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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent
studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common
pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been
observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for
early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways
involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of
GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as
well as their potential as diagnostic and therapeutic targets.
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Introduction

According to the World Health Organization (WHO)
and the International Federation of Gynecology and
Obstetrics (FIGO), Gestational Diabetes Mellitus (GDM)
is defined as a pregnancy-related carbohydrate intoler-
ance that is first diagnosed during pregnancy [1, 2]. This
results in varying degrees of hyperglycemia and is associ-
ated with potential complications such as pre-eclampsia,
premature rupture of membranes, cesarean section, pre-
term delivery, high blood pressure, and babies with large
birth weight [3—6]. The worldwide prevalence of GDM is
around 14%, varying based on the population ethnicity
and the diagnostic test used [6—8]. The American Diabe-
tes Association (ADA) recommends performing the oral
glucose tolerance test (OGTT) for the diagnosis of GDM
in the second trimester (between 24 and 28 weeks) for
low-risk pregnant women, but early diagnosis in the first
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trimester can identify those at high risk for GDM and
prevent adverse complications by adjusting the cut-off
points of the OGTT plasma glucose test [9, 10]. Despite
that the OGTT can detect up to 80.3% of GDM cases,
there is a need for additional diagnostic biomarkers to
achieve 100% diagnostic accuracy for GDM cases as early
as the first trimester. This would improve outcomes for
pregnant women and their infants.

Pregnancy is characterized by physiological and meta-
bolic changes that prepare the mother’s body for fetal
growth, which is a well-established fact [11, 12]. These
include temporal variations in the expression profile of
microRNAs (miRNAs), particularly in the first trimes-
ter [13]. miRNAs have the potential to identify pregnant
women with complications such as preeclampsia (PE),
or GDM [13]. These non-coding and highly conserved
RNAs are typically 18—22 nucleotides in length and are
known to regulate targeted gene expression by bind-
ing to their 3’'UTR [14]. They are among the most com-
monly emerging epigenetic regulators for metabolic
adaptation during pregnancy [15-17]. However, their
dysregulation has been associated with several preg-
nancy complications, including PE, intrauterine growth
restriction (IUGR), miscarriage, preterm birth, and GDM
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[17-22]. Interestingly, a panel of miRNAs has already
been validated for several other diseases, including gas-
tric cancer, breast cancer, and diabetes [23-25], how-
ever, there are relatively few studies that have validated
the role of miRNAs as a diagnostic biomarker for preg-
nancy complications, including GDM [26]. Several risk
factors, including advanced maternal age, overweight
and obesity, macrosomia, history of perinatal complica-
tions, diabetes in the family, parity, and Asian ethnicity,
are known to play a significant role in the pathogenesis
of GDM [6, 27-29]. By correlating these risk factors with
other established diagnostic biomarkers, it may be pos-
sible to achieve an optimal diagnosis of GDM as early as
the first trimester.

The objective of this review is to highlight the most
dysregulated miRNAs and their mechanisms of action in
pregnant women with GDM, as well as to explore their
correlation with other risk factors for GDM.

Role of microRNA in GDM

Up-regulated microRNAs and their mechanism of action
miRNAs have been shown to be involved in the regula-
tion of glucose metabolism and insulin secretion. The
expression levels of different miRNAs can vary signifi-
cantly according to gestational age and across different
populations [30-40]. For instance, two previous stud-
ies showed a significant overexpression of miR7-5P in
maternal blood of women with GDM [41, 42]. In vitro
validation of the genetic targets revealed a down regu-
lated expression levels for IRS1/2 (Insulin Receptor Sub-
strate) and RAF genes [30, 31]. This can be mediated by
the overexpression of miRNA 7 in women with GDM
which highlighted its potential role in regulating insulin,
GnRH, and inflammatory signaling pathways associated
with IRS1/2 and RAF genes [41, 42]. Interestingly, Mexi-
can women with GDM exhibited significantly upregu-
lated levels of miR-9-5p, miR-29a-3p, and miR-330-3p
during the second trimester [30]. Notably, miR-9-5p may
contribute to GDM by targeting HK-2 (Hexokinase-2),
which in turn regulates genes involved in glycolytic path-
ways such as GLUT1 (glucose transporter 1), PFK (phos-
phofructokinase), and LDH (lactate dehydrogenase) [43].
Furthermore, miR-9-5p has also been found to be overex-
pressed in the serum of newly diagnosed individuals with
type 2 diabetes (T2D), suggesting a potential role in glu-
cose metabolism regulation [44].

Additionally, several previous studies have reported
elevated levels of miR-16-5p, miR17-5p, miR-19a-3p,
miR-19b-3p, and miR-20a-5p in the blood of Chinese
and Polish women with GDM as early as 16 weeks, with
this correlation increasing and persisting throughout the
second and third trimesters [31, 32, 45, 46]. The observed
upregulation of miRNAs was also shown to be positively
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correlated with insulin resistance (IR), a known risk fac-
tor for GDM [31]. Network analysis of these upregulated
miRNAs has revealed their association with five path-
ways, namely MAPK signaling, insulin signaling, T2D,
TGE-B signaling, and mTOR signaling [46]. Abnormal
MAPK signaling is associated with pregnancy compli-
cations and sensitivity to insulin, while the TGF-p sign-
aling pathway is linked to PE [47]. Furthermore, the
mTOR signaling pathway controls energy balance and
food intake in the hypothalamus. [48]. Therefore, the
dysregulation of these pathways may play a role in the
development of GDM. Remarkably, miR-16 has been
demonstrated to target multiple genes that participate
in various biological processes such as pancreatic 3-cell
proliferation and apoptosis [49], insulin signaling [50],
and insulin receptor substrate (IRS) proteins 1 and 2
which are involved in insulin-like growth factor-I (IGE-
I) regulation, a factor closely linked to insulin resistance
[46, 51-53]. MiR-16 has been found to impact insulin
resistance and inhibit cell apoptosis induced by hypergly-
cemia, by targeting genes involved in biological processes
such as insulin signaling, insulin receptor substrate (IRS)
proteins 1 and 2, and insulin-like growth factor-1 (IGF-I)
[50]. Although miR-17-5p and miR-16-5p have been asso-
ciated with T2D and other metabolic diseases, their exact
role in the pathogenesis of GDM remains unclear [54].
Notably, an increase in miR-16-5p expression has been
observed during hypoglycemic episodes in individuals
with T1D or T2D, with a negative correlation observed
with interleukin (IL)-6, intercellular adhesion molecule
(ICAM), and vascular cell adhesion molecule (VCAM)
[55] (NCTO03460899). Moreover, miR-16 has been found
to exert distinct anti-inflammatory effects by promoting
the secretion of anti-inflammatory factors such as IL-10
and TGEF-P, while simultaneously reducing the levels of
pro-inflammatory factors including IL-6, TNF-a, MCP-1,
and IL-1f [56]. These complex anti-inflammatory mecha-
nisms are mediated through downregulation of several
targets including nuclear factor-kB (NF-kB) or NOD-like
receptor protein 3 (NLRP3) inflammasome [57]. MiR-16
is a down-regulated target of Toll-like receptor 4 (TLR4)
and has been found to be upregulated in patients with
acute myocardial infarction [57]. For microRNA-20a-5p,
one study has shown its upregulation in pre-eclampsia,
which has a close relationship with GDM [58], however,
its correlation with IR needs further clarification. In a
recent study of 82 European obese pregnant women, a
distinct dysregulated pattern of miR-16-5p, -29a-3p, 103-
3p, 134-5p, -122-5p, -223-3p, -330-3p, and miR-433-3p
was observed throughout pregnancy in both GDM and
control groups, nonetheless, the initial increase of miR-
433-3p was significant only in the GDM group [33] as
shown in Table 1. Furthermore, miR-195-5p has been
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shown to target genes involved in fatty acid metabolism,
particularly during the second trimester [37].

MiR-122-5p was significantly upregulated solely in the
third trimester [33]. Interestingly, a previous study con-
ducted on individuals with T2D revealed a negative cor-
relation between miR-122-5p and Bacteriodes uniformis
and Phascolarctobacterium Faecium [59]. Considering
the metabolic adaptation that occurs during pregnancy
is similar to that in metabolic syndrome, it is plausible
to suggest a potential association between miRNA and
gut microbiota in the regulation of key genes involved
in glucose metabolism [59, 60]. Despite showing a posi-
tive correlation with gestational weight gain, miR-433-3p
has been found to maintain pancreatic beta cell function
in high-glucose conditions, indicating a potential role in
protecting against diabetes [33, 61].

In normal pregnancies, the induction of endothelial cell
apoptosis by trophoblast cells is a crucial mechanism for
uterine spiral artery remodeling [62]. However, defective
remodeling has been linked to pregnancy complications
such as PE and IUGR [63, 64]. MiR-17-5p expression was
found to be significantly higher in 30 Turkish women
with GDM, with regulatory effects on mitochondrial
fusion-related proteins (Mfn1/Mfn2) in trophoblast cells,
affecting endothelial cell apoptosis [65]. This upregula-
tion was positively correlated with fasting glucose lev-
els, HbA1C, and total cholesterol, which are known to
be associated with endothelial and vascular dysfunc-
tion [65]. Since diabetes is known to be associated with
endothelial and vascular dysfunction [66], it is becom-
ing a promising biomarker of GDM. MiR-19a and miR-
19b were found to have a higher expression level in the
blood of Chinese pregnant women with GDM, primarily
during the second and third trimesters, though further
validation in a larger group is necessary [45]. These miR-
NAs were also associated with GDM risk factors, such
as age, alcoholism, and smoking, which could poten-
tially exacerbate the disease [45]. Moreover, three stud-
ies, as detailed in Table 1, have demonstrated a positive
association between miR-29a and GDM in women from
Canada, Mexico, and various regions in Europe [30, 36,
67]. In addition, miR-155-5p and miR-21-3p were found
to have significantly higher plasma expression levels in
overweight and obese American women with GDM [35].
These findings suggest that obesity and fetal gender may
play a role in the changes in miRNAs observed in women
with GDM. However, they need to be confirmed in larger
cohorts comprising diverse ethnic and socioeconomic
backgrounds and a wider selection of candidate miRNAs.

Multiple miRNAs were also overexpressed in GDM
women from different ethnic groups including miR-
16-2-3p, miR-1910-5p and miR-92a-3 (Table 1) [37, 68].
These miRNAs showed a positive correlation with the
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increased pre-pregnancy BMI [69] which can be medi-
ated by modulating the metabolic activity since the
higher concentration of the circulatory miR-92a-3p is
inversely linked to the metabolic activity of the brown
adipose tissue [70] indicating an impaired metabolic sta-
tus and increased insulin sensitivity [71]. Furthermore,
transfection of skeletal muscles with miR-92a-3p appears
to affect the expression of genes involved in Janus kinase/
signal transducers and activators of transcription (JAK/
STAT) signaling pathways, as well as those associated
with T2D and hyperglycemia pathways, underscoring
its ability to regulate glucose metabolism in response to
insulin within skeletal muscle cells [68]. Interestingly,
miRNAs implicated in neural development, including
miR-183-5p and miR-200b-3p, exhibit increased expres-
sion levels during the first trimester in Mexican women
with GDM compared to controls, which may be linked
to alterations in neurogenesis and cell proliferation (as
delineated in Table 1) [72]. Although several studies have
reported elevated expression levels of circulatory miR-
142, miR-144-3p, and miR-143 in Chinese, Turkish, and
German women with GDM compared to controls [31,
37, 74], these results have yet to be validated in larger
cohorts [32, 34, 42]. Notably, both miR-144-3p and miR-
142 have been shown to be upregulated in peripheral
blood mononuclear cells of individuals with T1D and
T2D, as well as in women with GDM [73] indicating an
overlapping effects in all types of diabetes.
Overexpression of miR-142-3p in the blood and
embryonic tissue of GDM-induced mice showed to pro-
mote the proliferation B-cells through targeting FOXO1
gene which is known to control glycogenolysis and gluco-
neogenesis [74, 75]. Overexpression of miR-142-3p was
observed only in pre-T2D women, showing a positive
association with insulin, HOMA-IR, BMI, adiponectin,
and leptin levels in in obese individuals [76-78]. In addi-
tion, upregulated expression and a positive correlation
with HOMA-IR of circulating miR-144-3p were observed
in a Chinese cohort with impaired fasting glucose mak-
ing it a predictor of T2D development [79]. Higher cir-
culatory levels of let-7 g was observed in Estonian and
Caucasian women with GDM [34, 37]. However, in the
Caucasian population, this higher expression was solely
reported in the screening group and not in the validation
group [34]. The regulatory function of the miRNA-let-7
family in the glucose metabolism is widely recognized,
with altered expression levels being associated with
metabolic disorders such as T2D [80, 81] indicating simi-
larities in different miRNA induced metabolic pathways.
Two studies investigated higher expression of miR-195 in
plasma of Estonian and Chinese women with GDM com-
pared to controls [37, 82] which was positively associated
with increased BMI, obesity and fasting blood glucose



Elhag and Al Khodor Journal of Translational Medicine (2023) 21:392

level in patients with metabolic syndrome [83], indicating
that aberrant expression of miR-195-5p might function
as a novel diagnostic biomarker for GDM.

Australian women with GDM showed elevated lev-
els of miR-197 in their placental exosomes, which were
found to be correlated with insulin sensitivity in skeletal
muscle tissues [84]. In contrast, Mexican women with
GDM had higher expression levels of miR-16-5p and
miR-222 only during their second trimester, as detected
in placental exosomes isolated from urine samples. [85].
Most of genes that are targeted by miR-16-5p and miR-
222-3p are involved in the insulin resistance pathway [54,
86] highlighting the role of these miRNAs in modulat-
ing different metabolic processes in women with GDM.
Moreover, multiple miRNAs including miR-122-5p;
miR-210-3p; miR-29a-3p; miR-29b-3p; miR-342-3p,
and miR-520 h (Table 1) showed significantly higher
levels in GDM cases than in controls. These miRNAs
are involved in trophoblast proliferation/differentia-
tion as well as in insulin secretion/regulation and glu-
cose transport during pregnancy [36]. In addition, two
independent studies found elevated levels of miR222 in
omental adipose tissue and plasma samples collected
from Chinese and Canadian women with GDM, respec-
tively [37, 87]. Interestingly, miR222 has been shown to
impact glucose uptake in mature adipocytes by regulat-
ing the expressions of estrogen receptor ERa and insu-
lin-sensitive membrane transporter GLUT4, suggesting
its potential as both a biomarker and therapeutic target
for GDM [87]. Additionally, two other studies reported
increased levels of miR-223 in serum and plasma sam-
ples from women diagnosed with GDM, originating
from Italy, Spain and Egypt, respectively [88]. This was
correlated with the increased levels of angiopoietin-like
protein 8 (ANGPTLS) in addition to lipid markers and
fasting blood glucose [88]. Upregulation of miR-330 was
observed in serum and plasma of Italian, Mexican, Span-
ish, and Turkish women with GDM compared to controls
as shown in Table 1 [30, 38, 39]. MiR-330-3p is known
to target genes involved in beta-cell proliferation and dif-
ferentiation in addition to insulin secretion, such as E2F1,
CDC42 and AGT2R2 [38].

In a previous study, miRNA 340 was significantly ele-
vated in GDM patients [34]. While not all GDM subjects
exhibited this elevation in comparison to their matched
control group, it was positively linked with insulin levels
and BMI, as well as the expression levels of the Poly (A)
Binding Protein Interacting Protein 1(PAIP1) gene in
these women [34]. Interestingly, miRNA-340 has been
recently identified as being differentially expressed in dia-
betic conditions, such as newly diagnosed T1D children
[89]. Functional investigations have shown that miRNA-
340 responds to insulin and glucose stimuli in cultured

Page 10 of 15

lymphocytes suggesting that it may play a crucial role in
the alterations in gene expression induced by hyperinsu-
linemia [34]. Furthermore, miRNA 503 was found to be
upregulated in both blood and placenta samples obtained
from women with GDM [90]. Notably, miR-503 has been
shown to regulate pancreatic -cell activity by targeting
the mTOR pathway, implying that targeting the miR-503/
mTOR axis could be a promising therapeutic strategy for
GDM [90]. Interestingly, miRNAs isolated from extra-
cellular vesicles in blood, such as miR-520 h, miR-1323,
miR-136-5p, and miR-342-3p, were also significantly
upregulated in women with GDM [36, 91] Among these,
miR-520 h was found to inhibit cell viability and promote
cell apoptosis by regulating mTOR expression in a GDM
cell model [91]. Additionally, miR-1323 was shown to
suppress trophoblast cell viability by downregulating the
expression of TP53INP1 gene, highlighting its potential
as a therapeutic target for GDM. Moreover, two sepa-
rate studies reported higher expression levels of miR-657
in placental and placental-derived mononuclear mac-
rophages in women with GDM [92, 93]. The dysregula-
tion of miR-657 has been shown to impact the placental
inflammatory response in GDM through its targeting
of the IL-37/NF-kB signaling axis [92, 93]. Additionally,
it regulates macrophage proliferation, migration, and
polarization by targeting FAM46C, suggesting that it
holds promise as both a diagnostic and therapeutic tar-
get for GDM [92, 93]. While many other miRNAs have
been investigated in various studies, we have specifically
focused on the most common and significant miRNAs
(as depicted in Figs. 1 and 2), along with their known
mechanisms of action, highlighting their potential clini-
cal applications for GDM patients.

Controversial and down-regulated miRNA profiles in GDM

In the preceding section, we provided a summary of the
most prevalent and significant upregulated miRNAs in
women with GDM. In this section, we have shifted our
focus to the controversial and significantly down-regu-
lated miRNAs. While several miRNAs were found to be
significantly upregulated across various GDM cohorts,
there were also conflicting results. For instance, miR-
9-5p and miR-137 demonstrated a significant upregu-
lation pattern in the blood of women with GDM (as
illustrated in Table 1). However, in placental tissues from
women with GDM and an associated risk of macrosomia,
the opposite—a down-regulated level —was observed [30,
94, 95].

Furthermore, miRNAs such as miR-27a, miR-137, miR-
92a, miR-33a, miR-30d, miR-362-5p, and miR-502-5p
were downregulated in women with GDM, and they are
known to target the epidermal growth factor receptor/
Class I phosphoinositide—3 kinases (EGFR/PI3K/Akt)
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miR-132, miR-29, and miR-222

Italian population: miR-548c-3p and
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MiR-20a-5p, miR-222-3p
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Fig. 1 Dynamics of the most common significantly dysregulated miRNA in pregnant women with GDM. List of upregulated and downregulated

miRNAs during pregnancy progression.

Placental / blood miRNAs

Targeted genes/pathways

blood miRNAs

T

BLOOD/PLACENTAL miRNA 503/520: positively associated with
Pancreatic B cell activity and mTOR signaling pathway

PLACENTAL miRNA 197: positively associated with insulin
sensitivity in skeletal muscles.

T
T

Placental miRNA 9/27/137/30/33362/502: positively associated
with inflammatory pathways including EGFR, P13, AKt

Placental miRNA 657: positively associated with inflammatory
pathways including IL 37, NF-KB

|
l

Placental miRNA-29: positively associated with insulin signaling
pathways through targeting Insigl and HIF3

BLOOD miRNA 16, miRNA 21-3P, miRNA 92, miRNA 195-5P,
miRNA 433, miRNA 155, miRNA 223, miRNA 1910, Let-7:
positively associated with JAK/STAT signaling pathways, lipid
markers, fatty acid metabolism, gestational weight gain and
obesity, high BMI, glucose metabolism,

miRNA 122, miRNA-210, miRNA-
29, miRNA-342-3P:

Trophoblast proliferation and
differentiation, insulin signaling, and
glucose transport

Fig. 2 Mechanisms of action for the most common significantly dysregulated

miRNA 7-5p:  RS1/2 and RAF
genes, highlighting the possible
role of miRNA 7 in regulating
insulin, GnRH, and
inflammatory signaling
pathways associated with these

genes

miRNA 9-5p: regulate the glycolic pathways genes
(GLUT1), (PFK) and LDH) through targeting HK-2

miRNA 16-5p, miRNA 17-5P, miRNA 19, miRNA20:
Regulate five pathways including MAPK signaling, insulin
signaling, type 2 diabetes mellitus, TGF-B signaling, and
mTOR signaling

T
T

miRNA 16-5p: has anti-inflammatory
effects through down-regulating NF-KB and
NLRP3

miRNA 17-5P: maintains MFn1/MFn2
proteins in trophoblast / positively
associated with high FBG /HBA1c/total
cholesterol

miRNA 19: positively associated with age,
alcoholism, smoking

miRNA-222: moderate
expression of Era and
GLUT4

miRNA-330: B cell
proliferation and
differentiation through
targeting E2F1, CDC42
and AGT2RT2

miRNA in pregnant women with GDM
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pathway, which sheds light on the potential mechanisms
underlying GDM and the associated risk of macroso-
mia [95]. Although some miRNAs, such as miR-16-5p,
miR-17-5p, and miRNA 19, were significantly increased
in Chinese and Turkish women with GDM and polycys-
tic fibrosis [45, 96], their association with GDM was not
observed in Caucasian and South African women [34,
40]. As previously mentioned, the expression levels of
certain miRNAs in women with GDM show variations
among different ethnic groups. For instance, miR-20a-5p
was found to be significantly upregulated in Chinese
pregnant women with GDM, while a study on South
African pregnant women reported a significant down-
regulation of miR-20a-5p and miR-222-3p in the GDM
group, which affected genes not related to GDM [31, 40,
46]. Meanwhile, American women with GDM showed
no significant difference in the expression of miR-222
and miR-223 in their plasma [35]. Interestingly, miR-29a
was found to have a significantly higher level in plasma
of Canadian women with GDM, but two previous stud-
ies on Chinese women with GDM showed a significantly
downregulated pattern of miR-29a and miR-29b in serum
and placental samples, respectively [35, 36, 97, 98].

These down-regulated miRNAs can partially play a
role in the pathogenies of GDM through modulating glu-
cose metabolism and Placental trophoblast development
via targeting the Insulin-induced gene 1 (Insigl) and
Hypoxia Inducible Factor 3 Subunit Alpha (HIF3A) gene
by miRNA 29a and 29b respectively [97, 98]. Further-
more, miR-30d expression in the placenta has been found
to be significantly associated with GDM, as it enhances
trophoblast proliferation and glucose uptake capacity
by targeting Ras-Related Protein Rab-8A (RAB8A) gene
[99]. On the other hand, a lower expression of miR-96 in
placental and blood samples of women with GDM has
been reported, which affects trophoblast viability and
promotes the functions of pancreatic p cells via targeting
P21 Protein (Cdc42/Rac)-Activated Kinase (PAK1) gene
[105, 106]. These findings shed light on the mechanisms
and diagnostic targets of GDM. However, there are con-
flicting results regarding miR-21 and miR-155, which
have been found to be significantly elevated in plasma
of American women with GDM [35], but not in Turkish
women [96, 100].

The lower expression of miR-21 and miR-155 in Turk-
ish women has been linked to both GDM and PE, sug-
gesting that the expression pattern of miRNA can be
influenced by the presence of other pregnancy com-
plications [100]. In Chinese women with GDM, a sig-
nificant downregulation of miR494 in peripheral blood
samples was observed, which inhibited pancreatic -cell
function by targeting the Protein Tyrosine Phosphatase
(PTEN) signaling cascade, highlighting a potential
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therapeutic target for GDM [101]. However, a trend
towards increased levels of miR-494-3p was observed in
the serum of Canadian women with GDM, but this was
not statistically significant [36]. In Italian women with
GDM, a downregulation of both miR-548c-3p and miR-
532-3p was observed in the screening group but not the
validation group [38]. These findings suggest that varia-
tion in the miRNA profiles can arise from differences in
sample type, gestational age, ethnic group, and the pres-
ence of other pregnancy complications. To develop a
novel diagnostic panel for GDM, it is useful to focus on
the most common dysregulated miRNA profiles across
populations (as shown in Figs. 1 and 2) and to replicate
these findings in larger pregnancy cohorts.

Future directions for use of miRNA as a diagnostic tool

This review has highlighted the significant variability in
miRNA expression across different studies, which can
be influenced by various factors including medication
use, diet, physical activity, ethnicity, socioeconomic and
environmental factors, and viral infections [102-106].
Another factor is the variations in the gestational ages
between pregnant women [85]. Furthermore, technical
factors such as sample collection and storage, miRNA
isolation procedures, measurement platforms, and nor-
malization methods can also affect miRNA expression
levels [107-109]. To improve reproducibility across stud-
ies, standard protocols for sample collection, transport,
and storage, as well as miRNA isolation procedures and
data analysis, should be developed. Using miRNA panels
rather than individual miRNAs can also enhance their
clinical applicability, given their ability to regulate mul-
tiple genes involved in different biological processes in
various diseases [104, 110].

Technological advancements in sequencing can pave
the way for the use of miRNAs as inexpensive clinically
applicable biomarkers in the future, although pre-ana-
lytical, analytical, and biological challenges must first
be addressed to overcome poor reproducibility between
studies. Although OGTT remains the gold standard diag-
nostic test for GDM, it is primarily applicable between
24 and 28 weeks of gestation. Therefore, early diagnosis
may only be possible by lowering the glucose level cut-
off points. Thus, additional early diagnostic markers such
as miRNAs are necessary to achieve optimal diagnosis of
GDM as early as the first trimester, enabling timely treat-
ment to prevent potential complications of GDM.

In conclusion, dysregulated miRNAs in women
with GDM have the potential to serve as nonin-
vasive biomarkers, aiding in the identification of
underlying mechanisms for gestational diabetes and
associated pregnancy complications. Advanced func-
tional studies are necessary to validate and improve
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our understanding of these miRNAs by investigating
their target genes and pathways. Such studies may help
to uncover the link between GDM subtypes and preg-
nancy outcomes, providing valuable insights into the
pathogenesis of GDM.
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