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Abstract 

Adjustment for prognostic covariates increases the statistical power of randomized trials. The factors influencing 
the increase of power are well-known for trials with continuous outcomes. Here, we study which factors influence 
power and sample size requirements in time-to-event trials. We consider both parametric simulations and simulations 
derived from the Cancer Genome Atlas (TCGA) cohort of hepatocellular carcinoma (HCC) patients to assess how sam-
ple size requirements are reduced with covariate adjustment. Simulations demonstrate that the benefit of covariate 
adjustment increases with the prognostic performance of the adjustment covariate (C-index) and with the cumulative 
incidence of the event in the trial. For a covariate that has an intermediate prognostic performance (C-index=0.65), 
the reduction of sample size varies from 3.1% when cumulative incidence is of 10% to 29.1% when the cumulative 
incidence is of 90%. Broadening eligibility criteria usually reduces statistical power while our simulations show that 
it can be maintained with adequate covariate adjustment. In a simulation of adjuvant trials in HCC, we find that the 
number of patients screened for eligibility can be divided by 2.4 when broadening eligibility criteria. Last, we find that 
the Cox-Snell R2

CS
 is a conservative estimation of the reduction in sample size requirements provided by covariate 

adjustment. Overall, more systematic adjustment for prognostic covariates leads to more efficient and inclusive clini-
cal trials especially when cumulative incidence is large as in metastatic and advanced cancers. Code and results are 
available at https://​github.​com/​owkin/​Covad​justS​im.
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Background
Adjustment for prognostic covariates improves preci-
sion and increases statistical power for treatment effect 
estimation in randomized clinical trials [1-4]. Randomi-
zation guarantees the validity of statistical analysis of 
randomized trials whether they are adjusted or unad-
justed [5]. However, unadjusted analysis can be imprecise 
because of a large variability between patient outcomes 

that could be explained by several baseline covariates. 
Covariate adjustment for prognostic covariates accounts 
for outcome variation between patients, leading to a 
more precise estimation of the treatment effect while 
adjusting for random noise will lead to small decrements 
of power [1]. While adjustment on important covariates 
can correct for chance imbalance in important baseline 
covariates, adjustment covariates should be selected and 
prespecified at the trial design stage based on their prog-
nostic value and not on any imbalance criterion assessed 
after randomization [6]. This methodological consensus 
is currently being translated into regulatory guidance: 
the European Medicines Agency (EMA) published a 
guideline in 2015 and the Food and Drug Administration 
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(FDA) has issued a draft guidance in 2021 [7, 8]. Increase 
of precision when using covariate adjustment translates 
to a reduced sample size for reaching a target of statisti-
cal power, typically at least 80% in clinical trials.

For time-to-event trials that are frequent in oncology, 
we investigate to what extent trial and indication char-
acteristics determine the impact of covariate adjustment 
on statistical power and on sample size requirements. 
These characteristics include the cumulative incidence 
of the event of interest at the end of follow-up, the prog-
nostic performance of covariates, and the censoring rate. 
Understanding the relationship between cumulative inci-
dence and reduction in sample size helps prioritize the 
disease indications where covariate adjustment is the 
most impactful.

We also evaluate whether covariate adjustment can 
help to broaden trial eligibility criteria. Eligibility cri-
teria in clinical trials can be too restrictive which leads 
to limited generalizability as well as difficulty in enroll-
ment [9, 10]. Beyond ensuring patient safety, restrictive 
eligibility might be used to ensure homogeneity in the 
trial population [11, 12]. In non-small cell lung cancer, it 
was shown using observational cohorts that many inclu-
sion criteria are superfluous as they restrict the poten-
tial enrollment of trials even though the treatment is as 
efficacious for the excluded patients as for the included 
patients [13]. As covariate adjustment allows to ana-
lytically compensate for the heterogeneity in the patient 
population, we investigate whether adequate covariate 
adjustment could allow to broaden eligibility criteria 
while maintaining statistical power.

To answer both of those questions, we use parametric 
simulations as well as semi-synthetic simulations based 
on data from patients with resected HCC. In paramet-
ric simulations, event times are simulated based on an 
extensive exploration of the parameter space. The semi-
synthetic simulations are based on TCGA data [14]. 
The covariate of interest, which is used for adjustment, 
is named HCCnet and it captures a prognostic signal 
on overall survival for HCC after resection [15]. More 
specifically, it is a continuous measure of the risk at per-
patient level, with higher value indicating higher risk. For 
each patient, the HCCnet value is determined by apply-
ing the deep-learning model to the patient’s histological 
slide. In both cases, the simulations rely on the propor-
tional hazards assumption.

Last, we determine how sample size could be deter-
mined if the prognostic signal carried by the covariate 
is known a priori based on external data. For a continu-
ous outcome, the Fleiss formula relates the sample size 
of the adjusted analysis (denoted Nadj ), which is required 
for a given statistical power, to the sample size of the 
unadjusted analysis (denoted N0 ). Denoting by r2 the 

proportion of variance of the outcome explained by the 
covariate, the Fleiss formula states that the sample size 
needed for the adjusted analyses is reduced by r2 com-
pared to the unadjusted one Nadj = N0 1− r2  [16]. For 
instance, a correlation r of 0.5 between a baseline covari-
ate and the outcome translates to sample size require-
ments for the adjusted analysis reduced by 25% compared 
to the unadjusted analysis. For a time-to-event outcome, 
there are several alternative definitions for the proportion 
of variation explained by a covariate. Different measures 
to compute the proportion of explained variance have 
been proposed for time-to-event analysis [17, 18]. Using 
the parametric simulations, we assess whether the Fleiss 
formula can be extended to the time-to-event setting.

Methods
Parametric simulations based on a time‑to‑event model
Parametric simulations are performed to estimate the 
observed reduction of the sample size requirement and 
assess its relationship with a single adjustment covariate’s 
C-index and the cumulative incidence of the event at the 
end of the trial. Other parameters of interest are the size 
of the treatment effect, the Weibull shape of the baseline 
hazard function, and the drop-out rate. The simulations 
rely on the proportional hazard assumption.

Event times are generated following the Weibull dis-
tribution with shape w and scale depending on the 
treatment hazard ratio θ , and on a standard Gaussian 
covariate x. Censoring times Tdrop are drawn from an 
exponential distribution with a specified drop-out rate d . 
Denoting z the treatment allocation variable, κ the inter-
cept, and β the coefficient of x , this generative model can 
be formally summarized as follows for patient i:

All patients remaining at risk at 5 years are censored 
at that time. The treatment allocation is independent of 
the covariate and there is the same number of patients in 
both arms. For each set of input parameters, the auxiliary 
parameters κ and β are numerically optimized to reach pre-
specified values of the cumulative incidence at the end of 
the trial � and the C-index C evaluated in the control arm.

Once event times are simulated, the presence of a treat-
ment effect is tested in an unadjusted analysis and an 
analysis adjusted for the covariate using the Wald test for 
the treatment coefficient in a Cox regression. The statis-
tical power for the unadjusted analysis and the adjusted 
analysis is estimated on a grid of sample sizes based on 
10,000 numerical replications per sample size [19]. The 
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resulting power curves give the sample sizes Nadj and N0 
required to reach a power of 80% for both analyses, from 
which the reduction of sample size achieved with adjust-
ment R2

obs is deduced (Fig. 1). These simulations explore 
a wide range of parameter values (Table S1), allowing for 
an extensive study of R2

obs behavior as a function of the 
cumulative incidence � and c-index C in different set-
tings of proportional hazards.

To indicate what are the most relevant indications for 
covariate adjustment, we provide estimates of the cumu-
lative incidence � in the control arm for several oncology 
trials. Cumulative incidence is estimated by reading the 
value of the Kaplan-Meier curves published in the manu-
script describing the trial results. More details on para-
metric simulations can be found at https://​github.​com/​
owkin/​Covad​justS​im.

Semi‑synthetic simulations based on HCC data from TCGA​
To consider simulations that mimic distributions of 
covariates found in clinical data, we also perform 

semi-synthetic simulations of resected HCC patients. 
The covariate used for adjustment is a prognostic score 
based on hematoxylin and eosin stained (H&E) images 
processed with the HCCnet deep learning algorithm [15]. 
The deep learning model was trained on another dataset 
than TCGA. We consider the prognostic scores of HCC-
net applied on 328 patients with early stage HCC from 
the TCGA HCC dataset [14, 15]. In the TCGA dataset, 
we have access to outcome measures including over-
all survival and 34 clinical variables with less than 50% 
of missing data in addition to the HCCnet prognostic 
covariate.

We impute all missing values among the 34 clinical 
variables. For imputation, we use factorial analysis for 
mixed data (FAMD), a principal component method 
for data involving both continuous and categorical vari-
ables [20]. The imputed variables used as adjustment are 
tumor staging (1% missing values) and Eastern Coop-
erative Oncology Group (ECOG) score which have 20% 
missing values. The imputed variables used as eligibility 

Fig. 1  Workflow of parametric simulations. For a set of parameters corresponding to a clinical trial scenario, 10,000 instances of clinical 
trials are simulated to estimate statistical power. The parameters used to obtain the illustrative Kaplan-Meier curves and power curves are 
C = 0.65,� = 0.9,w = 1.5, d = 0, θ = 0.7. The number of patients in the power curve is the sum of both arms

https://github.com/owkin/CovadjustSim
https://github.com/owkin/CovadjustSim
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criteria in our simulation study are the ECOG score, the 
Child-Pugh classification (33% missing), the macrovascu-
lar invasion (15% missing), and B or C hepatitis infection 
status (15% and 5% missing values respectively).

The simulations follow the same assumptions as the 
parametric ones while preserving the observed survival 
curve and dependence of survival on covariates. To do 
so, a Cox model of overall survival is fitted on the avail-
able prognostic variables (tumor staging, ECOG score, 
and the HCCnet variable). For each simulated patient, 
we sample the clinical covariates from TCGA. The haz-
ard rate is defined as for parametric simulations except 
that there is a matrix X of covariates instead of a single 
covariate, and β is replaced by β̂  the vector of coefficients 
obtained from the fitted Cox model. The Weibull distri-
bution is replaced by the empirical survival function that 
depends on the hazard rate and on the baseline survival 
function Ŝ0 fitted with the same Cox model on a null data 
point (baseline hazard):

As before, all patients with events after 5 years are cen-
sored at that time.

We choose a sample size of 760 individuals as it is the 
average sample size of 4 ongoing trials for adjuvant treat-
ment in early stage HCC [21-24]. The treatment effect 
size is set to θ = 0.72 so that the estimated statistical 
power with adjustment for the clinical variables (tumor 
staging and ECOG score) is 80% for a sample size of 760 
individuals. Randomization of the treatment assignment 
is stratified on tumor staging. To estimate the reduction 
of sample size obtained when adding HCCNet as adjust-
ment covariate, we consider varying values of the sample 
size, find the minimal values where power reaches 80%, 
and compute the relative reduction of sample size com-
pared to the sample size of 760 individuals. Statistical 
power is estimated based on 10,000 replications.
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Effect of covariate adjustment when broadening eligibility 
criteria
Using the parametric simulations and the semi-synthetic 
simulations, we evaluate if the effect of covariate adjust-
ment is changed when considering less restrictive inclu-
sion criteria. These simulations assume that the treatment 
hazard ratio is constant across the entire population. For 
parametric simulations, the restricted inclusion crite-
ria is based on the values of the prognostic covariate X . 
Only patients with values of X below the 80% quantile, 
i.e., patients at lower risk, are included in the simulated 
trial with the more restrictive eligibility criteria; this 
cohort is therefore expected to have a lower cumulative 
incidence than the less restrictive cohort. There are then 
4 scenarios when combining the two possible eligibility 
criteria (all patients or restricted inclusion) and the two 
choices of adjustments (no adjustment or adjustment for 
X ). Parameters of the simulations include the log hazard 
ratio of the covariate β , the intercept of the Cox model 
κ , the Weibull shape w , and the treatment hazard ratio r. 
We set w = 1.5 , and θ = 0.7 . The remaining parameters 
β and κ are fixed so as to reach 0.65 of c-index and 0.9 of 
cumulative incidence in the control arm of the study with 
less restrictive criteria.

In the case of the HCC semi-synthetic simulations, we 
consider that including all TCGA patients selected for 
HCCnet validation is the less restrictive inclusion criteria 
and we define two additional levels of restricted eligibil-
ity criteria (Table 1). The mildly restrictive eligibility level 
has two inclusion criteria present in all 4 ongoing large 
trials for adjuvant treatment in early stage HCC [21-24]: 
only patients with a Child-Pugh score of A and with an 
ECOG status of 0 or 1 are included. The most restrictive 
eligibility criteria further restrict the ECOG status to 0 
as in the STORM trial [25], exclude patients with a dual 
infection of hepatitis B and hepatitis C as in the KEY-
NOTE-937 trial [23] and exclude patients with macro-
vascular invasion as in the IMBRAVE050 trial [22]. We 
consider only the eligibility criteria that were available in 
the TCGA HCC dataset. In summary, more restrictive 

Table 1  Definition of eligibility criteria used for the semi-synthetic simulations based on the TCGA dataset. The more restrictive 
eligibility criteria exclude patients with comorbidities who can be expected to have worse outcomes. N denotes the number of TCGA 
patients who meet the eligibility criteria

Eligibility level Nested inclusion criteria N (%)

Less restrictive All TCGA patients selected for HCCnet validation [15] 328 (100%)

Mildly restrictive Child Pugh classification is A
ECOG ≤ 1

270 (82%)

Most restrictive ECOG score of 0
No macrovascular invasion
No cumulated hepatitis B and C infection

169 (52%)
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eligibility criteria exclude patients with increased disease 
severity. The group with the most restrictive eligibility 
criteria is expected to have the lowest cumulative inci-
dence, and the lowest HCCnet score on average. There 
are therefore 6 different scenarios when combining the 
three levels of eligibility criteria and the two choices of 
adjustment: whether or not HCCnet is considered as an 
adjustment variable in addition to tumor staging and 
ECOG. In the scenario with the most restrictive eligibil-
ity levels, every patient has an ECOG of 0 and therefore 
the analyses are not adjusted for ECOG.

For both types of simulations, changing the inclusion 
criteria changes the number of events which affects sta-
tistical power directly. To provide a fair comparison 
between the methods with or without adjustment, we 
present the statistical power of the different scenarios as a 
function of the number of events. In both cases, no drop-
out was added and 10,000 replications were generated to 
evaluate statistical power. In both cases, patients at lower 
risk of the event are selected when we consider the more 
restrictive criteria. We also evaluate how broadening the 
eligibility criteria would impact the number of patients 
that need to be screened for enrollment to succeed.

Proposed R2 measures for time‑to‑event analysis
Several categories of measures have been proposed to 
extend the R2 measure to time-to-event data [17, 18]. 
We consider explained variation (EV) and explained ran-
domness (ER) measures. Explained variation measures 
are extensions of the proportion of explained variance 
that is used in linear regression. Explained randomness 
measures are based on entropy measures and compare 
the quantity of information contained in models with and 
without the covariates of interest. In the simulations, we 
study the behavior of four EV measures: R2

D , R2
I  , R

2
PM , and 

R2
R [26-28], and four ER measures: ρ2

k , ρ2
WA , ρ2

XOQ , and 
R2
CS [26, 27, 3129-]. The proposed R2 measures are esti-

mated over the grid of simulation parameters in Table S1 
and are compared to the observed reduction in sample 
size. Each estimation of R2 for a set of parameters is an 
average of 1000 R2 , each evaluated with a simulated data-
set of 1000 control patients.

Results
Evaluation of the parameters impacting sample size 
reduction with parametric simulations
The parametric simulations show that the sample size 
reduction obtained with covariate adjustment var-
ies between 0 and 86%. It increases as a function of the 
covariate prognostic performance measured with the 
C-index, and of cumulative incidence, which corre-
sponds to the probability of an event (death, progres-
sion…) before the end of the follow-up period. When we 

consider a cumulative incidence of � = 10% , covariate 
adjustment reduces the sample size by 3.1% for a covari-
ate with a C-index of 0.65, by 9.5% for a C-index of 0.75, 
and by 32.7% for a C-index is 0.85. For an intermediate 
value of � = 50% , the reduction is 16.8%, 42.7%, and 
73.0% for the three C-index values of 0.65, 0.75, and 0.85. 
For a high cumulative incidence value of � = 90% , the 
reduction is 29.1%, 61.3%, and 85.7% for the same values 
of C-index (Fig. 2).

Cumulative incidence values depend on indication, on 
the nature of the event (progression, death…), and on the 
duration of follow-up (Table 2). We find a wide range of 
values for cumulative incidence in several oncology trials. 
It ranges from 18.6% at 5 years for disease recurrence in 
early breast cancer to 98% at 3 years for death in meta-
static pancreatic cancer (Table 2).

We find that other parameters of the simulations do 
not impact the reduction of sample size obtained with 
covariate adjustment. These additional parameters are 
the size of the treatment effect (hazard ratio), the Weibull 
shape parameter, and the drop-out rate (Figure S1).

The drop-out rates of d = 0.01 or d = 0.1 result in dif-
ferent average censoring rates depending on the values 
taken by other parameters. The median censoring rate 
(computed over the set of other parameters’ value) before 
the end of follow-up was 7.6% when d = 0.01 (min-
max: 0.8–47.3%) and 46.3% when d = 0.1 (min-max: 
6.7–89.8%).

Comparing semi‑synthetic HCC simulations and parametric 
simulations
We consider semi-synthetic simulations based on the 
TGCA HCC cohort to evaluate power gain obtained 
with a deep learning variable. We find that adjust-
ing on the deep learning covariate HCCnet, in addi-
tion to tumor staging and ECOG, reduces the 
required sample size to reach 80% statistical power by 
R2
obs = 1− N0/Nadj ≃ 1− 671/759 = 11.6% (figure S2). 

For the sample size that provides a power of 80% when 
adjusting on ECOG and tumor staging only, the statisti-
cal power increases by 5% in absolute value when adjust-
ing also on the deep learning covariate.

We evaluate the compatibility of this result with the 
results of the parametric simulations. The cumulative 
incidence of death in the HCC-TCGA population is 49% 
at 5 years. The Cox model with tumor staging and ECOG 
score as covariates has a C-index of 0.65 in the simulated 
population, while adding the HCCnet covariate results in 
a C-index of 0.70. We label by 1 the quantities associated 
with adjustment for the clinical variables (tumor staging 
and ECOG) and by 2 the quantities associated with the 
additional adjustment of the HCCnet covariate (tumor 
staging, ECOG, and HCCnet). Applying Fleiss equation 
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Fig. 2  Reduction in sample size R2
obs

 as a function of the prognostic performance (C-index) of the covariate for a range of cumulative incidence 
values. Cumulative incidence � is measured at the end of the follow-up period. In the simulations, the hazard ratio is set at θ = 0.7, the drop-out 
rate at d = 0.01 , and the shape parameter of the Weibull distribution at w = 1.5 . The cumulative incidence values that are provided for the breast 
cancer and HCC indications come from clinical trials selected in Table 2. eBC, early breast cancer; eHCC, early resectable hepatocellular carcinoma; 
mBC, metastatic breast cancer; aHCC, advanced hepatocellular carcinoma

Table 2  Cumulative incidence of events of interest in the control arms of a selection of trials. For a given C-index of a prognostic 
covariate, the impact of covariate adjustment will be larger for indications with large cumulative incidence of events. HR+, hormone 
receptor positive; PD-L1+, programmed death ligand 1 positive; NSCLC, non-small cell lung cancer

Indication Trial Cumulative incidence � in control arm

HR+ early breast cancer (eBC) BIG 1-98 [32]
Letrozole vs tamoxifen

Probability of disease recurrence at 5 years: 18.6%

HCC after resection of local ablation (eHCC) STORM [25]
Sorafenib vs placebo

Probability of death at 5 years: 32%

Metastatic hormone-sensitive prostate cancer ENZAMET [33]
Enzalutamide vs standard nonsteroidal antiandro-
gen therapy in addition to testosterone suppression

Probability of death at 4 years: 36%

PD-L1+ advanced NSCLC KEYNOTE-024 [34]
Pembrolizumab vs chemotherapy

Probability of death at 1.5 years: 50%

HR+ metastatic breast cancer in premeno-
pausal patients (mBC)

MONALEESA-7 [35]
Ribociclib vs placebo in addition to endocrine 
therapy

Probability of death at 3.5 years: 54%

Resected pancreatic cancer PRODIGE 24 [36]
Modified FOLFIRINOX vs gemcitabine

Probability of death at 5 years: 70%

Advanced HCC (aHCC) CheckMate 459 [37]
Nivolumab vs sorafenib

Probability of death at 3 years: 83%

Malignant pleural mesothelioma CheckMate 743 [38]
Nivolumab+Ipilimumab vs chemotherapy

Probability of death at 3 years: 85%

Metastatic pancreatic cancer OXIPAN [39]
FOLFIRINOX vs gemcitabine

Probability of death at 3 years: 98%
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for the two adjustments using the R2
obs,i obtained with 

parametric simulations (Fig. 2), we obtain

Therefore, results obtained with semi-synthetic simu-
lations are coherent with the findings of the parametric 
simulations.

It should be noted that the impact depends on the 
added prognostic performance of a covariate and is not 
linked to the specific nature of the covariate.

Covariate adjustment when broadening eligibility criteria
For the unadjusted analysis, statistical power for a fixed 
number of events is increased when restricting the eligi-
bility criteria. By contrast, for the adjusted analysis, the 
broader inclusion criteria have the same statistical power 
as the narrower one (Fig. 3).

While the adjusted analyses with different eligibility 
criteria have the same statistical power, they imply a very 
different screened population size. Screened individu-
als are patients for which eligibility criteria is evaluated 
to test if they can be enrolled in the clinical trial. In the 
HCC example, the required size of the screened popula-
tion is 667 for the less restrictive inclusion while it is 1629 
for the most restrictive population. Therefore, the size of 

Nadj,2/Nadj,1 =

(
1− R2

obs,2

)
/

(
1− R2

obs,1

)
≃ 0.73/0.84 = 0.869 = 100%− 13.1%

the screened population is divided by 2.4 when broaden-
ing eligibility criteria while attaining the same statistical 

power. This difference is explained by the smaller propor-
tion of patients included as well as the smaller proportion 
of events with the restrictive eligibility criteria (34.8% at 5 
years versus 44.2% in the entire population).

Fit with R2 measures from the literature
We compare various R2 measures for time-to-event end-
points to the reduction of sample size R2

obs provided by 
covariate adjustment for the grid of parameters con-
sidered in parametric simulations (Figure S3). Most 
measures do not depend on the cumulative incidence 
of the event at the end of follow-up (Figure S3), which 
is not compatible with the results found for the reduc-
tion of sample size provided by covariate adjustment 
(Fig. 2). Most measures increase only as a function of the 
C-index (Figure S3). The Cox-Snell R2

CS best captures the 
observed sample size reduction in all our simulations. 
The median absolute error is minimal for the R2

CS and is 
3.2% (first and third quartiles are 0.9% and 8.4% respec-
tively). For large values of R2

CS , R2
obs is underestimated 

by R2
CS . Median absolute error for other R2 measures 

Fig. 3  Effect of broader eligibility criteria and of covariate adjustment on statistical power. Different inclusion statuses are shown by color and 
adjustment statuses by type of line, irrespective of color. (A) Results of the parametric simulations where the covariate adjusted for is a standard 
Gaussian. (B) Results of the semi-synthetic simulations based on the HCC-TCGA cohort. The clinical covariates adjusted for are ECOG score and 
tumor staging. The three levels of inclusion are based on eligibility criteria of past and ongoing trials outlined in Table 1. For all simulations, a 
constant treatment effect size is assumed across the population. More restrictive eligibility criteria exclude patients with higher disease severity



Page 8 of 10Momal et al. Trials          (2023) 24:380 

are 5.2% for R2
PM (1.9–10.9%), 5.2% for R2

D (1.9–11.0%), 
6.6% for R2

R (2.0–13.5%), 6.3% for R2
I  (2.5–17.6%), 6.4% 

for ρ2WA (2.6–17.7%), 7.2% forρ2XOQ  (2.6–21.2%), and 7.5% 
forρ2k (2.6–21.2%).

Using the Fleiss formula and the Cox-Snell R2
CS meas-

ure, we find that further adjusting on HCCnet—in addi-
tion to clinical covariates—in an adjuvant HCC trial 
would decrease the sample size by 9.2%, which is a slight 
underestimation of the 11.6% reduction in sample size 
found with the semi-synthetic simulations, and is coher-
ent with the results of the parametric study presented 
above.

Discussion
The impact of covariate adjustment depends on several 
characteristics related to indications and clinical trials. 
Our simulations confirm the expected result that the 
power gains increase with the prognostic performance, 
measured by C-index, of the covariates used in covari-
ate adjustment. Other parameters that were considered 
such as Weibull shape, drop-out rate, or effect size do not 
play an important role in determining power gain. Pre-
vious work on the topic already identified that the drop-
out rate and effect size do not impact the precision gains 
obtained with covariate adjustment [2].

Cumulative incidence at the end of the follow-up 
period is another major determinant of the impact of 
covariate adjustment. Compared to earlier work [2], 
we considered a finite time horizon (i.e., follow-up of 5 
years) which allowed us to identify the strong depend-
ence on cumulative incidence. Dependence on cumu-
lative incidence is related to the dependence on the 
prevalence of events that occur for binary outcomes [3]. 
We investigated cumulative incidence for several pub-
lished trials in oncology. Covariate adjustment will have 
limited impact for trials of new endocrine therapies for 
early breast cancer. For indications with low cumulative 
incidence, prognostic information can be more useful to 
perform prognostic enrichment than for covariate adjust-
ment [40]. For aggressive cancers such as mesothelioma, 
metastatic breast cancer, or metastatic pancreatic cancer, 
covariate adjustment provides notable gains in precision.

Another advantage of covariate adjustment is that it 
removes incentive to homogenize the population with 
restrictive eligibility criteria if we assume a constant 
treatment effect across the population. In both simula-
tion scenarios, the adjusted analyses are just as powerful 
whether there are strict eligibility criteria or not. How-
ever, the size of the population that needs to be screened 
for inclusion can be reduced substantially with the least 
restrictive eligibility criteria. More importantly, broader 
eligibility criteria imply a broader potential target popu-
lation. Adequate covariate adjustment can therefore go 

hand in hand with broader eligibility criteria that would 
allow easier enrollment as well as better generalizability 
of trial results. This would be in line with recent calls for 
less restrictive eligibility criteria [10, 11].

When comparing two designs of a clinical trial, one 
without covariate adjustment and the other with covari-
ate adjustment, the adjusted trial will have the additional 
practical burden of data collection of the predefined 
covariates, e.g., digitizing histology slides to apply HCC-
net. However, the associated cost can provide a large 
return on investment by improving the statistical power. 
This can lead to a reduction of the size of the population 
included in the trial and therefore a reduction in the time 
and effort spent. When comparing a trial with restric-
tive eligibility criteria and without adjustment with a trial 
with a broader eligibility criteria and with adjustment, 
the former will not have the advantage of less data col-
lection given that the screening will require collecting a 
large amount of information. Further, the more inclusive 
adjusted trial will have the added advantage of reducing 
the size of the population considered during the recruit-
ment and screening phase and the associated costs.

We evaluated the sample size reduction brought by 
covariate adjustment by investigating whether several 
R2 measures could approximate the observed sample 
size reduction. We found that the Cox-Snell R2

CS was the 
best approximation of our quantity of interest. The sam-
ple size with adjustment is then Nadj = N0

(
1− R2

CS

)
 

and this generalizes the Fleiss formula to a time-to-
event outcome. When denoting n the number of 
patients, and l0 and l1 the log-likelihoods of a base 
model and a model adjusting for additional covariates, 
we have R2

CS = 1− exp
[
− 2

n (l1 − l0)
]
 [31]. Other R2 

measures we consider were developed such as they do 
not depend on cumulative incidence explaining why 
they cannot approximate the reduction of covariate 
adjustment provided by covariate adjustment [17, 18].

Approximate sample size is of practical importance in 
the design of clinical trials. It could also be useful in the 
case of a blinded sample size reestimation when there 
is uncertainty on the prognostic performance of adjust-
ment covariates and where the required number of 
events should be reevaluated at an interim stage. Blinded 
sample size reestimation procedures have been proposed 
for a continuous outcome and could be generalized for 
time-to-event outcomes [41].

As noted in the draft FDA guidance, covariate adjust-
ment changes the target of estimation, a phenomenon 
called non-collapsibility [8]. When adjusting for a prog-
nostic covariate and when there is a true treatment effect 
(e.g., hazard ratio not equal to 1), it is expected that the 
conditional estimand (e.g., hazard ratio) drifts further 
away from 1 compared to the marginal estimand and 
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the variance is increased. Because the amount of drift 
is superior to the inflation of variance, statistical power 
resulting from covariate adjustment is increased [42] as 
confirmed in our simulations. If a marginal estimand is 
preferred, one can consider adjusted marginal estima-
tors that target the estimand of the unadjusted analysis 
while leveraging the gain in precision offered by covariate 
adjustment [42, 43].

Our simulations study the effect of covariate adjust-
ment on a relative measure of treatment effect, which 
is the hazard ratio. Absolute measures of efficacy such 
as restricted mean survival time or absolute risk reduc-
tion are also of interest and do not rely on the propor-
tional hazards assumption. Estimation of those measures 
can also be improved by using the prognostic signal of 
covariates [44-46]. The extent to which our findings, for 
instance the dependence on cumulative incidence, gener-
alize to this setting should be studied in further work.

Overall, we have shown that covariate adjustment 
reduces the sample size that is needed to reach a targeted 
statistical power. Reduction is particularly pronounced for 
indications where cumulative incidence is large. Further-
more, adequate covariate adjustment allows to maintain 
statistical power while relaxing eligibility criteria. New 
sources of prognostic covariates such as deep-learning 
models based on images can lead to more efficient trials.
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