(radiotherapy, chemotherapy, or chemoradiotherapy) 
before CT scan, (b) clinical data was incomplete, (c) insuf-
ficient image quality. A total of 478 stage II CRC patients 
were enrolled, of which 313 patients from Shanghai was 
trained for the model building and the else from Beijing 
was considered as external validation. It was defined that 
disease-free survival (DFS) was the time from surgery 
until either disease progression or death from any cause. 
We adopted a duration of five-year DFS as the standard 
to define patients’ disease status. The disease relapse was 
classified as patients who experienced disease progres-
sion or death from any cause within 5 years; those with 
prolonged survival or disease release were considered as 
the non-relapse. Tumor staging was performed referring 
to the American Joint Committee on Cancer TNM Stag-
ing Manual, eighth Edition [6]. Patients with ACT mainly 
adopted oxaliplatin plus 5-fluorouracil, in addition to 
Fluorouracil monotherapy strategies. This retrospective 
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study was approved by our institutional review board, 
and informed consent was waived.

CT examination and image segmentation
All patients underwent enhanced CT examination before 
surgery. The details of the CT protocol were shown in 
Supplementary methods. Portal venous phase CT images 
were loaded into ITK-SNAP version 3.6.0 (an open-
source image analytics software, www.​itksn​ap.​org) for 
tumor segmentation. For each tumor, an experienced 
abdominal radiologist (reader 1) reviewed all axial slices 
and selected one single slice with the largest tumor area. 
A two-dimensional region of interest (ROI) was manually 
delineated along the outline of the tumor. The task of ver-
ifying the segmentation profiling carried out by the first 
radiologist fell under the purview of the second radiolo-
gist (reader 2). In case of any discrepancies, they collabo-
rated and settled the differences through discussion.

Development and validation of the radiomics‑based model
Radiomics features were extracted from the ROI of 
each CRC samples, including features of first order 
statistics(N = 161), features of shape(N = 14), features of 
grey-level co-occurrence matrix (GLCM) (N = 198), fea-
tures of grey-level run-length matrix (GLRLM)(N = 144), 
features of grey-level size-zone matrix (GLSZM) 
(N = 144), features of gray-level dependence matrix 
(GLDM) (N = 126) using PyRadiomics on Python (version 
3.7.10). All the features were analyzed with the PyRadi-
omics package and the procedure of feature extraction 
was performed using the default setting.The discrimina-
tive radiomic features were identified using a two-sided 
blocked Wilcoxon rank- sum test implemented in the R. 
Following the discriminative radiomic features, we built 
random forest models in the scikit-learn (V.0.19.2) pack-
age with stratified tenfold cross validation to distinguish 
the CRC with recurrence or not. The training group 
(N = 313), for which we developed the model for predic-
tion, and the test group (N = 165), on which we evaluated 
the trained classifier. The features used for model build-
ing consist of discriminative radiomics features as well 
as the patient metadata features including age, sex, and 
T stage. The RF models were built with 501 estimator 
trees and each tree had 10% of the total features. A total 
of 10,000 random forest classifier models were evalu-
ated with different combinations of hyperparameters: 
max_features = “auto”; n_estimators ranging from 100 to 
1,000 with an interval of 100; max_depth ranging from 
2 to 20 with an interval of 2; min_samples_leaf ranging 
from 2 to 20 with an interval of 2; and min_ samples_split 
ranging from 2 to 20 with an interval of 2. Then an IFE 
(Iterative Feature Elimination) step was used to opti-
mize the performance of subsequent RF models. The top 

features from the top-performing model were selected as 
“best features”. To build a random forest classifier with 
the best hyperparameters, we implemented the exhaus-
tive grid search approach using the GridSearchCV func-
tion to the training dataset with ten-fold cross-validation. 
The permutation-based importance (function Permuta-
tionImportance) from the ELI5 Python package (https://​
eli5.​readt​hedocs.​io/) was finally utilized to compute the 
feature importance for models. Using the pROC package, 
the Youden’s index method was utilized to determine the 
ideal thresholds for the radiomics-based score that would 
effectively differentiate between relapse and non-relapse 
cases in the training set. The Chi-square test was utilized 
to evaluate the discriminatory ability on the model using 
the optimal thresholds of the radiomics-based score. The 
concordance index (C-index), precision-recall curves and 
area under the precision-recall curves (AUC​PR) were cal-
culated for radiomics-based model performance evalu-
ation. Model predictive performance was measured by 
multi-metrics including sensitivity, specificity, accuracy, 
positive predictive value (PPV) and negative predictive 
value (NPV). Kaplan–Meier survival analysis was done 
and compared between high-score and low-score groups 
in the training set and validation set.

Statistical analysis
For continuous variables, we used the actual values of 
each of the variables to generate analysis; for categori-
cal variables, such as sex (male or female), T stage (T3 
or T4), ACT status (with or without ACT) and radiom-
ics-based score group (high or low), binary values were 
used. To compare the distributions of relapse probability 
generated by the radiomics-based model among different 

Table 1  Overview on baseline characteristics of the patients in 
the study

Baseline characteristics of the patients

Characteristic Training Set
(N = 313)

Validation Set
(N = 165)

Gender (%)
  Male 187(59.7) 79(47.9)

  Female 126(40.3) 86(52.1)

Age, years, mean ± SD 59.20 ± 12.14 66.54 ± 12.90

DFS,months, mean ± SD
DFS status

44.96 ± 17.12 59.4 ± 26.02

  Relapse 46(14.7) 20(12.1)

  Non-relapse 267(85.3) 145(87.9)

Adjuvant chemotherapy (%)
  Without ACT​ 97(31.0) –

  With ACT​ 216(69.0) –

Radiomics score, mean ± SD 0.1464 ± 0.0843 0.1535 ± 0.0824

http://www.itksnap.org
https://eli5.readthedocs.io/
https://eli5.readthedocs.io/
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cohorts, the two-sided Mann–Whitney U test was used. 
We calculated the C-index of our model predictions with 
the survcomp package. We visualized ROC and calcu-
lated the AUC using the pROC package. The Kaplan–
Meier plot, log-rank P values and hazard ratios (HR) were 
generated by the survminer package. Survival curves 
were generated in accordance with the Kaplan–Meier 
method and compared by the log-rank test. We used the 
t-test for continuous variables comparison and the Chi-
square test for categorical variables, as appropriate. The 
coefficients were applied to the construction of the radi-
omics-based model. All the aforementioned statistical 

analysis was implemented with R software (version 4.0.1). 
A two-sided P value < 0.05 was considered significant.

Results
Baseline characteristics of the patients
In this study, we investigated CT image data from two 
clinical centers (Shanghai and Beijing) to establish a radi-
omics-based model for prognosis evaluation. The demo-
graphic characteristics were presented in Table 1. Of the 
total 313 patients from Shanghai, serving as training set, 
were enrolled in this study, 187 (59.7%) were men, and 
the mean age was 59.20 years. The cohort of 165 qualified 

Fig. 1  The overview of CT image radiomics workflow and study flowchart. Two cohorts, including the training set (313) and the validation set (165) 
were collected and analyzed using the random forest model training and testing procedure
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patients from Beijing were included as the external vali-
dation group. Besides, patients (N = 313) from the train-
ing set provided the information on ACT, in which 
216(69.0%) patients had received ACT.

Development and validation of the machine 
learning‑based radiomic model
To calculate the probability of disease relapse, we devel-
oped an ensemble learning random forest classifier. 
The CT image radiomics workflow and study flowchart 
was shown in Fig.  1. In total, 787 radiomics features 
were extracted from each patient’s CT image. Wilcoxon 
rank-sum test revealed 51 discriminative radiomics fea-
tures with the FDR less than 0.05. Following the appli-
cation of IFE, a particular model was chosen based on 
the following hyperparameters: n_estimators = 1,000, 
max_depth = 8, min_samples_leaf = 20, and min_sam-
ples_split = 2. This model demonstrated the highest aver-
age accuracy of 0.7559.

The study identified five features, namely wavelet-HLH 
(wavelet HLH firstorder Median), GLDM-IDN(original 
GLDM InverseDifferenceNormalized (IDN)), GLDN- 
LowGrayLevelEmphasis(original gldm LowGrayLev-
elEmphasis), T stage, and wavelet-LLL-GLRLM(wavelet 
LLL GLRLM ShortRunHighGrayLevelEmphasis), that 

demonstrated the highest performance in predict-
ing relapse or non-relapse in stage II CRC patients 
(Fig.  2A). These features were used to develop a pre-
dictive model using binary classification and tenfold 
cross-validation on the training data. The model was 
able to aggregate the predictive effects of selected clini-
cal and radiomics features to derive a specific prob-
ability of tumor relapse. Based on the individual levels 
of these five predictors, a radiomics-based score was 
generated for each patient (Fig. 2B). In addition, a RF4 
model was also developed using the same method, but 
with only four of the filtered radiomics features (wave-
let-HLH (wavelet HLH firstorder Median), GLDM-
IDN(original GLDM InverseDifferenceNormalized 
(IDN)), GLDN- LowGrayLevelEmphasis(original gldm 
LowGrayLevelEmphasis).

Machine learning‑based radiomic model performance 
assessment
The study found that the radiomics-based score, which 
is a continuous probability calculated by the random 
forest model using the selected five features, was sig-
nificantly associated with relapse status in both the 
training and validation sets (Fig.  3A, B). The optimal 
cut-point on the radiomics-based score had excellent 

Fig. 2  Radiomics feature filtering and selection criterion for model construction. A The optimal feature number for model construction using 
the AUC value. B Feature contribution of the 5 model features calculated in the training set to predict DFS. The error bars denote standard deviation 
of feature contribution
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predictive value, as demonstrated by the confusion 
matrix (Fig.  3C, D). The performance of the model was 
further evaluated and compared using the C-index(C-
indextraining = 0.836; C-indexvalidation=0.682) (Fig. 4A), and 
it was found that the RF5 model had significantly higher 
predictive performance than the RF4 model and the T 
stage (C-indexRF5 = 0.836; C-indexRF4 = 0.729; C-indexT 

stage = 0.614) (Supplementary Fig. 1A, B). The RF5 model 
was found to have fairly strong and consistent perfor-
mance in predicting outcomes, as evaluated by met-
rics such as sensitivity, specificity, accuracy, PPV, and 
NPV(Training set: Sensitivity = 0.610,Specifity = 0.935, 
Accuracy = 0.655, PPV = 0.982, NPV = 0.877; Validation 
set: Sensitivity = 0.531,Specifity = 0.75, Accuracy = 0.558, 
PPV = 0.939, NPV = 0.827) (Fig. 4B). The precision-recall 
curve was used to assess the statistical modeling, and 
the RF5 model was found to have superior performance, 
as indicated by the AUC​PR in predicting relapse and 

non-relapse across different cohorts(Training set: AUC​
PR = 0.711; Validation set: AUC​PR = 0.823) (Fig. 4C, D).

Prognostic prediction performance of machine 
learning‑based radiomic model for act
To determine the optimal cut-off for the radiomics-based 
score, we utilized the ROC analysis within the R package 
"survivalROC". The optimal cutoff value was identified 
to be 0.1215 in the training set, which was subsequently 
used to divide all cohorts into score-high and score-low 
groups. We found that the score-low group was signifi-
cantly associated with longer DFS compared to patients 
classified as the score-high group in all sets(Training 
set: P = 1.4e-11, HR = 18.26, 95% confidence interval 
(CI) = 5.66–58.89; Validation set: P = 0.015,HR = 3.26, 
95% CI = 1.19–8.98) (Fig. 5A, B).

Due to the relatively complete information on ACT 
in the training set, we performed survival analysis 

Fig. 3  The performance on radiomics score derived from prediction model across different cohorts. A, B Comparison of response probability 
distributions calculated by RF5 model between non-relapse and relapse groups, in the training set and validation set, respectively. Two-sided 
P values were calculated using the wilcoxon rank-sum test. C, D Confusion matrices revealed predicted outcomes generated by RF5 model, 
as indicated, in training set and validation set, respectively. Statistical analysis was conducted based on the predictive value and actual value 
of relapse and non-relapse using the cut off value of radiomics score defined in the training cohort, Chi-square test
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to distinguish stage II CRC patients who would ben-
efit more from ACT in terms of DFS. Notably, Using 
Kaplan–Meier survival analysis, we found a signifi-
cant difference in prognosis between stage II CRC 
patients who received ACT and those who did not. Spe-
cifically, patients who received ACT had a better DFS 
rate(HR = 1.84; 95%CI = 1.02–3.31; P = 0.04) (Fig.  6A). 
Interestingly, when stratifying patients based on the pre-
viously calculated cutoff value, patients who received 
ACT in the high-score group had a longer survival 
time compared to patients who did not receive ACT 
(HR = 1.91, 95%CI = 1.02–3.55, P = 0.038) (Fig. 6B). How-
ever, there was no significant difference in DFS between 
patients who received ACT and those who did not in 

the low-score group (HR = 4.67; 95%CI = 0.42–51.61; 
P = 0.17) (Fig. 6C). These findings indicated that patients 
in the high-score group who received ACT might ben-
efit from it and should be recommended for treatment, 
whereas patients in the low-score group, who had a lower 
risk of relapse, might benefited less from ACT and should 
not be recommended for treatment.

Discussion
We utilized a machine learning approach to analyze 
clinical data and accessible radiomic features from 
multi-center data originating from both the Shanghai 
cohort (training set) and the Beijing cohort (valida-
tion set) to identify key factors for evaluating the DFS 

Fig. 4  Radiomics-based Model performance assessments. A Performance measurements of RF5 model illustrated by sensitivity, specificity, 
accuracy, positive predictive value (PPV) and negative predictive value (NPV). B Comparison of concordance index (C-index) a for predicting 
disease-free survival (DFS) in the training and validation sets. C, D Precision-recall curve (PRC) and Prevalence curve assessed for statistical modeling 
in training set and validation set, respectively
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of Stage II CRC patients. Pooling the data from dif-
ferent origins for statistical analysis might cause the 
potential heterogeneity and confounders. To address 
this issue, we performed tenfold cross validation and 
ensemble learning random forest classifier model with 
five features via the IFE and model optimization step 
to improve the robustness in the training set (Shanghai 
cohort), Subsequently, we applied the model to the vali-
dation set (Beijing cohort) to confirm its validity.

Our study also validates the substantial significance 
of the conventional TNM staging system in identify-
ing a tumor’s risk level, with a higher T stage indicat-
ing poorer clinical outcomes. Furthermore, our model, 
which incorporates both clinical and radiomics fea-
tures, demonstrated superior predictive performance 
for DFS compared to models based solely on either T 
stage or radiomics features. Taken together, the results 
demonstrate that our radiomics-based model can accu-
rately predict the DFS of Stage II CRC patients.

Furthermore, the results suggest that a radiomics-
based model has the ability to predict the effectiveness 
of ACT in patients with stage II CRC. Presently, the 
decision to administer ACT is based on several clinical 
and pathological evaluations. Nonetheless, there are no 
dependable biomarkers available to determine patients 
who would benefit from longer ACT treatment. Recent 
studies have explored the use of non-invasive radiomic 
biomarkers to predict response to neoadjuvant chem-
oradiotherapy in rectal cancer [19, 20]. Our results 
showed that patients in the low-score group did not 

exhibit a significant difference in 5-year DFS between 
those who received postoperative ACT and those who 
did not, whereas patients in the high-score group did 
show a significant difference. Hence, patients in the low-
score group do not require post-operative ACT as it may 
not be beneficial, and unnecessary treatment may lead 
to additional toxicity. Conversely, postoperative ACT is 
recommended for patients in the high-score group as 
those without it had an inferior 5-year DFS compared to 
those who received it. It is worth noting that radiomic 
signatures have recently been employed to predict out-
comes and ACT benefits in lung adenocarcinoma and 
gastric cancer [21, 22]. Since the radiomic signature is 
based on the pretreatment CT image, it captures the 
tumor’s biological properties that are independent of 
treatment. Therefore, we believe that the radiomic signa-
ture has the potential to become a useful clinical tool in 
the management of CRC patients.

Our study has some limitations. Firstly, we extracted 
2D imaging features from a single slice instead of 3D 
imaging features from the entire tumor volume due to 
the ease of operation for radiologists. Secondly, com-
plete ACT data was not available in the validation set, 
which made it challenging to assess external data for 
ACT benefit model evaluation. Moreover, potential 
limitations or biases may exist, especially in the context 
of any subjective evaluation such as inter-reader agree-
ment, observer variability, or imaging feature capture. 
Standardized evaluation protocols and blinded assess-
ments could reduce the bias and enhance outcome 

Fig. 5  The prognosis value of predicting DFS in the (A). training set(N = 313) and (B). validation set(N = 165) respectively. Two-sided P values 
for comparison of DFS were computed using the log-rank test
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accuracy. To determine the validation group’s appropri-
ate sample size, we performed a power analysis in both 
the training and validation datasets. A power value of 
0.8 or higher is typically considered adequate for sam-
ple size in this context. For this study, the estimated 
power value was 0.80, indicating that both the training 
and validation group sample sizes were adequate. In the 
future, a larger sample size and multi-center testing will 
be used to evaluate the proposed model.

Conclusion
We developed and validated a noninvasive machine 
learning-based radiomic model for predicting relapse 
rate in stage II CRC patients referring to the DFS. This 
easy-to-use model can identify  optimal candidates 

for postoperative ACT and ensure they may benefit 
from it. Although these findings need to be validated 
in large-scale prospective studies, we believe that our 
results have the potential to serve as a non-invasive 
alternative to personalized treatment in precision 
medicine.
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