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1  Introduction
Determining the authenticity of an image is becoming increasingly important for legal 
proceedings, criminal investigations, and verifying identity-supporting documents. 
In recent years, convolutional neural networks (CNNs) have been employed to detect 
image manipulations, ranging from identifying splicing and copy–move forgeries [1] to 
manipulations such as contrast enhancement [2, 3], resampling [4], JPEG compression 
[5], Gaussian blurring [6, 7], median filtering [8], and Additive White Gaussian Noise [9]. 
Of this latter group, some may be either innocuously applied or maliciously included [8].1

More recently, research in image forensics has included the presence of an adver-
sary, a situation in which the vulnerability of CNNs has been well-studied [10]. In 
regards to image forensics, consideration of these adversarial attacks have been pri-
marily limited to pixel-based adversarial examples and JPEG double compression 
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[5, 11, 12]. In pixel-based attacks, an adversary with knowledge of the CNN model 
in deployment can craft an ”attacked” image which appears visually identical to the 
original image, but is mislabeled by the CNN [13]. This problem is well known in 
computer vision and has been at the forefront of recent work in field. However, this 
type of attack demands a certain level of expertise by the adversary, and is unlikely 
to be employed in a majority of cases in image forensics. Even for skilled adversaries, 
constructing pixel-based adversarial attacks is often labor-intensive, and recent work 
has cast doubt on the transferability of adversarial attacks in image forensics appli-
cations [14]. While pixel-based adversarial attacks require at least some knowledge 
of the model, a low-level adversarial manipulation such as double JPEG compression 
requires no such knowledge [11]. In this type of attack, the images are simply JPEG 
compressed after the manipulation has been applied, hampering the model’s ability 
to correctly identify post-processing methods such as Additive White Gaussian Noise 
or median filtering [11]. For this reason, building models robust to low-level, simple 
adversarial manipulations such as JPEG double compression, to which several manip-
ulation detection models have been found to be vulnerable [5, 11, 12], is particularly 
important. The goal of this paper is to investigate the vulnerability of state of the art 
models to another kind of low-level adversarial manipulation: printing and scanning. 
To our knowledge this is the first investigation into adversarial attack in digital image 
manipulations through printing and scanning.

In physical forgery, repeated printing and scanning can be used to obscure manipu-
lations or watermarks. A document may be modified, usually non-digitally, and then 
repeatedly printed and scanned to disguise the manipulation artifacts. While scan-
ning a printed document is not always related to forgery, it is reasonable to expect 
that state-of-the-art models be impervious to this type of post-processing, as is noted 
in related work in double JPEG compression [5, 11]. In addition, unlike complex pixel-
based adversarial attacks, simply printing and scanning an image is both low-cost and 
requires little expertise, similar to JPEG compression.

In this paper, we limit our investigation to globally-applied manipulations, such as 
Gaussian Blurring (GB), Additive White Gaussian Noise (AWGN), and median filtering 
(MF), rather than local manipulations such as copy–move or splicing, as in related work 
[9]. We construct printed and scanned data sets from three different printers and experi-
ment with two state-of-the-art models, as well as our own model. Related to our work is 
research involved in identifying camera models [15]—we additionally report results for 
identifying printer model. Our main contributions include the following:

•	 We conduct the first analysis into the vulnerability of image manipulation detec-
tors to printing and scanning, demonstrating that at least two state-of-the-art 
models are vulnerable to this type of highly plausible and inexpensive attack

•	 We propose a model architecture which performs comparably than the state-
of-the-art models when trained and evaluated on printed and scanned images, 
including performing 5% better when trained on images from a single printer

•	 We conduct an in-depth analysis on the relationship between CNN-based image 
manipulation detectors, including training on composite data sets, and plan to 
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share our data set of over 6000 printed and scanned images with the community 
to facilitate further investigation

The rest of the paper is organized as follows. In Sect. 2, we give context and background 
through related work. In Sect. 3.1, we describe our model architecture, as well as those 
of the models we used for comparison. In Sect. 3.5, we describe the data sets used for 
training and validation. In Sect. 4, we explain the experiments conducted, and in Sect. 5, 
we discuss the results of these experiments. The paper ends in Sect. 6, where we summa-
rize our conclusions and suggest areas of future research.

2 � Related work
As this paper primarily investigates manipulation detectors based on convolutional neu-
ral networks (CNNs), we provide background on CNN-based manipulation detectors. 
Similarly, we provide context on adversarial attacks on CNNs generally as well as specifi-
cally on CNN-based image manipulation detectors.

Related to this work is work on detecting manipulations through inconsistencies in 
lighting [16] and despite various compression qualities [17]. Additionally, [4] contributes 
significantly to this problem area, though without examining models that leverage deep 
learning. [17] explores a similar problem, but without addressing specifically the prob-
lem of printing and scanning in relation to CNN-based detectors, and is thus comple-
mentary to this work.

2.1 � Deep learning for image forensics

Recent methods in image forensics techniques leveraging deep learning have reached 
impressive performance. In 2015, a CNN-based classifier was proposed for detecting 
median filtering in images [18]. Building on this work, [9] proposed CNN-based model 
with the addition of a ”constrained convolutional layer”, or a layer constrained to learn 
the high-pass features of an image by attempting to predict a central pixel based on its 
neighbors. This serves to suppress the image content while learning the manipulation 
fingerprint, drawing inspiration from Steganalysis Rich Model (SRM) filters in steganaly-
sis [19]. In recent years, procedural similarities between SRM filters and learned CNN 
layers have been noted [20] and SRM filters have been used as a foundation for addi-
tional steganalytic and forensic methods. Accordingly, CNN architectures have been 
specially designed to account for SRM-like features, including methods that leverage 
absolute-value functions and TanH activation to learn steganalysis relevant features [21]. 
Additional methods include designing networks specifically for cases in which SRM fil-
ters yield weak signal [22], as well as methods that alter pool and stride hyperparameters 
in these cases [23].

Additionally, recent work has shown that third order subtractive pixel analysis matrix 
(S3SPAM) features can be learned by a simple shallow CNN, and can employ transfer 
learning to achieve good performance on little training data [24]. In addition to directly 
detecting manipulations, a deep learning method for analyzing the image processing 
history as an important component for image forensics has been proposed, as the pro-
cessing history pipeline can affect the accuracy of other forensic tools [25].
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The performance achieved by constrained convolutional layers and particularly deep 
networks is particularly impressive. These techniques serve as inspiration for our pro-
posed model, and we thus compare our proposed model with models that leverage these 
modifications.

2.2 � Adversarial attacks on CNNs

The vulnerability of CNNs to adversarial attacks has been well documented [13, 26]. 
Adversarial noise can be designed in such a way that, when added to the image, can 
retain visual quality while misleading the classifier. For example, Fast Gradient Sign 
Method (FGSM) [13] leverages the differentiability of the loss function, assumed to 
be known to the adversary. The method proposes altering each pixel based on the 
gradient of the loss with respect to the original pixels in the input image. These 
changes small are enough such that the resulting image is visually nearly identical to 
the original, but are large enough cumulatively to increase the loss such as to impair 
the classification. Similarly, Projected Gradient Descent (PGD) [27] seeks a perturba-
tion that maximises the loss on a specific input while keeping the perturbation size 
smaller than a given epsilon. DeepFool [28] uses a local linearization of the classifier 
to approximate the decision boundary and alter the images accordingly. The Jacobian-
based Saliency Map Attack (JSMA) [26] uses a greedy iterative procedure, altering 
only the pixels which contribute most to the correct classification as identified by a 
saliency map. Each of these pixel-based adversarial attacks, while effective, requires 
at least partial knowledge of the network used for image manipulation detection. 
In contrast, low-level adversarial attacks such as JPEG compression or printing and 
scanning, the subject of this paper, require no such knowledge.

2.3 � Adversarial attacks in image forensics

While CNN-based classifiers have achieved high performance on benchmark image 
forensic tasks, recent research in computer vision has demonstrated that CNN-based 
manipulation detectors, like CNNs more broadly, are highly vulnerable to adversarial 
attacks. For example, in [29], the authors demonstrate that a GAN-based architecture 
can conceal 3x3 median filtering manipulation, one of the manipulations we explore 
in this paper. This type of adversarial attack causes a detector to label the image as 
non-manipulated, including for the CNN-based detectors proposed in [9] and [18]. 
Additionally, a method of adversarial attack based on small pixel-based distortions 
has been proposed for fooling global image manipulation detectors [30]. However, 
[31] notes that unlike in most pattern recognition tasks, pixel-based adversarial 
attacks such as Fast Gradient Sign Method (FGSM) [13] and Jacobian-based Saliency 
Map Attack (JSMA) [26], are not for the most part transferable between manipulation 
detection models.

Recent work has explored the vulnerability of image manipulation detectors to low-
resolution median filtering [32] and JPEG compression [11, 12, 33]. To our knowl-
edge, ours is the first paper to examine model vulnerability to printing and scanning.
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3 � Methods
3.1 � Models

Here we describe our proposed model architecture for improved performance on 
printed and scanned images. We compare our model’s performance with the model 
proposed in [9], the inspiration for the constrained convolutional layer. We addition-
ally compare our model with XceptionNet (Xception) [34], as it and our proposed 
model have nearly identical number of parameters and similar architecture, so the 
difference in performance cannot be attributed to increased network capacity.

3.2 � Proposed model

Our proposed architecture consists of one constrained convolutional layer [9], 1 convo-
lutional layer, 34 separable convolutional layers, 5 pooling layers (4 max pooling, 1 global 
average pooling), and a final fully connected layer (see Fig. 1). Each convolutional layer 
was followed by ReLU activation, and max pooling layers were performed with a stride 
of 2 × 2.

In the constrained convolutional layer, a 5 × 5 filter is employed in which the sum of 
all the weights is constrained to be zero [9]. Specifically, the center pixel is predicted by 
the rest of the pixels in the field, and the output of the filter can be interpreted as the 
prediction error, as suggested by research in steganalysis [25]. Specifically, the weights in 
the filter are constrained such that:

where w refers to the weight, and l and m refer to the coordinates in the filter, where 0, 0 
is the central weight.

The purpose of the constrained convolutional layer is to constrain the model to learn 
image manipulation fingerprints, rather than image content and higher order features, 
such as those useful for object recognition and classification tasks. The prediction error 
fields are then used as low-level forensic trace features by the rest of the network to assist 
in classifying global image manipulation detection.

For the separable convolutional layers, a spatial convolution is performed inde-
pendently for each channel and is followed by a point-wise or 1 × 1 convolution, as 

w(0, 0) = −1

l,m�=0 w(l,m) = 1

Fig. 1  Proposed network architecture. The first layer is a constrained convolutional layer to extract SRM 
features, followed by an deep architecture with separable convolutional layers to improve generalization. The 
last layer is either a 4 × 1 vector (for four classes) or a 6 × 1 vector (for all six classes)
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proposed in [34]. These components decrease the number of free parameters allowing 
the deep network to learn effectively even with a small training set, making it particu-
larly appropriate for our investigation.

In this approach, we hope to leverage both the SRM-like features produced by the 
convolutional layer as well as the improved generalization ability provided by the added 
depth and separable layers.

3.3 � Bayar2016

Proposed in 2016, the constrained convolution method of image manipulation detec-
tion, hereafter referred to at Bayar2016, proposes a three-layer CNN, with two max-
pooling layers and three fully-connected layers (including the initial constrained 
convolutional layer) [9]. This model demonstrates impressive results in discerning 
between the six manipulations investigated in this paper using the data set described 
in the next section, achieving 99.9% validation accuracy.

3.4 � Xception

In addition to a the Bayar2016 shallow network, recent work has demonstrated that 
increasing network depth can dramatically improve model generalization. To com-
pare with a model of similar depth that also uses separable convolutional layers, we 
experiment with XceptionNet, a deep network comprising of 42 layers, including 
separable convolutional layers [34]. The network design is built upon Inception archi-
tecture [35], with the innovation of separable filters. Similar to Bayar2016, this model 
also achieves near 99% accuracy on the data set described in [9] before printing and 
scanning. While a variety of popular deep learning models could be appropriate for 
comparison, we compare with Xception due to (1) its comparable architecture and 
number of parameters and (2) its demonstrated image classification performance, 
performing in the top 1% accuracy on ImageNet [34, 36].

3.5 � Data sets

For accurate comparison, we follow the procedure described in [9], using images from 
the first IEEE IFSTC Image Forensics Challenge as described by [37]. The portion of 
the data set used consists of 3334 images of size 1024 × 768, which was further split 
into training, validation and testing data. The images are captured from several differ-
ent digital cameras of both indoor and outdoor scenes.

3.6 � Printing and scanning

We used three different printers and one scanner to create a data set of printed and 
scanned images: one Dell S3845CDN Laser Multifunction Printer, one Xerox Altalink 
C8070 Multifunction Printer, and one Xerox WorkCentre 7970 Multifunction Printer, 
which we refer to as Dell, Xerox1 and Xerox2 respectively hereafter. We printed 50 
images of each manipulation type on each printer and used the Dell scanner to scan 
each image (see Fig. 2). After scanning and extracting the images from the resulting 



Page 7 of 16Joren et al. EURASIP Journal on Image and Video Processing  2022, 2022(1):2	

pdfs, the image sizes were 1700 x 2200 pixels, which was then center-cropped to 1536 
× 1792 to remove the white border added by the scanning process. Each image was 
then split into 42 299 × 299 blocks (or 256 × 256 blocks for Bayar2016), resulting in 
2142 image blocks of each class from each printer (see Fig. 3). We limited our data 
creation to 900 full-page color images both for budget constraints and environmental 
concerns; creating a synthetic data set through printing and scanning simulation may 
be an avenue of future work.

3.7 � Manipulations

Again following the procedure described in [9], we manipulated each image with each 
of six manipulation types: Additive White Gaussian Noise (AWGN), Gaussian blur-
ring (GB), JPEG compression (JPEG), median filtering (MF), re-sampling (RS) and 
retaining the Pristine image (PR).

Fig. 2  Pristine image before (left) and after (right) printing and scanning on Xerox1 (Xerox Altalink C8070 
Multifunction Printer). We note that there is significant variation between the two images, similar to that 
introduced by the global manipulation methods with which we experimented

Fig. 3  Examples of manipulations before and after printing and scanning. The six manipulations refer to 
Additive White Gaussian Noise (AWGN), Gaussian blurring (GB), JPEG compression (JPEG), median filtering 
(MF), Pristine or no manipulation (PR) and bilinear resampling (RS). We note that due to the algorithms 
employed, JPEG compression and resampling might be reasonably similar to the printing and scanning 
process. For this reason, we additionally train and evaluate the models on a restricted set of four classes only, 
excluding JPEG and bilinear resampling. See Table 1 for details on the parameters used for each manipulation



Page 8 of 16Joren et al. EURASIP Journal on Image and Video Processing  2022, 2022(1):2

•	 Additive white Gaussian noise constructs a noise matrix of the same shape as the 
image according to a normal distribution with a given sigma value and adds this 
matrix to the original image. The result is then normalized to values between 0 
and 255.

•	 Gaussian blurring blurs the image using a Gaussian filter by convolving the input 
image using a given kernal.

•	 JPEG compression is a lossy compression method which compresses the image 
through converting the color map, down-sampling and Discrete Cosine Transform 
(DCT).

•	 Median filtering replaces each pixel with the median value of the neighboring pixels 
using a given kernal area.

•	 Bilinear resampling works similarly, resizing the image using the distance-weighted 
average of the neighboring pixels to estimate the new pixel value.

See Table 1 for manipulation parameter details.

Table 1  Parameter specifications for each manipulation type

We used the same parameters as in [9] for fair comparison. See Sect. 3.7 for details on the manipulations

Manipulation Hyperparameters

Additive White Gaussian Noise (AWGN) σ = 2.0

Gaussian blurring (GB) Kernal size = (5,5) σ = 1.1

JPEG compression (JPEG) Quality = 70

Median filtering (MF) Kernal size = (5,5)

Pristine (PR) None

Bilinear resampling (RS) Ratio = 1.5

Table 2  Descriptions and sizes of each data set used for training and validation

Size refers to the number of 299 × 299 or 256 × 256 image blocks in each data set, which is then split in 75% training and 
25% validation. X1 and X2 refer to Xerox1 and Xerox2 printers (Sect. 3.6), respectively. The labels refer to the labels used 
when training and evaluating on each data set

Data set name Description Size

Original IFSTC data set after six manipulations 198,624

Xerox1 Images from IFSTC data set with manipulations after being printed and scanned 
on Xerox1

2142

Composite Printers Combined set of images from each printer (balanced) 6426

Composite Full Combined set of images from each printer plus original IFSTC images (balanced) 8568

Printer Identification Printer identification and pristine images after being printed and scanned by all 
three printers

3213

JPEG Compression IFSTC data set with JPEG compression (QF=80) on all images 198,624
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4 � Experiments
We trained each model (our proposed model, Bayar2016, and Xception) on a variety 
of training sets and evaluated each trained model on multiple validation data sets (see 
Table 2).

We first investigated the extent to which our selected models can correctly classify 
the validation images after printing and scanning. We trained each model on the origi-
nal data set (before printing and scanning) with all six classes: Additive White Gauss-
ian Noise (AWGN), gaussian blurring (GB), JPEG compression (JPEG), Median Filtering 
(MF), Bilinear Resampling (RS) and Pristine or no manipulation (PR). For a more com-
plete analysis, we removed the Bilinear Resampling (RS) and JPEG compression (JPEG) 
classes from the training and validations sets and retrained the models, as these two 
classes could intuitively be considered similar to changes introduced during the printing 
and scanning process (see Table 3).

Second, we explored countering this vulnerability by training on the printed and 
scanned image blocks [13]. We trained each model on the printed and scanned image 
blocks from a single printer. The data set (see Table 2, Xerox1) consists of 50 full images 
(1700 × 2200 pixels), which were then divided into 299 × 299 for our proposed model 
and Xception, and 256 × 256 for the Bayar2016 model. This resulted in 2142 image 
blocks for each data set, which was divided into training and validation sets of size 1722 
and 420 respectively, using only the central images to avoid including border artifacts 
from the scanning process.

Third, we created composite data sets, one consisting of all printed and scanned image 
blocks (from all three printers), and the other consisting of all printed and scanned 
image blocks as well as a number of image blocks from the original data set (before 
printing and scanning), at a size equivalent to those from one of the three printers. The 
first composite data set, which we refer to as Composite Printers, consists of 6426 image 
blocks (printed and scanned only), while the second consists of 8568 image blocks (75% 
printed and scanned, 25% original). The goal of this experiment was to evaluate if the 
poor accuracy fitting the printed and scanned data could be mitigated by dramatically 
increasing the size of the training set.

Table 3  Validation accuracy for various validation sets after training on IFSTC data set

We note that although all three models perform exceptionally well on the original IFSTC data set, each performs little better 
than random when evaluated on images from any of the three printers. Because JPEG compression and Bilinear Resampling 
(RS) could be reasonably inferred to be similar to printing and scanning, we remove these classes and train and evaluate on 
a restricted set of four classes (4c) (see Sect. 4). Despite this restricted set of manipulations, however, the models perform no 
better than random

Bayar2016 Xception Proposed model

Original (6c) 0.9979 0.9916 0.993

Dell (6c) 0.1643 0.1632 0.1673

Xerox1 (6c) 0.1976 0.201 0.1827

Xerox2 (6c) 0.1972 0.202 0.1953

Original (4c) 0.9948 0.9954 0.997

Dell (4c) 0.2571 0.223 0.2347

Xerox1 (4c) 0.2411 0.246 0.2367

Xerox2 (4c) 0.2387 0.255 0.2393

JPEG (4c) 0.4255 0.5126 0.4825
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Finally, we evaluated the performance of each of the models on identifying the printer 
of printed and scanned images (see Table 2, Printer Identification).

4.1 � Hyperparameters

For Bayar2016, we used a batch size of 64, an initial learning rate of 0.01, stochastic gra-
dient descent (SGD) with momentum 0.95, weight decay 0.0005, gamma 0.7, and step 
size 6.

We used similar hyperparameters for Xception and our proposed model. Specifically, 
for both models, we use the pre-trained weights from the network as trained on Ima-
geNet. We again used SGD, and inferred the batch size and learning rate at training time 
based on the number of GPUs, using

for the batch size and 0.01 for the initial learning rate. We use momentum 0.9 and weight 
decay 0.0005. For learning rate decay, we use polynomial decay as described in [38]. For 
each model, we trained until the validation accuracy plateaued or began to fall.

Following the original methodology for Bayar2016, we retain only the green color layer 
of each image and divide into 256 × 256 non-overlapping blocks, retaining nine central 
blocks. For our proposed model and for Xception, we retain all three color channels and 
split the images into 299 × 299 non-overlapping blocks, according to the input size of 
the original architecture (Figs. 4, 5).

batch_size = 4 × num_gpus

Fig. 4  Confusion matrix for Bayar2016 trained on original IFSTC, evaluated on Xerox1 (see Table 2, Xerox1). 
We note that despite the high reported validation accuracy on the original data set, the model struggles to 
distinguish between the classes after printing and scanning
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5 � Results and discussion
5.1 � Print‑scan manipulation

To evaluate the general vulnerability of each of the models to printed and scanned 
images, we trained on the original IFSTC data set (before printing and scanning) and 
evaluated each model on validation sets from each of the three printers. When we 
evaluated the models on the printed and scanned validation sets, we found that each 
model performed only slightly better than random.

We additionally removed the bilinear resampling (RS) and JPEG compression 
classes, and found that the resulting models are similarly unable to correctly classify 
the remaining four manipulations, still performing at or below random. We addition-
ally note that the models perform worse on the printed and scanned validation images 
than on the validation images after JPEG compression, a known vulnerability of these 
types of models, indicating that printing and scanning may be more effective at mask-
ing the manipulations [17] (see Table 3).

5.2 � Cross‑training on printed and scanned examples

We additionally trained each model on printed and scanned images from an individual 
printer (Xerox1) (see Sect. 3.6).

We note that Bayar2016 and Xception achieve accuracies 66.6% and 70.4% respec-
tively, while our proposed model is able to achieve an accuracy of 75.3%. It also appears 
that training on one printer does not lend itself to similar validation accuracy on exam-
ples from another printer, even of the same make (see Table 4).

Fig. 5  Confusion matrix for Bayar2016 trained on Original IFSTC (without RS and JPEG), evaluated on Xerox1 
(see Table 2). We investigate the model’s performance after removing bilinear resampling (RS) and JPEG 
compression, but find that it still performs little better than random
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5.3 � Composite training

To compensate for the small size of the data set for each printer alone, we created a compos-
ite data set, consisting of all of the printed and scanned examples (total size 6426 blocks), 
which we refer to as Composite Printers. However, we found that training on this compos-
ite data set did not improve validation performance on any single printer compared with 
training on images from that printer alone. While this is possibly due to a still insufficiently 
large training data set, it also likely provides further evidence that the difference between 
printers and scanners may be significant enough to preclude fitting a general printed and 
scanned data set (see Table 5).

For completion, we additionally created another composite data set, which we refer to 
as Composite Full, which consists of the same composition as Composite Printers plus an 
equivalent number of examples from the original data set (total size 8568), and found simi-
lar results (see Table 6).

Table 5  Validation accuracy for various validation sets after training on the composite printers data 
set

Bold values refer to models that perform better than the rest - to highlight the model performance - its a common practice 
to do this and usually helps improve readability

One possible explanation for the poor validation accuracy on a single printer could be the small size of the data set. To 
investigate this, we combine the images from all three printers for training, but note that performance on a single printer 
does not improve. Here 4c indicates that we used the restricted set of manipulations (AWGN, GB, MF, and PR) (see Sect. 4)

Bayar2016 Xception Proposed model

Dell (4c) 0.6506 0.649 0.713
Xerox1 (4c)  0.7001 0.626 0.696
Xeros2 (4c) 0.5381 0.623 0.663
JPEG (4c) 0.2643 0.2902 0.2601

Original (4c) 0.2617 0.2847 0.2449

Table 4  Validation accuracy for various validation sets after training on Xerox1 data set (see Table 2, 
Xerox1)

Bold value refer to models that perform better than the rest - to highlight the model performance - its a common practice to 
do this and usually helps improve readability

We trained each model on images from only the Xerox1 data set, or images after being printed and scanned on the 
first Xerox printer. We find that while no model is able to perfectly fit the printed and scanned data set, our proposed 
models significantly outperforms the current state-of-the-art models. We also note that transferability to other printers 
remains weak, indicating significant variance between the printers. Here 4c indicates that we used the restricted set of 
manipulations (AWGN, GB, MF, and PR) (see Sect. 4)

Bayar2016 Xception Proposed model

Xerox1 (4c) 0.7036 0.666 0.753
Dell (4c) 0.3018 0.482 0.456

Original (4c) 0.2342 0.3873 0.3649

Xeros2 (4c) 0.4738 0.611 0.572

JPEG (4c) 0.2418 0.3848 0.364
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5.4 � Printer identification

For comparison with work on camera model identification, we additionally experimented 
with printer identification on each of the three printers using the discussed models, and 
found that the models could distinguish between images from the printers with up to 95% 
accuracy. This is particularly impressive considering the accuracies were achieved using a 
relatively small set of training data (2410 image blocks) and without any additional meta-
data (see Table 7), indicating significant variance between the artifacts introduced by each 
printer [15].

6 � Conclusions
We investigated the robustness of current state-of-the-art image manipulation detection 
models in the context of printing and scanning, and found that these models perform 
poorly on printed and scanned image data. We proposed a model architecture which 
performs   5% better than the state-of-the-art models when trained and evaluated on 
images from a single printer. We constructed a data set of over 6000 printed and scanned 
image blocks which we plan to release to the community for further investigation.

That current state-of-the-art models are vulnerable to printing and scanning is an 
important finding given the availability and ease of printing and scanning images versus 
constructing complex adversarial examples.

Further analysis suggest that the variability between images produced by each printer 
is large, significant enough for the models to easily distinguish between printers and for 
models trained on a single printer to generalize poorly to images from another printer. 
This conclusion may create additional challenges in designing models robust to printing 
and scanning, and sets it apart from work on creating models robust to more uniform and 
predictable JPEG compression. Future work may include developing methods to simulate 
printing and scanning in order to create a larger data sets for training the models.

Table 6  Validation accuracy for various validation sets after training on the Composite Printers data 
set

Bold values refer to models that perform better than the rest - to highlight the model performance - its a common practice 
to do this and usually helps improve readability

For a complete analysis, we add additional image blocks (blocks before printing and scanning) to the composite data set, 
but again find that performance does not improve. Here 4c indicates that we used the restricted set of manipulations 
(AWGN, GB, MF, and PR) (see Sect. 4)

Bayar2016 Xception Proposed model

Dell (4c) 0.6339 0.662 0.661
Xerox1 (4c) 0.6982 0.632 0.674

Xerox2 (4c) 0.5637 0.602 0.696

JPEG (4c) 0.519 0.6374 0.4972

Original (4c) 0.8063 0.9259 0.9629

Table 7  Validation accuracy for printer identification by model

We investigate the variation of the images between printers by training each model to discern between printers. The high 
accuracy indicates that the images produces by each printer vary significantly

Bayar2016 Xception Proposed model

Printer identification 0.9048 0.956 0.9533
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Abbreviations
AWGN		�  Additive White Gaussian Noise
Bayar2016		�  Model described in [9]
CNN		�  Convolutional neural network
Dell		�  Dell S3845CDN laser multi-function printer
FGSM		�  Fast gradient sign method
GAN		�  Generative adversarial network
GB		�  Gaussian blurring
GPU		�  Graphics processing unit
IFSTC		�  IEEE IFSTC image forensics challenge data set as described in [37]
JPEG		�  JPEG compression/JPEG compressed
JSMA		�  Jacobian-based saliency map attack
MF		�  Median filtering
PGD		�  Projected gradient descent
PR		�  Pristine or no manipulation
RS		�  Bilinear resampling
SGD		�  Stochastic gradient descent
SRM		�  Steganalysis rich model
Xception/XceptionNet	� Model described in [34]
Xerox1/X1		�  Xerox Altalink C8070 multi-function printer
Xerox2/X2		�  Xerox Work Centre 7970 multi-function printer
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