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and to improve accuracy, equations for estimated GFR 
(eGFR) incorporate demographic variables such as age, 
weight and sex [1–3]. However, eGFR does not always 
adequately reflect renal function, especially when the 
GFR is close to the normal range, making early detection 
of kidney injury very complicated [4]. Pre-clinical stud-
ies face similar issues, since commonly used serum mark-
ers in animals also fail to capture minor changes in renal 
function. In general, approximately 50% of renal function 
must be lost before serum creatinine levels increase [5, 
6]. Moreover, increased serum creatinine does not neces-
sarily reflect renal damage, but may be caused by hypovo-
lemia, dehydration, protein catabolism or a combination 
thereof. These extra-renal elements should be considered 
when using creatinine as an experimental endpoint for 

Introduction
Glomerular filtration rate (GFR) is a key indicator of 
renal function and widely used for the diagnosis and stag-
ing of kidney disease. In clinical practice, serum levels of 
endogenous filtration markers, such as creatinine or cys-
tatin C, are often used to approximate renal function, 
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Abstract
Objective  Glomerular filtration rate (GFR) is a key indicator of renal function. In both clinical practice and pre-clinical 
research, serum levels of endogenous filtration markers, such as creatinine, are often used to estimate GFR. However, 
these markers often do not reflect minor changes in renal function. In this study, we therefore set out to evaluate the 
applicability of transcutaneous GFR (tGFR) measurements to monitor the changes in renal function, as compared to 
plasma creatinine (pCreatinine), in two models of obstructive nephropathy, namely unilateral ureteral obstruction 
(UUO) or bilateral ureteral obstruction followed by release (BUO-R) in male Wistar rats.

Results  UUO animals showed a significant reduction in tGFR compared to baseline; whereas pCreatinine levels 
were not significantly changed. In BUO animals, tGFR drops 24 h post BUO and remains lower upon release of the 
obstruction until day 11. Concomitantly, pCreatinine levels were also increased 24 h after obstruction and 24 h post 
release, however after 4 days, pCreatinine returned to baseline levels. In conclusion, this study revealed that the tGFR 
method is superior at detecting minor changes in renal function as compared to pCreatinine measurements.
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renal pathology [6]. To accurately monitor GFR in labo-
ratory animals the employed method should reflect GFR 
in real-time, detect minor changes, and not be stressful. 
Traditional methods to measure GFR are often based on 
51Cr-EDTA, inulin, iodixanol, blood urea nitrogen or cre-
atinine clearance, all of which are invasive, imprecise and 
labor intensive [7–11]. Additionally, the majority of these 
techniques require deep anesthesia, which can influence 
renal hemodynamics and thus renal function [12, 13]. 
Moreover, repeated blood and urine sampling greatly 
impacts animal welfare. To simplify and improve GFR 
assessment, a new technique was developed that allows 
for the transcutaneous measurement of the elimination 
kinetics of fluorescein isothiocyanate (FITC)-sinistrin in 
freely moving mice and rats [10, 14, 15].

Within the field of nephrological research, ureteral 
obstruction – either unilateral ureteral obstruction 
(UUO) or bilateral ureteral obstruction (BUO) – is one 
of the most frequently used models for kidney disease. 
UUO [16, 17] is generally used as a chronic kidney dis-
ease (CKD) model, whereas BUO is mainly used to model 
acute kidney injury (AKI). Both models are based on sur-
gical obstruction of the ureter, which can be experimen-
tally manipulated with respect to timing, severity, and 
duration, while reversal of the obstruction permits the 
study of recovery. Ureteral obstruction markedly impairs 
renal function, including GFR [17–20].

In this study, we therefore set out to evaluate the 
applicability of transcutaneous GFR (tGFR) measure-
ments to monitor the changes in renal function, as com-
pared to plasma creatinine (pCreatinine), in two models 
of obstructive nephropathy, namely UUO and BUO. 
We hypothesize that the tGFR method is more accu-
rate and more sensitive to minor changes in GFR than 
pCreatinine.

Main text

Materials and methods
Experimental design and surgical procedures
Experiments were performed using a total of twenty-
eight 7 to 8-week-old male rats, Rattus norvegicus, Wistar 
(Janvier Labs, Le Genest-Saint-Isle, France). Animals had 
free access to water and standard rodent chow (Altro-
min, Lage, Germany). Rats were housed in pairs in a con-
trolled environment; 12 h:12 h light-dark cycle, constant 
temperature of 21 ± 2  °C, and humidity of 55 ± 2%. Stan-
dard housing conditions and husbandry procedures were 
identical across the control and experimental groups. The 
rats were cared for daily and monitored for pain and dis-
tress between and after the procedures using a general 
distress scoring sheet. The rats were allowed to acclimate 
at least one week prior to the surgical procedures.

Animals were randomly assigned to the experimen-
tal groups, and sample size calculation was based on a 
pilot study. During surgery, the animals were anesthe-
tized with 2% sevoflurane (Sevorane, AbbVie, Copenha-
gen, Denmark) mixed with atmospheric air at 2  L/min, 
and injected s.c. with 50  µg/kg buprenorphine (Tem-
gesic, Indivior UK Limited, Berkshire, UK) in order to 
minimize postoperative pain. In addition, buprenorphine 
(7.5 µg/ml) was added to the drinking water to maintain 
analgesia for 48 h post-surgery.

UUO surgery was performed as previously described 
[21], and the obstruction was maintained for 11 days 
(11dUUO; n = 8): which is sufficient to induce severe 
renal impairment. Sham-operated rats (n = 7) were 
included as control. One UUO animal died due to an 
unknown cause in the days after the surgery. BUO sur-
gery was performed as described previously [20, 22], with 
slight modifications. Briefly, rats were placed on a heating 
pad and laparotomy was performed to expose both ure-
ters. Subsequently, a latex elastomer (AgnTho’s, Lidingö, 
Sweden) was placed around the midportion of each ure-
ter, and the ureter was then occluded by tightening the 
elastomer with a 4-0 silk non-absorbable suture (Softsilk, 
Medtronic, Watford, UK). After which, rats were housed 
individually in metabolic cages for 24  h (24hO). Subse-
quently, both ureters were released (R), and the rats were 
placed in the metabolic cages for another 24  h to mea-
sure urine output. BUO-R animals were monitored for an 
additional 11 days (11dR; n = 7): which is sufficient time 
to observe recovery. Sham-operated animals (n = 6) were 
included as control. One Sham animal was excluded from 
all analyses due to lasting postoperative discomfort.

Transcutaneous glomerular filtration rate (tGFR)
The kidney function was assessed by tGFR measure-
ments as previously described [10]. Shortly, under 
sevoflurane anesthesia, part of the back of the rats was 
depilated and a non-invasive clearance (NIC)-Kidney 
device (MediBeacon, Mannheim, Germany) was attached 
to the area using an adhesive patch. The measurement 
started with a background reading of 1 to 4  min before 
0.35  mg/g body weight (BW) fluoresceine isothiocynate 
sinistrin (FTIC-S; Fresenius Kabi, Graz, Austria) was 
intravenously administrated. During 2 h of measurement, 
each animal was housed individually, free to move, and 
had access to water and food. GFR (ml/min/100  g BW) 
was calculated from the transcutaneous measurement of 
FITC-S using a 3-compartment model [23]. In the UUO 
experiment, tGFR measurements were performed on the 
following timepoints: before surgery (baseline); 24 h after 
obstruction; and on day 4, 7 and 11 after obstruction. 
In the BUO-R experiment, tGFR measurements were 
performed on the following timepoints: before surgery 
(baseline); 24 h after obstruction; 24 h after release; and 
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on day 4, 7 and 11 after release of the obstruction. No 
measures of blinding or randomization were taken.

Plasma and urine creatinine test
Blood (50  µl) was collected from the tail vein immedi-
ately prior to the tGFR measurements, when the rats 
were under anesthesia. After the final tGFR measure-
ment, blood was collected via cardiac puncture per-
formed as a terminal procedure under sevoflurane 
anesthesia followed by cervical dislocation.  Plasma cre-
atinine levels were determined using Creatinine Assay 
Kit (Sigma-Aldrich, Schnelldorf, Germany), according 
to the manufacturer’s instructions. Urine creatinine was 
measured using a Roche Cobas 6000 analyzer (Roche 
Diagnostics, Risch-Rotkreuz, Switzerland). Creatinine 
clearance was calculated using the following formula:

	
UrineCreatinine ∗ UrineV olume

P lasmaCreatinine

Data was expressed pr. 100g BW [11, 24].

Statistical analysis
Results are expressed as mean ± standard error of the 
mean (SEM). Statistics were performed with Graph-
pad Prism 9.4.1 (Graphpad Software, Inc., San Diego, 
CA, USA). A repeated measure one-way ANOVA with 
Dunnett’s multiple comparisons test was performed to 
compare intragroup kidney function at each time point. 
Similar analyses were performed for plasma creatinine 
data. A two-tailed Pearson correlation model was used to 
compare the relationship between tGFR and pCreatinine. 
Descriptive data in supplemental tables are presented 
as mean ± standard error of deviation (SD). Differences 
between groups were considered to be statistically sig-
nificant when p < 0.05.

Results
Evaluation of renal function in UUO rats
To evaluate the impact of UUO on GFR we utilized the 
UUO model combined with sequential tGFR measure-
ments and blood sampling, see Fig.  1A for experiment 
design. Following surgery, we did not observe any sig-
nificant changes in bodyweight when comparing UUO 
and Sham groups (Supplemental Table  1). As shown in 
Fig. 1B, GFR is significantly reduced in UUO animals at 

Fig. 1  The impact of unilateral ureteral obstruction on tGFR and pCreatinine. Rats were subjected to 11 days of UUO, or Sham surgery, and kidney func-
tion was monitored using plasma Creatinine (µmol/L) and transcutaneous GFR measurements (ml/min/100g BW). (A) Timeline of experiment. (B) tGFR 
in UUO (n = 7) and Sham (n = 7) rats. (C) pCreatinine levels in UUO (n = 3–6) and Sham (n = 3–7) rats. All time points are compared to the corresponding 
intragroup baseline, data are presented as mean ± SEM. *P < 0.05 compared to UUO baseline
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all time points after obstruction compared to baseline, 
whereas no significant changes are observed in Sham 
animals (Fig. 1B). Moreover, we did not observe any sig-
nificant differences in pCreatinine following surgery in 
both UUO and Sham animals as compared to baseline 
(Fig.  1C). These results indicate a lower sensitivity of 
pCreatinine to evaluate renal function in the UUO model 
as compared to tGFR.

Evaluation of renal function in BUO-R rats
Next, we evaluated the impact of BUO and subsequent 
release on GFR; see Fig.  2A for experiment design. Fol-
lowing surgery, we did not observe any significant 
changes in bodyweight when comparing BUO-R and 
Sham groups (Supplemental Table  1). Of note, urine 
excretion was markedly elevated at 24  h post release, 
indicating successful release of the obstruction, at this 
time point we also observed a marked reduction in GFR 
based on creatinine clearance (Supplemental Table  1). 
As expected, Fig.  2B shows that the GFR drops dra-
matically 24 h post BUO, whereas Sham animals are not 
affected in a similar manner (Fig. 2B). The GFR appears 
to be consistently lower in the BUO group after release 

of obstruction, when comparing to baseline levels, yet 
after 11 days the GFR appears to approach baseline lev-
els and is not significant different. Levels of pCreatinine 
are markedly increased after 24  h of obstruction and 
24 h post release; however, after 4 days, pCreatinine lev-
els seem to return to baseline (Fig.  2C). A similar, but 
less pronounced effect is observed in the Sham animals 
(Fig. 2C).

Correlation between tGFR and pCreatinine
To evaluate if there is a relationship between tGFR and 
pCreatinine, we performed a Pearson correlation analy-
sis. As shown in Fig.  3A and B, there is no correlation 
between tGFR and pCreatinine in either UUO Sham 
(R2 = 0.019, P = 0.52) or BUO Sham animals (R2 = 0.11, 
P = 0.1) at any time point. Similarly, there is no notice-
able relationship between tGFR and pCreatinine in UUO 
animals (R2 = 0.16, P = 0.08; Fig. 3C). Conversely, a moder-
ate negative correlation was observed between tGFR and 
pCreatinine in the BUO model (R2 = 0.36, P = < 0.0001; 
Fig.  3D); however, the analysis appears to be highly 
influenced by the 24hO (red) and 24hR (purple) time 
points. These data suggest that tGFR and pCreatinine 

Fig. 2  The impact of bilateral ureteral obstruction on tGFR and pCreatinine. Rats were subjected to 24 h of BUO (24hO) followed by release (24 h) of the 
obstruction, or Sham surgery, and monitored for an additional 11 days. Changes in kidney function were monitored using plasma Creatinine (µmol/L) and 
transcutaneous GFR (ml/min/100g BW) measurements. (A) Timeline of experiment. (B) tGFR in BUO-R (n = 6–7) and Sham rats (n = 4–5). (C) pCreatinine 
levels in BUO-R (n = 7) and Sham rats (n = 5). All time points are compared to the corresponding intragroup baseline, data are presented as mean ± SEM. 
*P < 0.05 compared to BUO baseline. #P < 0.05 compared to Sham baseline
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only correlate when renal function in severely impacted. 
Indeed, no correlation was observed between tGFR and 
pCreatinine when comparing 0h, 4dR, 7dR and 11dR 
(Fig.  3E); whereas, a significant correlation (R2 = 0.43, 
P = 0.016) was observed when comparing tGFR and pCre-
atinine at 24hO and 24hR (Fig. 3F).

Discussion and conclusion
In the present study, we monitored changes in renal 
function using pCreatinine measurements and transcu-
taneous assessment of clearance following both UUO 
and BUO-R. About a decade ago, the first papers were 
published showcasing the feasibility of measuring GFR 

Fig. 3  Relationship between tGFR and pCreatinine. Pearson correlation analysis of the relationship between tGFR (ml/min/100g BW) and pCreatinine 
(µmol/L) in (A and B) Sham rats (n = 3–7), (C) UUO rats (n = 2–6), and (D) BUO-R rats (n = 6–7). Subanalysis of the correlation between tGFR and pCreati-
nine in BUO-R rats with pCreatinine (E) < 20 µmol/L (n = 7) or (F) > 40 µmol/L (n = 6–7)
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through the skin in conscious rats and mice using FITC-
sinistrin and a miniaturized optical device [10, 15]. Since 
then, the method has also been applied in numerous 
rodent models of renal pathology, including: unilateral 
nephrectomy, adenine-induced chronic kidney disease, 
(poly)cystic kidney disease, hypertensive renal injury, 
diabetic nephropathy, recurrent dehydration-induced 
kidney disease, ischemic acute kidney injury, sepsis-
induced kidney injury, aging and K+ overload [10, 15, 
25–39]. However, to the best of our knowledge, our cur-
rent observations are the first available measurements 
of GFR, using the NIC-Kidney device, across an 11-day 
experimental ureteral obstruction protocol in rats. Dur-
ing this timeframe, we observed that the method was well 
tolerated by all animals. After recovering from sevoflu-
rane anesthesia, the NIC-Kidney device had no impact 
on movement or behavior of the animals. This indicates 
a low level of stress in the rats in contrasts to the stress 
induced by classical clearance studies, which require 
repeated restrainment and blood sampling [40]. Another 
advantage of the tGFR method is that it does not rely on 
accurately timed urine sampling making it a more effi-
cient and faster technique compared with creatinine 
clearance studies, which often require 24-hour urine 
collection.

Our findings indicate that UUO and BUO have a 
substantial impact on GFR, which is not consistently 
reflected by pCreatinine. Indeed, Pearson correlation 
analysis revealed that there is no, or only a moderate, cor-
relation between pCreatinine and GFR, indicating that 
pCreatinine is less sensitive to changes in renal function 
as compared to tGFR measurements. Our results corrob-
orate previous studies, which used various animal mod-
els of AKI and CKD, all showing that the tGFR method 
is superior for monitoring renal function as compared to 
pCreatinine or albumin measurements [28, 41–44]. Of 
note, a spike in pCreatinine was observed in both UUO 
and BUO-R rats 24 h after surgery, which might be due to 
post-surgical stress [45].

In the UUO model, we did not see any significant 
changes in pCreatinine, not even at day 11, when the 
UUO kidney was clearly fibrotic (Supplemental Fig.  1). 
This discrepancy might be due to contralateral com-
pensation of the non-obstructed kidney as observed in 
previous publications [46–49]. Due to this physiologi-
cal response, it is also not feasible to adequately assess 
changes in renal function by measuring creatinine clear-
ance in UUO animals. This supports our notion that the 
tGFR methodology is superior to creatinine clearance.

It is widely acknowledged that GFR is a key indicator 
of renal health in both clinical practice and pre-clinical 
research. Yet, even in medicine, there is still a debate 
regarding the best ways to calculate GFR [50], and there 
is even less consensus in pre-clinical research. Based on 

previous work [1, 23, 41, 51, 52], and our own observa-
tions, we believe that tGFR measurements currently 
provide the highest level of evidence concerning renal 
function and should therefore be incorporated in animal 
studies related to renal impairment.

In summary, the results obtained in this study support 
the notion that the tGFR method is a reproducible and 
appropriate tool for monitoring renal function in rodent 
models of obstructive nephropathy. Thus, we recom-
mend the method to be employed in future studies in 
which conscious and freely moving rodents are needed 
for determining GFR.

Limitations
In our UUO study, we were only able to determine pCre-
atinine in three animals at baseline and 24 h after surgery 
due to hemolysis of the other blood samples. However, 
we believe that this only slightly impacted the statistical 
power of our analysis.

When performing tGFR measurements, one must con-
sider day-to-day variability in GFR. This is mostly pro-
nounced in healthy animals and is caused by changes 
in food intake, hydration status, blood pressure or renal 
flow [6, 53].

In the current study, we did not conduct a comparative 
analysis between tGFR and GFR estimated via creatinine 
clearance. Future studies should include such an analysis 
in order to fully support our observation that the tGFR 
method is more sensitive to minute changes in renal 
function compared with traditional methods to measure 
GFR.
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tGFR	� Transdermal glomerular filtration rate
UUO	� Unilateral ureteral obstruction
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