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1 Introduction
The theory of time scales has become a trend and is now part of the mathematics sub-
ject classification: see 26E70 for “Real analysis on time scales”; 34K42 for “Functional-
differential equations on time scales”; 34N05 for “Dynamic equations on time scales”; and
35R07 for “PDEs on time scales”. The subject has began with the PhD thesis of Hilger to
get continuous and discrete results together [20, 21]. In books [8, 9], Bohner and Peterson
introduce most basic concepts and definitions related with the theory of time scales. In
[3, 10, 14, 22], several mathematicians investigate new forms of dynamic inequalities.

For instance, Bohner and Matthews [6] seem to be the first mathematicians to introduce
the dynamic Ostrowski inequality on time scales as follows.

Theorem 1.1 Let �, ς , ω, τ ∈ T, � < ς , and let � : [�,ς ]T → R be a delta differentiable
function. Then for all ω ∈ [�,ς ]T, we have

∣
∣
∣
∣
�(ω) –

1
ς – �

∫ ς

�

�σ (τ )	τ

∣
∣
∣
∣
≤ M

ς – �

(

h2(ω,�) + h2(ω,ς )
)

, (1.1)

where h2(ω, τ ) =
∫ ω

τ
(s – τ )	s and M = sup�<τ<ς |�	(τ )| < ∞. Inequality (1.1) is sharp in

the sense that the right-hand side cannot be replaced by a smaller one.
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Also, Bohner and Matthews [5] are the first mathematicians to introduce the dynamic
Grüss inequality on time scales as follows.

Theorem 1.2 Let �, φ ∈ Crd([�,ς ]T,R) with

m1 ≤ �(τ ) ≤ M1 and m2 ≤ φ(τ ) ≤ M2 for all τ ∈ [�,ς ].

Then we have
∣
∣
∣
∣

1
ς – �

∫ ς

�

�σ (τ )φσ (τ )	τ –
1

(ς – �)2

∫ ς

�

�σ (τ )	τ

∫ ς

�

φσ (τ )	τ

∣
∣
∣
∣

≤ 1
4

(M1 – m1)(M2 – m2).

Ostrowski’s inequality has a significant importance in many fields, particularly in numer-
ical analysis. One of its applications is the estimation of the error in the approximation of
integrals. Many generalizations and refinements of the Ostrowski inequality and its com-
panion inequalities were done during the past several decades; we refer the reader to the
papers [1, 3, 10, 12–14, 19, 22, 24, 25, 28, 29], the books [2, 26, 27], and the references cited
therein.

Some various generalizations and extensions of the dynamic Ostrowski inequality and
its companion inequalities can be found in [7, 11, 16–18, 23, 30].

Here we prove new dynamic Ostrowski-type dynamic inequalities via the α-conformable
calculus on time scales or functions with bounded second delta derivatives. Then we
prove new generalized dynamic trapezoid- and Grüss-type inequalities on time scales.
Our inequalities have a completely new form. As particular cases, we obtain some new
continuous and discrete inequalities of Ostrowski type generalizing those obtained in the
literature. The paper is organized as follows. In Sect. 2, we briefly recall necessary results
and notions. Then we give and prove the original results in Sect. 3. We end with Sect. 4 of
conclusion.

2 Time scales preliminaries
This section is devoted to the presentation of some preliminaries about fractional con-
formable derivatives developed in [4].

Now, let us take a journey to the center of the time scales calculus. A time scale T is an
arbitrary nonempty closed subset of the set of real numbers R. Throughout the paper, we
assume that T has the topology inherited from the standard topology on R. We define the
forward jump operator σ : T → T for any τ ∈ T by

σ (τ ) := inf{s ∈ T : s > τ }

and the backward jump operator ρ : T→ T for any τ ∈ T by

ρ(τ ) := sup{s ∈ T : s < τ }.

In the preceding two definitions, we set inf∅ = supT (i.e., if τ is the maximum of T, then
σ (τ ) = τ ) and sup∅ = infT (i.e., if τ is the minimum of T, then ρ(τ ) = τ ), where ∅ denotes
the empty set.
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Definition 2.1 Let ξ : T → R, τ ∈ T
k , and α ∈ (0, 1]. For τ > 0, we define T	

α (ξ )(τ ) to be
the number (provided that it exists) such that, given any ε > 0, there is a δ-neighborhood
Uτ ⊂ T of τ , δ > 0, such that

∣
∣
[

ξ
(

σ (τ )
)

– ξ (s)
]

τ 1–α – T	
α (ξ )(τ )

[

σ (τ ) – s
]∣
∣ ≤ ε

∣
∣σ (τ ) – s

∣
∣

for all s ∈ Uτ . We call T	
α (ξ )(τ ) the conformable derivative of ξ of order α at τ , and we

define the conformable derivative on T at 0 as T	
α (ξ )(0) = limτ−→0+ T	

α (ξ )(τ ).

Remark 2.2 If α = 1, then from Definition 2.1 we obtain the delta derivative of time scales.
The conformable derivative of order zero is defined as the identity operator, T	

0 (ξ ) = ξ .

Remark 2.3 Along the work, we also use the notation (ξ )	α (τ ) = T	
α (ξ )(τ ).

Theorem 2.4 Let α ∈ (0, 1], and let T be a time scale. Let ξ : T →R and τ ∈ T
k . Then:

(i) If ξ is conformal differentiable of order α at τ > 0, then ξ is continuous at τ ;
(ii) If ξ is continuous at τ and τ is right-scattered, then ξ is conformable differentiable

of order α at τ with

T	
α (ξ )(τ ) =

ξ (σ (τ )) – ξ (τ )
μ(τ )

τ 1–α ;

(iii) If τ is right-dense, then ξ is conformable differentiable of order α at τ if and only if
there exists the finite limit T	

α (ξ )(τ ) := lims−→τ
ξ (τ )–ξ (s)

τ–s τ 1–α ;
(iv) If ξ is differentiable of order α at τ , then

ξ
(

σ (τ )
)

= ξ (τ ) + μ(τ )τα–1T	
α (ξ )(τ ).

Theorem 2.5 Let ξ ,� : T−→ R be conformable differentiable of order α ∈ (0, 1]. Then:
(i) The sum ξ + � : T −→R is conformable differentiable with

T	
α (ξ + � ) = T	

α (ξ ) + T	
α (� );

(ii) For any k ∈R, kξ : T −→R is conformable differentiable with

T	
α (kξ ) = kT	

α (ξ );

(iii) If ξ and � are continuous, then the product ξ� : T−→ R is conformable
differentiable with

T	
α (ξ� ) = T	

α (ξ )� + ξσ T	
α (� ) = T	

α (ξ )�σ + ξT	
α (� );

(iv) If ξ is continuous, then 1/ξ is conformable differentiable with

T	
α

(
1
ξ

)

=
–T	

α (ξ )
ξ (ξ ◦ σ )

at all points τ ∈ T
k for which ξ (ξ ◦ σ ) 	= 0;
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(iv) If ξ and � are continuous, then ξ /� is conformable differentiable with

T	
α

(
ξ

�

)

=
T	

α (ξ )� – ξT	
α (� )

��σ

for all τ ∈ T
k for which ��σ 	= 0.

Definition 2.6 Let ξ : T → R be a regulated function. Then for 0 < α ≤ 1, the α-
conformable integral of ξ is defined by

∫

ξ (τ )	ατ =
∫

ξ (τ )τα–1	τ .

Definition 2.7 Let ξ : T →R be a regulated function. The indefinite α-conformable inte-
gral of ξ of order α ∈ (0, 1] is defined as Fα(τ ) =

∫

ξ (τ )	ατ . Then, for all a, b ∈ T, we define
the Cauchy α-conformable integral by

∫ b

a
ξ (τ )	ατ = Fα(b) – Fα(a).

Theorem 2.8 Let α ∈ (0, 1]. Then for any rd-continuous function ξ : T→ R, there exists a
function Fα : T→R such that T	

α (Fα)(τ ) = ξ (τ ) for all τ ∈ T
k . The function Fα is said to be

an α-antiderivative of ξ .

The conformable integral satisfies the following properties.

Theorem 2.9 Let α ∈ (0, 1], a, b, c ∈ T, and ω ∈ R, and let ξ , � be two rd-continuous
functions. Then:

(i)
∫ b

a [ξ (τ ) + � (τ )]	ατ =
∫ b

a ξ (τ )	ατ +
∫ b

a � (τ )	ατ ;
(ii)

∫ b
a ωξ (τ )	ατ = ω

∫ b
a ξ (τ )	ατ ;

(iii)
∫ b

a ξ (τ )	ατ = –
∫ a

b ξ (τ )	ατ ;
(iv)

∫ b
a ξ (τ )	ατ =

∫ c
a ξ (τ )	ατ +

∫ b
c ξ (τ )	ατ ;

(v)
∫ a

a ξ (τ )	ατ = 0;
(vi) if there exists ξ : T→ R with |ζ (τ )| ≤ ξ (τ for all τ ∈ [a, b], then

| ∫ b
a ζ (τ )	ατ | ≤ ∫ b

a ξ (τ )	ατ ;
(vii) if ξ > 0 for all τ ∈ [a, b], then

∫ b
a ξ (τ )	ατ ≥ 0.

The α-conformable integration-by-parts formula on time scales is given in the following
lemma.

Lemma 2.10 ([31, Theorem 4.3(v)]) Let a, b ∈ T with b > a. If ξ , � are conformable α-
fractional differentiable and α ∈ (0, 1], then

∫ b

a
ξ (τ )T	

α � (τ )	ατ =
[

ξ (τ )� (τ )
]b

a –
∫ b

a
T	

α ξ (τ )�σ (τ )	ατ . (2.1)

We use the following crucial relations between calculus on time scales T, differential
calculus on R, and difference calculus on Z. Note that:
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(i) For any time scales T, we have

(ξ )	α (τ ) = (ξ )	(τ )τ 1–α ,
∫ b

a
ξ (τ )	ατ =

∫ b

a
ξ (τ )τα–1	τ ;

(ii) If T = R, then

σ (τ ) = τ , μ(τ ) = 0, f 	(τ ) = f ′(τ ),
∫ b

a
f (τ )	τ =

∫ b

a
f (τ ) dτ ; (2.2)

(iii) If T = Z, then

σ (τ ) = τ + 1, μ(τ ) = 1,

f 	(τ ) = 	f (τ ),
∫ b

a
f (τ )	τ =

b–1
∑

τ=a
f (τ ).

(2.3)

3 Main results
3.1 An Ostrowski-type inequality on time scales
Theorem 3.1 Let T be a time scale with �, ς , ω, τ ∈ T and � < ς . Further, assume that
� : [�,ς ]T → T is a twice delta-alpha differentiable function. Then, for all ω ∈ [�,ς ]T and
θ ,ϑ ∈R, we have

∣
∣
∣
∣
�(ω) –

1
θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ (τ )	ατ +
ϑ + α – 1

ς – ω

∫ ς

ω

�σ (τ )	ατ

]

–
1

θ + ϑ

[∫ ς

�

∫ τ

�

θ – α + 1
τ – �

�(ω, τ )�	α
(

σ (s)
)

	αs	ατ

+
∫ ς

�

∫ ς

τ

ϑ + α – 1
ς – ω

�(ω, τ )�	α
(

σ (s)
)

	αs	ατ

]∣
∣
∣
∣

≤ K
(θ + ϑ)2

∫ ς

�

∫ ς

�

�(ω, τ )�(τ , s)	αs	ατ , (3.1)

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,

and

K = sup
�<τ<ς

∣
∣�	α	α (τ )

∣
∣ < ∞.

Proof Using the integration-by-parts formula on time scales (2.1), we have

∫ ω

�

θ – α + 1
θ + ϑ

(
τ – �

ω – �

)

�	α (τ )	ατ

=
θ – α + 1

θ + ϑ
�(ω) –

θ – α + 1
(θ + ϑ)(ω – �)

∫ ω

�

�σ (τ )	ατ (3.2)
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and
∫ ς

ω

1 – (ϑ + α)
θ + ϑ

(
ς – τ

ς – ω

)

�	α (τ )	ατ

=
ϑ + α – 1

θ + ϑ
�(ω) –

ϑ + α – 1
(θ + ϑ)(ς – ω)

∫ ς

ω

�σ (τ )	ατ . (3.3)

Adding (3.2) and (3.3), we get

∫ ς

�

�(ω, τ )�	α (τ )	ατ = �(ω) –
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ (τ )	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

�σ (τ )	ατ

]

. (3.4)

Similarly, we have

∫ ς

�

�(τ , s)�	α	α (s)	αs = �	α (τ ) –
1

θ + ϑ

[
θ – α + 1

τ – �

∫ τ

�

�	α
(

σ (s)
)

	αs

+
ϑ + α – 1

ς – τ

∫ ς

τ

�	α
(

σ (s)
)

	αs
]

. (3.5)

Substituting (3.5) into (3.4) leads to

∫ ς

�

∫ ς

�

�(ω, τ )�(τ , s)�	α	α (s)	αs	ατ

+
1

θ + ϑ

[∫ ς

�

∫ τ

�

θ – α + 1
τ – �

�(ω, τ )�	α
(

σ (s)
)

	αs	ατ (3.6)

+
∫ ς

�

∫ ς

τ

ϑ + α – 1
ς – τ

�(ω, τ )�	α
(

σ (s)
)

	αs	ατ

]

= �(ω) –
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ (τ )	ατ +
ϑ + α – 1

ς – ω

∫ ς

ω

�σ (τ )	ατ

]

.

Inequality (3.1) follows directly from (3.6) and the properties of modulus. This completes
the proof. �

Remark 3.2 Taking α = 1 in Theorem 3.1, we get Theorem 3.1 in [15].

Corollary 3.3 If we take T = R in Theorem 3.1, then by relation (2.2) inequality (3.1) be-
comes

∣
∣
∣
∣
�(ω) –

1
θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�(τ ) dατ +
ϑ + α – 1

ς – ω

∫ ς

ω

�(τ ) dατ

]

–
1

θ + ϑ

[∫ ς

�

∫ τ

�

θ – α + 1
τ – �

�(ω, τ )�′(s) dαsdατ

+
∫ ς

�

∫ ς

τ

ϑ + α – 1
ς – ω

�(ω, τ )�′(s) dαsdατ

]∣
∣
∣
∣

≤ K
(θ + ϑ)2

∫ ς

�

∫ ς

�

�(ω, τ )�(τ , s) d – αsdατ ,
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where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,

and

K = sup
�<τ<ς

∣
∣�′′(τ )

∣
∣ < ∞.

Corollary 3.4 If we take T = Z in Theorem 3.1, then by relation (2.3) inequality (3.1) be-
comes

∣
∣
∣
∣
∣
�(ω) –

1
θ + ϑ

[

θ

ω – �

ω–1
∑

τ=�

�(τ + 1)τα–1 +
ϑ

ς – ω

ς–1
∑

τ=ω

�(τ + 1)τα–1

]

–
1

θ + ϑ

[
ς–1
∑

τ=�

τ–1
∑

s=�

θ

τ – �
�(ω, τ )	α�(s + 1)τα–1sα–1

+
ς–1
∑

τ=�

ς–1
∑

s=τ

ϑ

ς – ω
�(ω, τ )	α�(s + 1)τα–1sα–1

]∣
∣
∣
∣
∣

≤ K
(θ + ϑ)2

ς–1
∑

τ=�

ς–1
∑

s=τ

�(ω, τ )�(τ , s)τα–1sα–1,

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), τ = �, . . . ,ω – 1,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), τ = ω, . . . ,ς ,

and

K = max
�<τ<ς

∣
∣	2

α�(τ )
∣
∣ < ∞.

3.2 A trapezoid-type inequality on time scales
Theorem 3.5 Under the assumptions of Theorem 3.1, we have

∣
∣
∣
∣
�2(ς ) – �2(�) –

1
θ + ϑ

∫ ς

�

[
θ – α + 1

ω – �

∫ ω

�

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

]

	αω

∣
∣
∣
∣

≤ M(M + P)
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣	ατ	αω, (3.7)

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,
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and

M = sup
�<τ<ς

∣
∣�	α (τ )

∣
∣ and P = sup

�<τ<ς

∣
∣
(

�σ
)	α (τ )

∣
∣.

Proof From (3.4) we have

�(ω) =
∫ ς

�

�(ω, τ )�	α (τ )	ατ +
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ (τ )	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

�σ (τ )	ατ

]

(3.8)

and, similarly,

�σ (ω) =
∫ ς

�

�(ω, τ )
(

�σ
)	α (τ )	ατ +

1
θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ 2
(τ )	ατ ]]

+
ϑ + α – 1

ς – ω

∫ ς

ω

�σ 2
(τ )	ατ

]

. (3.9)

Now adding (3.8) and (3.9) produces

�(ω) + �σ (ω) =
∫ ς

�

�(ω, τ )
[

�	α (τ ) +
(

�σ
)	α (τ )

]

	ατ

+
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

]

.

Multiplying the last identity by �	α (ω), using (2.3), and integrating the resulting identity
with respect to ω from � to ς yield

�2(ς ) – �2(�) =
∫ ς

�

∫ ς

�

�	α (ω)�(ω, τ )
[

�	α (τ ) +
(

�σ
)	α (τ )

]

	ατ	αω

+
1

θ + ϑ

∫ ς

�

�	α (ω)
[
θ – α + 1

ω – �

∫ ω

�

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

]

	αω.

Equivalently,

�2(ς ) – �2(�) –
1

θ + ϑ

∫ ς

�

�	α (ω)
[

θ – α + 1
ω – �

∫ ω

�

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

]

	αω

=
∫ ς

�

∫ ς

�

�	α (ω)�(ω, τ )
[

�	α (τ ) +
(

�σ
)	α (τ )

]

	ατ	αω.
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Taking the absolute values on both sides, we get

∣
∣
∣
∣
�2(ς ) – �2(�) –

1
θ + ϑ

∫ ς

�

�	α (ω)
[

θ – α + 1
ω – �

∫ ω

�

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

[

�σ (τ ) + �σ 2
(τ )

]

	ατ

]

	αω

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ς

�

∫ ς

�

�	α (ω)�(ω, τ )
[

�	α (τ ) +
(

�σ
)	α (τ )

]

	ατ	αω

∣
∣
∣
∣

≤
∫ ς

�

∫ ς

�

∣
∣�	α (ω)

∣
∣
∣
∣�(ω, τ )

∣
∣
[∣
∣�	α (τ )

∣
∣ +

∣
∣
(

�σ
)	α (τ )

∣
∣
]

	ατ	αω

≤ M(M + P)
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣	ατ	αω.

This shows (3.7). �

Remark 3.6 Taking α = 1 in Theorem 3.5, we get Theorem 3.4 in [15].

Corollary 3.7 If we take T = R in Theorem 3.5, then by relation (2.2) inequality (3.7) be-
comes

∣
∣
∣
∣

�2(ς ) – �2(�)
2

–
1

θ + ϑ

∫ ς

�

�′(ω)
[

θ

ω – �

∫ ω

�

�(τ ) dατ +
ϑ

ς – ω

∫ ς

ω

�(τ ) dατ

]

dαω

∣
∣
∣
∣

≤ M2
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣dαtdαx,

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,

and

M = sup
�<τ<ς

∣
∣�′(τ )

∣
∣.

Corollary 3.8 If we take T = Z in Theorem 3.5, then by relation (2.3) inequality (3.7) be-
comes

∣
∣
∣
∣
∣
�2(ς ) – �2(�) –

1
θ + ϑ

ς–1
∑

ω=�

	α�(ω)

[

θ

ω – �

ω–1
∑

τ=�

[

�(τ + 1) + �(τ + 2)
]

τα–1

+
ϑ

ς – ω

ς–1
∑

τ=ω

[

�(τ + 1) + �(τ + 2)
]

τα–1

]

ωα–1

∣
∣
∣
∣
∣

≤ M(M + N)
ς–1
∑

ω=�

ς–1
∑

τ=�

∣
∣�(ω, τ )

∣
∣ωα–1τα–1,
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where

�(ω, τ ) =

⎧

⎨

⎩

θ+α–1
θ+ϑ

( τ–�

ω–�
), τ = �, . . . ,ω – 1,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), τ = ω, . . . ,ς ,

and

M = max
�<τ<ς

∣
∣	α�(τ )

∣
∣ and P = max

�<τ<ς

∣
∣	α�(τ + 1)

∣
∣.

3.3 A Grüss-type inequality on time scales
Theorem 3.9 Let T be a time scale with �, ς , ω, τ ∈ T and � < ς . Moreover, let �, φ :
[�,ς ]T → R be delta-alpha differentiable functions. Then for all ω ∈ [�,ς ]T and θ ,ϑ ∈ R,
we have

∣
∣
∣
∣
2
∫ ς

�

�(ω)φ(ω)	αω –
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ς

�

∫ ω

�

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

+
ϑ + α – 1

ς – ω

∫ ς

�

∫ ς

ω

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

]∣
∣
∣
∣

≤
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣
[

M
∣
∣φ(ω)

∣
∣ + N

∣
∣�(ω)

∣
∣
]

	ατ	αω, (3.10)

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,

and

M = sup
�<τ<ς

∣
∣�	α (τ )

∣
∣ < ∞ and N = sup

�<τ<ς

∣
∣φ	α (τ )

∣
∣ < ∞.

Proof From (3.4) we have

�(ω) =
∫ ς

�

�(ω, τ )�	α (τ )	ατ +
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

�σ (τ )	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

�σ (τ )	ατ

]

(3.11)

and, similarly,

φ(ω) =
∫ ς

�

�(ω, τ )φ	α (τ )	ατ +
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ω

�

φσ (τ )	ατ

+
ϑ + α – 1

ς – ω

∫ ς

ω

φσ (τ )	ατ

]

. (3.12)

Multiplying (3.11) by φ(ω) and (3.12) by �(ω), adding them, and integrating the resulting
identity with respect to ω from � to ς yield

2
∫ ς

�

�(ω)φ(ω)	αω
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=
∫ ς

�

∫ ς

�

�(ω, τ )
[

�	α (τ )φ(ω) + φ	α (τ )�(ω)
]

	ατ	αω

+
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ς

�

∫ ω

�

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

+
ϑ + α – 1

ς – ω

∫ ς

�

∫ ς

ω

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

]

.

By using the properties of modulus we obtain

∣
∣
∣
∣
2
∫ ς

�

�(ω)φ(ω)	αω –
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ς

�

∫ ω

�

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

+
ϑ + α – 1

ς – ω

∫ ς

�

∫ ς

ω

(

�σ (τ )φ(ω) + φσ (τ )�(ω)
)

	ατ	αω

]∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ς

�

∫ ς

�

�(ω, τ )
[

�	α (τ )φ(ω) + φ	α (τ )�(ω)
]

	ατ	αω

∣
∣
∣
∣

≤
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣
[∣
∣�	α (τ )

∣
∣
∣
∣φ(ω)

∣
∣ +

∣
∣φ	α (τ )

∣
∣
∣
∣�(ω)

∣
∣
]

	ατ	αω

≤
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣
[

M
∣
∣φ(ω)

∣
∣ + N

∣
∣�(ω)

∣
∣
]

	ατ	αω.

This concludes the proof. �

Remark 3.10 Taking α = 1 in Theorem 3.9, we get Theorem 3.7 in [15].

Corollary 3.11 If we take T = R in Theorem 3.9, then by relation (2.2) inequality (3.10)
becomes

∣
∣
∣
∣
2
∫ ς

�

�(ω)φ(ω) dω –
1

θ + ϑ

[
θ – α + 1

ω – �

∫ ς

�

∫ ω

�

(

�(τ )φ(ω) + φ(τ )�(ω)
)

dτ dω

+
ϑ + α – 1

ς – ω

∫ ς

�

∫ ς

ω

(

�(τ )φ(ω) + φ(τ )�(ω)
)

dτ dω

]∣
∣
∣
∣

≤
∫ ς

�

∫ ς

�

∣
∣�(ω, τ )

∣
∣
[

M
∣
∣φ(ω)

∣
∣ + N

∣
∣�(ω)

∣
∣
]

dτ dω,

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), � ≤ τ < ω,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), ω ≤ τ ≤ ς ,

and

M = sup
�<τ<ς

∣
∣�′(τ )

∣
∣ < ∞ and N = sup

�<τ<ς

∣
∣φ′(τ )

∣
∣ < ∞.



El-Deeb Journal of Inequalities and Applications         (2023) 2023:83 Page 12 of 13

Corollary 3.12 If we take T = Z in Theorem 3.9, then by relation (2.3) inequality (3.10)
becomes

∣
∣
∣
∣
∣
2

ς–1
∑

ω=�

�(ω)φ(ω)ωα–1 –
1

θ + ϑ

[

θ

ω – �

ς–1
∑

ω=�

ω–1
∑

τ=�

(

�(τ + 1)φ(ω) + φ(τ + 1)�(ω)
)

ωα–1τα–1

+
ϑ

ς – ω

ς–1
∑

ω=�

ς–1
∑

τ=ω

(

�(τ + 1)φ(ω) + φ(τ + 1)�(ω)
)

ωα–1τα–1

]∣
∣
∣
∣
∣

≤
ς–1
∑

ω=�

ς–1
∑

τ=�

∣
∣�(ω, τ )

∣
∣
[

M
∣
∣φ(ω)

∣
∣ + N

∣
∣�(ω)

∣
∣
]

ωα–1τα–1,

where

�(ω, τ ) =

⎧

⎨

⎩

θ–α+1
θ+ϑ

( τ–�

ω–�
), τ = �, . . . ,ω – 1,

1–(ϑ+α)
θ+ϑ

( ς–τ

ς–ω
), τ = ω, . . . ,ς ,

and

M = max
�<τ<ς

∣
∣	α�(τ )

∣
∣ < ∞ and N = max

�<τ<ς

∣
∣	αφ(τ )

∣
∣ < ∞.

4 Conclusions
The Ostrowski inequality and its companion inequalities have many applications and are
subject to strong research: see the books [2, 26, 27] and recent publications [1, 12, 13, 25].
In this paper, by employing the α-conformable fractional calculus on time scales of
Benkhettou et al. [4], we prove several new Ostrowski-type inequalities by using two pa-
rameters. These inequalities have certain conditions that have not been studied before.
The results extend several dynamic inequalities known in the literature, which are new
even in the discrete and continuous settings.
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27. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Mathematics and Its Applications

(East European Series), vol. 61. Kluwer Academic, Dordrecht (1993)
28. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert.

Comment. Math. Helv. 10(1), 226–227 (1937)
29. Pachpatte, B.G.: On trapezoid and Grüss-like integral inequalities. Tamkang J. Math. 34(4), 365–369 (2003)
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