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Abstract 

Despite the increasing demographic diversity of the United States’ aging population, there remain significant gaps in 
post-mortem research investigating the ethnoracial heterogeneity in the neuropathological landscape of Alzheimer 
Disease (AD). Most autopsy-based studies have focused on cohorts of non-Hispanic White decedents (NHWD), with 
few studies including Hispanic decedents (HD). We aimed to characterize the neuropathologic landscape of AD in 
NHWD (n = 185) and HD (n = 92) evaluated in research programs across three institutions: University of California 
San Diego, University of California Davis, and Columbia University. Only persons with a neuropathologic diagnosis 
of intermediate/high AD determined by NIA Reagan and/or NIA-AA criteria were included. A frequency-balanced 
random sample without replacement was drawn from the NHWD group using a 2:1 age and sex matching scheme 
with HD. Four brain areas were evaluated: posterior hippocampus, frontal, temporal, and parietal cortices. Sections 
were stained with antibodies against Aβ (4G8) and phosphorylated tau (AT8). We compared the distribution and 
semi-quantitative densities for neurofibrillary tangles (NFTs), neuropil threads, core, diffuse, and neuritic plaques. All 
evaluations were conducted by an expert blinded to demographics and group status. Wilcoxon’s two-sample test 
revealed higher levels of neuritic plaques in the frontal cortex (p = 0.02) and neuropil threads (p = 0.02) in HD, and 
higher levels of cored plaques in the temporal cortex in NHWD (p = 0.02). Results from ordinal logistic regression 
controlling for age, sex, and site of origin were similar. In other evaluated brain regions, semi-quantitative scores 
of plaques, tangles, and threads did not differ statistically between groups. Our results demonstrate HD may be 
disproportionately burdened by AD-related pathologies in select anatomic regions, particularly tau deposits. Further 
research is warranted to understand the contributions of demographic, genetic, and environmental factors to 
heterogeneous pathological presentations.
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Introduction
Alzheimer Disease (AD) is the most prevalent 
neurodegenerative brain disease and the leading cause 
of dementia globally [18, 40]. AD is often associated with 
other pathological changes and can cause irreversible 
damage to neurons, cell death, and brain atrophy, 
resulting in progressive cognitive deterioration [40]. The 
number of individuals in the United States aged 65 years 
and older is more than 55 million (16.8% of the total 
population), and around one out of eight Americans in 
this group is afflicted by AD. This number is projected 
to double by 2050 [9, 17]. Moreover, socioeconomic 
disparities within the United States population 
significantly impact the access to diagnosis, care, and 
treatment for demented persons, especially since AD and 
related disorders (ADRDs) disproportionally affect 
individuals from historically excluded ethnic groups. 
[6, 12, 26, 35, 46, 73]. Considering this exponential 
growth, ADRDs are emerging as the most significant 
challenge for healthcare systems worldwide. Since 
2012, the World Health Organization has declared 
dementia a public health priority in an effort to raise 
awareness and mobilize collective international action 
from governments and policy-makers [60]. Further, in 
the same year, the National Alzheimer’s Project Act 
was published in the United States with the objective of 
reducing dementia disparities and developing effective 
strategies for prevention and care for all individuals [23, 
41].

When discussing AD disparities, there is a need 
to expand the current knowledge  especially in post-
mortem studies on underrepresented persons of certain 
race and/or ethnic groups [57]. Race and ethnicity are 
terms ubiquitously used in the medical literature, often 
interchangeably, despite their fundamentally differing 
definitions. Historically, race has been used to define 
persons with a common ancestral background and/
or similar phenotypic traits, while ethnicity refers to 
an individual’s cultural identity and traditions. It is 
important to note these terms are social constructs, 
with many aspects influencing differences reported in 
literature, including but not limited to access to care, 
education, poverty, living conditions, culture, stress, 
and systemic, institutional, and individual racism [11, 
78, 79]. The Hispanic  population is  the largest and 
fastest-growing ethnic group in the US, reaching 62.1 
million in 2020 and accounting for 19% of the nation’s 
total population [17]. There is evidence demographic, 
genetic, and/or environmental differences can result in 
distinct risks and manifestations of AD among different 
ethnic groups [19, 28, 30, 34]. Epidemiological studies 
have shown persons self-identifying as Hispanic are 1 to 
1.5 times more likely to be diagnosed with AD and may 

also exhibit the onset of dementia symptoms earlier in 
life when compared to non-Hispanic White individuals 
[9, 62, 70, 73]. According to the Alzheimer’s Association 
Facts and Figures report in 2023, approximately 12 to 
14% of Hispanic individuals who are 65 or older have 
been diagnosed with ADRDs in the United States, 
although the cause for the increased prevalence remain 
poorly elucidated [9, 44, 62]. Therefore, a comprehensive 
understanding of the ethnoracial determinants of 
health, particularly those hypothesized to influence the 
pathogenesis of ADRDs, is instrumental to mitigate risk 
factors and aid in early recognition of the disease process.

The definitive diagnosis of the underlying causes of 
AD can only be established through histopathological 
evaluation of the brain at autopsy [21, 67]. The 
neuropathological hallmarks of AD feature 
extracellular aggregated amyloid β (Aβ) protein in 
the form of Aβ plaques and intraneuronal aggregated 
hyperphosphorylated tau protein in the form of 
neurofibrillary tangles (NFTs) and neuropil threads [21]. 
Despite the increasing demographic diversity of the 
United States population, there remain significant gaps 
in postmortem research investigating the ethnoracial 
heterogeneity in the neuropathological landscape of 
ADRDs [9, 16, 31, 38, 57]. Most autopsy-based studies, 
including the frequently used neuropathologic scales 
(BrainNet Europe, Thal, Braak, CERAD), have been 
conducted almost exclusively on brains of individuals 
of White European ancestries, with very few studies 
involving individuals from other ethnic groups, 
particularly Hispanic decedents [4, 15, 26, 31, 38, 50, 57, 
64, 69, 72, 76]. Here, our objective was to characterize 
the neuropathologic landscape of AD, denoting the 
distribution and densities of hallmark AD pathologies 
– NFTs, neuropil threads (NT’s) and plaques (diffuse, 
cored, and neuritic) in persons of Hispanic descent. To 
accomplish this, we utilized brain tissues from Hispanic 
and non-Hispanic White decedents across three research 
programs that encompassed Alzheimer’s Disease 
Research Centers at Columbia University, University of 
California San Diego, and University of California Davis.

Material and methods
Cohort selection
In our study, autopsy brain tissue free of personal 
identifiers (as determined by the Health Insurance 
Portability and Accountability Act—HIPAA) was 
obtained from three different institutions that 
encompassed Alzheimer’s Disease Research Centers 
(ADRCs) at University of California Davis, Columbia 
University, and University of California San Diego (Fig. 1 
– Study Flowchart). Autopsies reflected persons who 
were denoted to have evaluations for cognitive concerns 
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prior to death and had a recorded pathological diagnosis 
of AD, of which was defined as having  NIA Reagan 
criteria of intermediate/ high and/or NIA-AA criteria of 
Intermediate/High AD neuropathologic change [1, 37]. 
Individuals of two ethnic groups were included: Hispanic 
and non-Hispanic White decedents, defined based on the 
participant’s self-reported identification utilizing forms 
from the National Alzheimer’s Coordinating Center 
(NACC) [51], genetic determinations were not made. We 
followed JAMA guidelines on terminology to report race 
and ethnicity [27]. As this was a retrospective study, data 
were historical, spanning multiple decades, hence NIA 
Reagan and NIA-AA criteria were both used.

After evaluating each site, there were 102 decedents 
who records identified them as having Hispanic 
ethnicity with available samples. A 2–1 comparison 
group stratified by site (UCD, UCSD, Columbia) of non-
Hispanic White decedents was selected as a random 
sample from 843 eligible cases. The comparison sample 
was frequency balanced by sex and by 5-year age group 

(10  years for the oldest and youngest decades, 50–59 
and 100–109, due to small numbers of non-Hispanic 
White decedents in those groups). Two non-Hispanic 
White decedents were chosen at random from each cell, 
or all available in smaller cells. After final definition of 
the study cohort, the dataset was re-assessed, and cases 
subsequently found not to meet inclusion criteria were 
excluded (5 cases reporting an ethnicity other than 
Hispanic or non-Hispanic White, and 13 cases having 
no available pathology data) (see Fig.  1 for flowchart). 
During life, research participants were enrolled in 
IRB-approved studies at each institution, and at death 
autopsies were performed after legal consent for autopsy 
was provided by appropriate family members.

Clinical comorbidity data
Available information regarding the presence of clinical 
comorbidities was recorded based on data retrieved from 
NACC’s Uniform Dataset (UDS) and/or similar forms, 
which were collected by each institution [51]. Diabetes, 

Fig. 1  Participant flow diagram summarizing cohort selection, screening, random selection and matching of cases, and inclusion and exclusion 
criteria in the study
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hypertension, and/or hyperlipidemia were present if 
there was history of diagnosis (recorded within the 
UDS as active and/or inactive) and/or if the participant 
was mentioned to be taking medication to treat these 
conditions. Presence of depression was recorded if 
there was history of diagnosis (active and/or inactive) 
of depression and/or if the participant was ever-taking 
antidepressant medication. Presence of stroke and/or 
trans ischemic attack was recorded if there was mention 
of history of diagnosis (active and/or inactive).

Histology and assessments
Brain areas were selected based on availability as well 
as having consistent sampling across all 3 institutions; 
here we evaluate the hippocampus, frontal, parietal, and 
temporal cortices. Prior to processing and assessment, 
twelve batch numbers were assigned using permuted 
block randomization within center, gender, and ethnicity 
stratum. As a measure to minimize potential staining 
differences across the three sites and due to changes in 
pathological criteria and antibody staining over time, 
5  µm formalin fixed paraffin-embedded (FFPE) sections 
were cut from the designated anatomic areas available 
in each institution and stained in the randomized twelve 
batches at one location (UCD).

All sections were deparaffinized through a graded series 
of alcohols; unstained slides were placed into two changes 
of 3 min each into Xylene (HistoPrep™—Fisher Scientific, 
Pittsburgh, PA, USA), and placed into 2 changes of 100% 
alcohol (StatLab Medical Products, McKinney, TX, USA) 
for 2 min each, followed by 2 changes of 95% alcohol for 
2 min each. After the deparaffinization was complete, the 
slides were placed into distilled water. For assessment 
of Aβ deposits, slides were submitted to pretreatment 
prior to staining including 10  min in 87% formic acid, 
endogenous peroxidases were block with 3% Hydrogen 
Peroxide with subsequent applications of primary and 
secondary antibodies. The immunohistochemistry 
staining was performed using the 4G8 monoclonal 
antibody against Aβ (1:1600; Covance Labs, Madison, 
WI, USA).

For assessment of tau pathology, the pretreatment 
used for the AT8 antibody is Heat-Induced-Epitope-
Retrieval (HIER). The deparaffinized slides were placed 
into a plastic coplin jar filled with a Target Retrieval 
Solution (Citrate Buffer, pH 6.1) and posteriorly placed 
into a pressure cooker for HIER. Then, slides were 
stained using a specific antibody for phosphorylated 
tau, AT8 (1:1000, Thermo Scientific, Waltham, MA, 
USA). All antibody staining was conducted following 
standard procedures on automated machines (i.e. 
autostainers; DAKO AutostainerLink48, Agilent, Santa 
Clara, CA, USA) utilizing proper positive and negative 

control for each specific antibody. All staining and 
immunohistochemistry procedures were performed 
at the UC Davis Histology Core, a Clinical Laboratory 
Improvement Amendments (CLIA) and College of 
American Pathologists (CAP) accredited laboratory 
operating under the best laboratory practices standards 
and meets all Federal, State of California, and UC Davis 
guidelines and regulations.

All immunohistochemistry-stained slides were 
digitized to obtain whole slide imaging (WSI) using 
the Zeiss Axio Scan Z.1 scanner at 40 × magnification 
(0.11  µm/pixel)  and files were saved  in the proprietary 
czi format at a 60% compression rate. Semi-quantitative 
histopathological assessments of each area/stain were 
conducted by an expert (BD) who was blinded to the 
demographic, clinical, and genetic information of all cases 
and their ADRC origin, adapting CERAD and BrainNet 
Europe semi-quantitative assessments and following 
guidelines put forth by the NACC Neuropathology form 
version 10 [4, 14, 15, 48].

The CERAD scoring system was adapted to provide a 
semi-quantitative assessment of NFTs, cored, diffuse, 
and neuritic plaques in the densest mm2 of tissue area on 
the slide (none = no pathology denoted as 0, sparse (0–5) 
denoted as 1, moderate (6–20) denoted as 2, or frequent 
(greater than 20) denoted as 3); the final score represents 
the densest area evaluated within the stated subregion for 
the specific pathology [48].

The Thal amyloid phase scoring system was utilized to 
denote the anatomic distribution of amyloid plaques in 
the neocortex, hippocampus, basal ganglia, substantia 
nigra, and cerebellum, as well as to analyze the 
neuroanatomical hierarchical course of the disease [72]. 
The maximum Thal phase was assigned if plaques were 
observed in: Phase 1: neocortex; Phase 2: hippocampus 
and entorhinal cortex; Phase 3: putamen; Phase 4: 
substantia nigra; and Phase 5: cerebellum. Summary of 
data previously collected by each site are in Table 1.

Neuropil threads semi-quantitative densities were 
defined as 0 (0), + (1), +  + (2) or +  +  + (3) according 
to BrainNET Europe Criteria [4]. Because our study 
was based on evaluation of tissue and data collected 
retrospectively, differences in sampling protocols among 
centers were present. We did not receive and evaluate 
tissue from the occipital cortex, hence  we did not 
uniformly evaluate Braak NFT stage [15] in these cases. 
Available data from previous evaluations, albeit done 
by different experts/neuropathologists over time at the 
respective centers is included and is present in select 
Tables to aid with the cohort description.
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Table 1  Sociodemographics, select clinical comorbidities,  APOE e4 allele  positivity, and select pathological data of the study 
participants, divided by ethnic group (n = 277)

NHWD (n = 185) HD (n = 92) P value
Demographic data
Age at death (years), mean (SD) 82.2 (8.7) 81.4 (9.2) 0.44 *
Education attainment (years), mean (SD)

total
14.6 (3.0)

181
9.7 (4.6)

86 <0.01 *

Gender, (% female) 111 (60.0%) 54 (58.7%) 0.84§
APOE e4 Positive, %

total
75 (56.8%)

132
41 (54.7%)

75 0.76§

Contributing Pathology (using primary and secondary diagnoses)
AD only, N (%) 68 (36.8%) 34 (37.0%) 0.97§
CVD, N (%) 70 (37.8%) 32 (34.8%) 0.62§
LBD, N (%) 35 (18.9%) 27 (29.3%) 0.049§
Clinical Comorbidities
Diabetes, N (%)

total
13 (8.4%)

155
18 (24.0%)

75 <0.01§

Hypertension, N (%)
total

82 (52.6%)
155

50 (66.7%)
75 0.04§

Depression, N (%)
total

35 (23.6%)
148

16 (22.5%)
71 0.86§

Trans ischemic attack, N (%)
total

17 (12.7%)
134

8 (15.4%)
52 0.64 † 

High Cholesterol, N (%)
total

77 (57.0%)
135)

24 (38.7%)
62 0.02§

Stroke, N (%)
total

25 (14.1%)
177

21 (23.6%)
89 0.05§

Thal Amyloid Phase 
A2 (Thal Phase 3), N (%) 16 (19.3%) 2 (6.9%)

0.15 †
A3 (Thal Phase 4 or 5), N (%) 67 (80.7%) 27 (93.1%)

total 83 29

Braak NFT stage 
B1 (Braak NFT Stage I or II), N (%) 1 (0.6%) 0 (0%)

0.01 †B2 (Braak NFT Stage III or IV), N (%) 14 (8.6%) 18 (19.6%)
B3 (Braak NFT Stage V or VI), N (%) 147 (90.7%) 74 (80.4%)

total 162 92

CERAD neuritic plaque score 
C1 (Sparse neuritic plaques), N (%) 4 (2.6%) 2 (2.6%)

0.43C2 (Moderate neuritic plaques), N (%) 31 (20.0%) 21 (27.3%)
C3 (Frequent neuritic plaques), N (%) 120 (77.4%) 54 (70.1%)

total 155 77

Total represents number of cases with available data on the specific variable. All cases had available data on age at death, gender, and primary/secondary pathology 
diagnoses. Items presented are from historical data collected by each site

AD, Alzheimer’s disease; APOE e4, Apolipoprotein E4; CVD, cerebrovascular dementia; HD, Hispanic decedents; LBD, Lewy Body Disease; NHWD, non-Hispanic White 
decedents; NFT, neurofibrillary tangle
§  Chi-square test
†  Fisher exact test
*  T-test
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Statistical analysis
Demographic, clinical, and neuropathologic 
characteristics were summarized separately for Hispanic 
and non-Hispanic White decedents, overall and by 
site (Table  1). Quantitative variables were summarized 
by means and standard deviation, and the means for 
both groups were compared by Student’s two-sample T 
test. For semi-quantitative or non-normally distributed 
variables, medians and ranges were provided as summary 
statistics, and Wilcoxon’s two-sample nonparametric 
test, using average scores for ties. Analyses of individual 
variables were restricted to decedents with non-
missing data, with no attempt at imputation. To reduce 
the potential impact of heterogeneity due to the wide 
range of ages in the sample, we further compared 
neuropathologic summaries of the two groups by 
regression analyses, adjusted for age and sex as well 
as for site (Additional file  1: Table  S3). We used linear 
regression for quantitative variables and ordinal logistic 
regression for semi-quantitative variables with small 
numbers of categories. Secondary analyses further 
compared demographic, clinical, and neuropathologic 
characteristics across three groups based on Hispanic 
heritage (Caribbean, Mexican, and Others) and non-
Hispanic White decedents, using Kruskal–Wallis 
nonparametric tests for ordinal categorical variables as 
an omnibus test of equality across all groups. To assess 
pairwise differences in neuropathologic characteristics 
across the four groups, an ordinal logistic regression 
model was used. The model was adjusted by age and sex, 
but not site since all Caribbean decedents were from one 
site. The false discovery rate (FDR) was used for multiple 
comparisons. All statistical analyses were performed 
using SAS software (version 9.4, SAS institute, Inc.; 
Cary, NC, USA). Figures were created using Lucidchart 
(Lucidchart.com), Biorender (Biorender.com), and R 
Studio package ggplot2.

Results
Demographics
A total of 277 deceased individuals were screened 
across the three institutes and included in our analyses. 
As we had a 2:1 matching schema, 33.2% (n = 92) were 
persons self-identified as Hispanic decedents and 66.8% 
(n = 185) as Non-Hispanic White decedents. Table  1 
summarizes the demographics, neuropathologic, and 
clinical characteristics of the participants and the groups. 
Age and gender distributions were nearly identical for 
Hispanic and non-Hispanic White decedents, reflecting 
the sampling design (Table  1). The largest Hispanic 
heritage-based group was of Caribbean heritage (36/92 
[39.1%]), predominantly from Puerto Rico (22/92 
[23.9%]), followed by Dominican Republic (9/92 [9.8%]), 

and then Cuba (5/92 [5.4%]). Mexican decedents were 
the second largest subset of our study cohort (31/92 
[33.7%]); fewer Hispanic decedents were of other origins 
(4/92 [4.3%]), South American descent (3/92 [3.3%]), or 
of unknown origin (no data available) (18/92 [19.6%]).

Non-Hispanic White decedents averaged five more 
years of formal education attainment when compared to 
Hispanic decedents (P < 0.01). The groups were similar 
in having just over 50% having at least one APOE e4 
allele. Some differences were apparent among those with 
data available on clinical comorbidities, with Hispanic 
decedents having almost three times higher rates of 
diabetes (P = 0.01) and two times higher rates of stroke 
(P = 0.05), but lower proportions of high cholesterol 
(P = 0.02). Hypertension was present in over half of 
each group, with higher levels in Hispanic decedents 
(P = 0.04). Depression was reported in about a quarter of 
each group, and transient ischemic attack in about 1 in 7 
decedents in each group. The proportions with missing 
data on clinical comorbidities were similar in each group 
(Table 1).

Neuropathology
Although all cases had a pathological diagnosis of AD, a 
primary pathological diagnosis of AD with no secondary 
pathology present was found in 36.8% of the overall 
cohort; similar percentages were found for Hispanic 
(37%) and non-Hispanic White decedents (36.8%) 
(P = 0.97). The second most frequent diagnosis was 
cerebral vascular disease (CVD) concomitant with AD, 
with similar results between groups (Hispanic decedents 
(34.8%) and non-Hispanic decedents (37.8%) P = 0.62). 
A third frequent diagnosis of mixed pathologies, Lewy 
body disease concurrent with AD, was significantly 
more prevalent among Hispanic individuals (29.3%) than 
among non-Hispanic White (18.4%) individuals (P = 0.04) 
(Table 1).

Neuropathologic findings for the posterior 
hippocampus were similar for both groups, with median 
levels of 1 (sparse) for core plaques, 2 (moderate) for 
neuritic plaques, and 3 (frequent) for diffuse plaques, 
neuropil threads, and NFTs (Table  2). Adjustment via 
ordinal logistic regression did not alter this finding. 
Findings in the frontal cortex showed greater levels of 
neuritic plaques (median 2 vs. 1, p = 0.02) and neuropil 
threads (median 3 vs. 2, p = 0.02) for Hispanic decedents 
than for non-Hispanic White decedents. The groups 
had similar levels of core plaques, NFTs, and diffuse 
plaques. Ordinal logistic regression did not modify these 
findings  (Additional File 1: Table  S1). In the parietal 
cortex, levels of core plaques, neuritic plaques, and 
NFTs were similar in Hispanic and non-Hispanic White 
decedents with medians of 2, while diffuse plaques had 
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medians of 3 in each group. The median for neuropil 
threads was 2 in non-Hispanic White and 3 in Hispanic 
decedents, approaching statistical significance (p = 0.06), 
with some of the difference further accounted for in 
ordinal logistic regression models (Additional file  1: 
Table  S2). The temporal cortex showed similar findings 
for both groups for neuritic plaques (medians of 3 for 
Hispanic  decedents and 2 for non-Hispanic White 

decedents; p = 0.56), as well as diffuse plaques, neuropil 
threads, and NFTs (median of 3 for both groups for all 
pathologies.) However, even though the median was 1 for 
both groups, a longer upper tail was observed in the non-
Hispanic White decedents for core plaques (p = 0.02) 
(Fig.  2). Additional analyses were carried out adjusting 
for Braak NFT Stage, Thal phase, and CERAD score, and 
results did not change substantially,   although there was 

Table 2  AD-related neuropathological variables in select brain areas, divided by ethnic group (n = 277)

NHWD (n = 185) HD (n = 92) P value (Wilcoxon 
two-sample test)

Posterior Hippocampus
NP, median (min, max)

total
2 (0,3)

162
2 (0,3)

79 0.23

DP, median (min, max)
total

3 (1,3)
167

3 (1,3)
83 0.91

CP, median (min, max)
total

1 (0,2)
167

1 (0, 2)
83 0.22

NT, median (min, max)
total

3 (1, 3)
162

3 (0,3)
79 0.44

NFT, median (min, max)
total

3 (1,3)
162

3 (0,3)
79 0.38

Frontal Cortex
NP, median (min, max)

total
1 (0,3)

167
2 (0,3)

79 0.02

DP, median (min, max)
total

3 (0,3)
171

3 (2,3)
86 0.81

CP, median (min, max)
total

1 (0,3)
171

2 (0,3)
86

0.31

NT, median (min, max)
total

2 (0,3)
168

3 (0,3)
79

0.02

NFT, median (min, max)
total

2 (0,3)
168

2 (0,3)
79

0.09

Parietal Cortex
NP, median (min, max)

total
2 (0,3)

178
2 (0,3)

81
0.26

DP, median (min, max)
total

3 (0,3)
180

3 (2,3)
86

0.17

CP, median (min, max)
tota

2 (0,3)
180

2 (1,3)
86

0.3

NT, median (min, max)
total

2 (0,3)
179

3 (0,3)
81

0.06

NFT, median (min, max)
total

2 (0,3)
179

2 (0,3)
81

0.39

Temporal Cortex
NP, median (min, max)

total
2 (0,3)

175
3 (0,3)

79
0.56

DP, median (min, max)
total

3 (1,3)
177

3 (2,3)
84

0.88

CP, median (min, max)
total

1 (0,3)
177

1 (0,2)
84

0.02

NT, median (min, max)
total

3 (1,3)
174

3 (0,3)
79

0.91

NFT, median (min, max)
total

3 (0,3)
175

3 (0,3)
79

0.6

Total represents number of cases with available data on the specific variable. Data represent semi-quantitative scores of 0 = none, 1 = mild/sparse, 2 = moderate, 
3 = frequent/severe

AD, Alzheimer’s disease; CP, Core plaques; DP, Diffuse plaques; NP, Neuritic plaques; NT, Neuropil threads; NFT, Neurofibrillary tangles
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sparse numbers for lower scores of Braak NFT stage, Thal 
phase, and CERAD score.

In secondary exploratory analyses, comparisons 
further divided the Hispanic participants into three 
groups based on Hispanic heritage: Caribbean decedents 
(N = 36), Mexican decedents (N = 31), and other 
decedents (N = 25) (Additional file  1: Table  S2). In the 
posterior hippocampus, the Caribbean heritage group 
had higher levels of neuritic plaques and neuropil threads 
than non-Hispanic White, and the Mexican heritage 
group (Additional file  1: Tables S2 and S3). Caribbean 
decedents also had higher levels of neuritic plaques and 
neuropil threads than Non-Hispanic White decedents 

in the frontal, parietal, cortices, and NFTs in the frontal 
cortices (Fig. 3).

Discussion
We report the neuropathological findings and the 
frequency distribution of select clinical comorbidities 
in a research-based autopsy cohort of 277 decedents 
of Hispanic and non-Hispanic White heritage with 
AD. Our analysis of semi-quantitative scores using 
established standardized scales demonstrates Hispanic 
decedents had greater densities of neuritic plaques and 
neuropil threads in the frontal cortex, whereas non-
Hispanic White decedents had a greater amount of 

Fig. 2  A visualization comprising of a combination of violin and box plots was used to depict the distribution of various pathologies (cored 
plaques: CPs, diffuse plaques: DPs, neuritic plaques: NPs, neuropil threads: NTs, and neurofibrillary tangles: NFTs) in three specific brain areas-frontal, 
temporal, and parietal cortices. The violin plots were used to display the distribution of the data, while the boxes indicate the range between the 
first and third quartiles. The bold horizontal line inside the boxes represents the median value. Additionally, the whiskers extend beyond the upper 
and lower limits of the box and indicate the range of data within 1.5 times the length of the box
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core plaques in the temporal cortex. We also observed 
a higher range in the score of neuropil threads in the 
parietal cortex of Hispanic decedents, although it was 
not significantly different when compared to non-
Hispanic White decedents. Interestingly, there were no 
differences in the pathological findings of the posterior 
hippocampus between groups. Due to our inclusion 
criteria and analytic methodology, we had a certain 
level of homogeneity in terms of age, gender, APOE e4 
allele frequency, and final clinicopathological diagnoses 
(Table  1). There were notable differences in educational 
attainment and select clinical comorbidities between 
the groups, with Hispanic decedents having significantly 
lower educational levels and greater rates of diabetes, 
hypertension, and stroke, as well as CVD, which are 
underlying risk factors of AD and may have contributed 
to the heterogeneous pathological presentation. Our 

data, provide evidence Hispanic decedents with AD are 
disproportionately burdened by AD-related pathology, 
particularly tau deposits, in comparison to non-
Hispanic White decedents, based on differences in their 
pathological profile and severity.

To date, limited neuropathological studies have been 
conducted to explore disparities in the manifestation 
of AD in underrepresented populations, particularly in 
Hispanic persons [26, 31, 57, 64, 69, 76]. In a previous 
neuropathological study  on demented persons, our 
group reported Hispanic decedents to have a higher 
incidence of mixed pathologies concurrent with AD, 
compared to non-Hispanic White decedents who have 
a significantly higher rate of non-mixed AD (43% vs. 
14%) [26]. It is worth noting Hispanic participants 
in the present study  focused on AD also had lower 
levels of educational attainment and higher rates of 

Fig. 3  Examples of the histopathologic densities of tau-deposits and corresponding overall regional density scores (for neuropil threads: NTs, and 
neurofibrillary tangles: NFTs- lower left corner in each image) in three brain regions (frontal, temporal, and parietal cortices). Cases were selected 
based on heritage group within Hispanic decedents and non-Hispanic White decedents, having similar age at death, gender, and AD likelihood 
(ADNC = Alzheimer disease neuropathologic change). Scale bar = 50 μm
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co-existing health conditions, which partially align with 
our previous findings. The lower levels of education 
in individuals of Hispanic descent might contribute to 
substantial disparities in their susceptibility to dementia, 
as it has been shown even a minimal increase in formal 
education can result in improved cognitive reserve could 
compensate the neurodegeneration [24, 45]. Interestingly, 
in the current study we observed a lower percentage of 
cerebrovascular disease (CVD) in this Hispanic cohort, 
and this was not different from the non-Hispanic White 
cohort, in contrast to what we previously reported  in 
the dementia cohort [26]. This discrepancy could be 
attributed to variations in  cohort inclusion/exclusion 
criteria, the recruitment practices of participants across 
the three centers, as well as the diversity within the 
Hispanic cohort. For instance, UC Davis and Columbia 
include participants regardless of their prior or current 
cardiovascular risk factors or disease, while UCSD 
excludes persons having insulin dependent diabetes 
and major stroke or neurological illness [69] (see 
Additional file  1: Table  S4). There could also be site/
temporal differences in the way co-morbidities, such 
as concomitant pathological diagnoses, are reported. 
Furthermore, our study included Hispanic individuals 
from different heritage groups, while prior works focus 
on select groups [64, 69, 76]. Additional studies delving 
further into these data are warranted to understand 
underlying causes of the discrepancies.

Due to the retrospective nature of the study, we utilized 
the term Hispanic decedents to encompass persons 
from many different origins; the Hispanic community 
should not be viewed as one monolithic group [49, 
73]. This population has intrinsically diverse genetic, 
socioeconomic, and cultural characteristics that may 
help to address the disparities previously reported in 
AD’s clinical presentation [8, 61, 62, 70, 73]. Therefore, 
to account for this diversity, we performed additional 
exploratory analyses, although underpowered, to 
examine potential differences within the Hispanic cohort 
by creating three groups based on the individuals’ self-
reported Hispanic heritage: Caribbean, Mexican, and 
others (including individuals from South America). We 
also found pathological heterogeneity within Hispanic 
decedents, with Caribbean decedents having a higher 
presence of plaques, threads, and NFTs in all four 
evaluated brain areas, as well as lower levels of education 
and higher rates of diabetes, hypertension, stroke, and 
depression compared to the two other Hispanic decedent 
subgroups, albeit cohort numbers were low having 
insufficient power and effect size. We also observed in 
the brains of persons of Mexican descent lower levels 
of neuropil threads in both the hippocampus and the 
temporal cortex, even lower than non-Hispanic White 

decedents (Additional file  1: Table  S3). This may aid in 
explanations of increased AD prevalence in Caribbean 
individuals [7, 42, 58, 73]. Additionally, with respect 
to dementia incidence rates Caribbean had higher 
average frequencies than Mexican persons [10, 25, 
58, 71]. Although these results are intriguing, they are 
underpowered and may well not be representative of 
the population given the high selectivity of autopsy 
cohorts. Our data, however, support further study of the 
role this intrinsic diversity plays in the development of 
AD [73]. The geographical distribution of the Hispanic 
population also varies across the United States [2, 22, 
57]. Mexican decedents are the largest group and are 
primarily concentrated in the southwest and south of 
the country, while Caribbean decedents are more heavily 
concentrated on the east coast [2, 22]. California and 
New York are the states with high Hispanic population, 
ranking first and fourth, respectively [63], which also 
reflects the origin of our study participants: all evaluated 
Caribbean participants came from Columbia, and the 
Mexican participants were mainly from UCSD and UCD.

Generally, the accumulation of tau deposits, in the 
form of NTs and NFTs, is hypothesized to start in the 
entorhinal cortex and hippocampus and then spreads to 
the neocortex. Nonetheless, there are also subtypes of AD 
with atypical presentation of pathological features, such 
as sparing the hippocampus [53]. Tau is a microtubule 
associated protein widely expressed in neurons of 
the human brain and plays important physiological 
roles on microtubule assembly and stabilization, as 
well as promotion of axonal outgrowth [75]. In non-
pathological conditions, tau has a naturally unfolded 
structure, showing a low tendency to aggregation [52]. 
The correlation between tau pathology and cognitive 
decline has been well established [20, 32, 43, 55, 56]. 
Our results did not reveal a significant difference in 
NFT scoring between groups, although most cases had 
scores of 2 (moderate) or 3 (frequent) and more finer 
grain quantitative analyses may aid in providing insight, 
as has been done with identifying AD subgroups [53]. 
That stated, our findings did reveal a more pronounced 
presence of neuropil threads in the frontal and parietal 
cortices of Hispanic decedents, but no differences 
within temporal cortices. Typically, neuropil threads 
are more predominant in comparison to NFTs in 
immunohistochemically stained sections, which implies 
that evaluating the presence and density of neuropil 
threads instead of NFTs may provide more optimal 
insights into neurodegenerative disease progression, 
as has been done with the BrainNet Europe Criteria; 
however, better interrater agreement has been achieved 
evaluating more severe stages of neuropil threads (Stage 
V and VI) [4]. To aid in unlocking the secrets of these 
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devastating deposits, more quantitative analysis is needed 
to aid in understanding potential disease subtypes based 
on tau pathologies. This variability in severity may arise 
from several factors including genetic predisposition, 
concurrent neuropathologies, and/or environmental 
factors.

Establishing criteria for assessing pathological 
hallmarks of AD has been a major milestone in the 
dementia research field, providing a standard procedure 
for routine diagnostic settings such as NIA Reagan 
criteria and NIA-AA guidelines (Intermediate or 
High) [1, 37]. The field has historically used semi-
quantitative (CERAD neuritic plaque density) [48] and 
regional distributions (Thal and Braak) [15, 72] for 
AD assessment. These disease scales were primarily 
derived based on the evaluation of the brain tissue of 
non-Hispanic White individuals, with limited numbers 
and highly variable methods for sample collection 
and processing. Specifically, the initial paper on Braak 
NFT stage was based on a cohort of 83 brains of White 
individuals of European descent [15]. Furthermore, 
in our study, we were unable to perform a stage of 
the tau-related pathology in our study cohort using 
Braak or BrainNet Europe criteria, as the occipital 
cortex was not included in the evaluation; available 
retrospective data  collected at each site (UCD, UCSD, 
Columbia) were included. Further, these criteria employ 
semi-quantitative scoring methods, which can have 
interrater variability [5, 33, 36, 47, 54]. Quantitative 
measurement of pathological features through methods 
in digital pathology and/or machine learning are a 
novel and rapidly growing field, particularly promising 
for providing scalable deeper phenotyping of ADRDs 
[3, 39, 59, 65, 67, 68, 77]. However, these innovative 
computer-based evaluation methods require training and 
validation on large quantities of digitalized and annotated 
pathology data, which can pose a significant hurdle. To 
date, many machine learning algorithms have yet to be 
tested/validated on multiple brain areas to understand 
generalizability.

Our results should be interpreted with consideration 
of certain constraints related to data collection and 
cohort characteristics. Despite applying robust sample 
selection methods, variation in procedures among 
centers may contribute to potential bias [26, 31, 74]. 
The autopsy studies and clinical recruitment within 
the three institutes are based on a volunteer sample of 
convenience. Our analyses controlled for the participants’ 
age, gender, and center of origin, providing an increased 
confidence in our results. However, our results may not 
be representative of the general Hispanic population 
affected by AD dementia. Our study utilized case 
materials collected over a 30-year period. There can be 

variability in the time intervals between the last clinical 
evaluation and death, in addition evaluates for specific 
disorders have evolved over time as well as persons 
conducting have changed at each of the institutions. 
Even with careful quality control and data cleaning, 
there still may be discrepancies, especially within  large 
datasets. This highlights the complexities of retrospective 
data analyses. Furthermore, the brain tissue evaluated 
during our study was collected over time, and variations 
in sampling protocols, preparation methods (e.g., 
sectioning and/or fixation), and preservation of paraffin-
embedded tissue can influence staining quality [13, 29, 
66, 74]. To mitigate possible center bias on our results, 
we centralized slide staining at a single CLIA and CAP 
certified laboratory with extensive experience conducting 
pathological staining protocols and choose anatomic 
areas with similar sample procedures although rostro/
caudal medio/lateral and superior/inferior variations can 
exist. We also only evaluated one 5 µm section per stain 
and this may not be representative of an entire region. 
We used randomized block sequences for processing 
and assessment to further reduce bias. The selected 
stains (AT8, 4G8) used in this study have previously 
been used within numerous centers and in published 
scales [74]. Hence given these limitations, we focused 
analyses on the neuropathology variables collected in a 
standardized fashion through this study and to highlight 
the heterogeneity of the pathological changes.

Despite the limitations, this study has numerous 
strengths. To our knowledge, this is the largest autopsy-
based study focused on Hispanic decedents with AD. 
We have measured the hallmark pathologies of AD using 
validated semi-quantitative measurements, providing 
an unbiased evaluation across multiple brain regions. 
The participants of the two groups had systematic 
pathological assessments performed by a single 
individual blind to all information pertaining to the cases, 
reducing potential interrater variability and evaluation 
bias. This innovative multi-center autopsy-based study 
presents a foundation of novel information about the 
neuropathological landscape heterogeneity of AD among 
a cohort of Hispanic and non-Hispanic White decedents 
matched on demographic features.

In summary, our results indicate adjusting for age, 
sex, and center of origin, Hispanic decedents with 
a pathological diagnosis of AD prior to death have 
greater levels of tau pathology in select brain regions 
when compared to non-Hispanic White decedents, 
demonstrating differences of the neuroanatomical 
distribution and severity of AD-related pathology. 
Although the focus of this work was to characterize the 
differences in the hallmark pathology of AD, further 
research is needed to elucidate the role of other common 



Page 12 of 14Scalco et al. Acta Neuropathologica Communications          (2023) 11:105 

dementia-related pathologies (such as CVD and Lewy 
body disease) and how their interaction influences 
disease onset and progression in persons of Hispanic 
descent. It is vital to note these historic categories are 
social constructs and cultural and social associations may 
underlie differences. Additional studies using innovative 
quantitative methods can aid in broadening these 
findings, providing detailed brain tissue phenotyping in 
more ethnically diverse groups. Overall, the results we 
present here emphasize the importance of more thorough 
deeper phenotyping of the AD neuropathological 
landscape among diverse ethnic cohorts for enhanced 
clinical correlations and precision medicine advancement 
[67]. We hope to contribute to filling the historical 
knowledge gap about how ethnicity may interplay 
with genetic, sociocultural, and environmental factors 
affecting the prevalence and trajectory of ADRDs among 
underrepresented populations, ultimately aiming for 
better preventive measures, treatments, and prognoses 
for all individuals.
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