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Abstract
Semi-quantum key distribution describes a system in which a fully quantum user and
classical user perform key distribution. The main advantage of key distribution is its
security. Owing to the bottlenecks of existing technology, highly attenuated lasers
and threshold detectors are required for semi-quantum key distribution; however,
these components make semi-quantum key distribution susceptible to
eavesdroppers. Our previous study presented the first semi-quantum key distribution
experiment and verified the feasibility of the mirror protocol in 2021. Herein, we first
build a semi-quantum key distribution channel model and use
Gottesman-Lo-Lütkenhaus-Preskill theory to evaluate its safety performance in the
case of a quasi-single photon source. Moreover, we determine that an eavesdropper
can steal all information through the photon-number-splitting attack without being
detected. Therefore, we add decoy states to the semi-quantum key distribution to
estimate the furthest transmission distance and secure bit rate under asymptotic
conditions. Semi-quantum key distribution can still be achieved safely with highly
attenuated lasers and threshold detectors in 150 km.

Keywords: Semi-quantum key distribution; Channel model;
Photon-number-splitting attack; Decoy state

1 Introduction
Quantum key distribution (QKD) allows two quantum users, Alice and Bob, to securely
share a string of keys. In theory, the distribution of secret quantum keys is uncondition-
ally secure based on the laws of quantum physics. Its protocol [1] and its security has been
fully proved. Furthermore, various experimental schemes have been proposed to demon-
strate the practical feasibility of QKD [2–6]. Some state-of-the art QKD protocols, e.g.
MDI-QKD and TF-QKD make the transmission distance of QKD become longer and the
performance become better [7–10]. With the gradual development and maturity of prac-
tical systems, security evaluations for real systems have been gradually recognized and
valued [11–13]. However, these security analyses are limited to the utilization of single-
photon sources. In practice, a highly attenuated laser is used as the light source; therefore,
an eavesdropper, Eve, can steal information via the photon-number-splitting (PNS) attack
without being detected [14–17]. The decoy state [18–23] and SARG04 protocol [24] were
successively proposed to counteract PNS attacks. Of the two, the decoy states protocol is
widely used because it is more effective.
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Semi-quantum key distribution (SQKD) was proposed to share keys between a quantum
user and classical user. At present, there are no actual full quantum computers; thus, it is
unpractical to implement the quantum communications via using fully quantum devices.
And the SQKD protocol could be enabled in a limited quantum resource environment
without losing their security. In 2007, Boyer, Kenigsberg, and Mor proposed a new quan-
tum communication protocol—the semi-quantum key distribution protocol (BKM07 pro-
tocol) [25]. Subsequently, BGKM-09 [26], the less than four state protocol [27], and mir-
roring protocol [28] were proposed. When the design of the SQKD protocol was proposed,
its theoretical security was subsequently proven, particularly for independent attacks and
collective attacks [29–31]. Additionally, SQKD’s security bit rate was also determined.

Our previous study presented the first SQKD experiment and verified SQKD’s feasibility
in 2021 [32]. However, the experiment utilized highly attenuated lasers and threshold de-
tectors. A safety analysis of SQKD with a strongly attenuated laser has not been presented.
Strongly attenuated pulses inevitably result in multi-photon pulses, which opens a door
for PNS attacks. Therefore, it is necessary to determine if SQKD can resist PNS attacks. If
SQKD cannot detect PNS attacks, it is important to investigate if SQKD can also use de-
coy state methods to make experiments more secure using essentially the same hardware.
Therefore, the experimental safety of SQKD must be evaluated. These three points of in-
vestigation are essential for SQKD’s development. In this study, we first build an SQKD
channel model based on the BKM-07 protocol and identified that Eve can steal all infor-
mation through PNS attacks without being detected. Moreover, we use Gottesman-Lo-
Lütkenhaus-Preskill(GLLP) theory [33] to evaluate its safety performance when using a
strongly attenuated laser. Therefore, we added decoy states to the SQKD and estimated the
maximum transmission distance and secure bit rate under asymptotic conditions. Semi-
quantum key distribution can still be achieved safely with highly attenuated lasers and
threshold detectors in 150 km. Decoy SQKD and decoy QKD [18–22] can increase the
safe transmission distance. From the perspective of scheme architecture, SQKD has two
channels, so when estimating some backward channel’s parameters, such as μ2, ν2, the
length of the forward channel will be associated with μ2, ν2. This is the difference be-
tween SQKD decoy and QKD decoy. In the processing of the result, QKD decoy only
needs Rqkd > 0. For SQKD decoy, it need If > 0 , Ib > 0 and Rsqkd > 0. This condition limits
the maximum transmission distance of SQKD.

The organization of this paper is as follows. In Sec. 2, we build an SQKD channel model
and prove SQKD is not secure against PNS. Moreover, we establish the secure bit rate of
SQKD with GLLP theory. In Sec. 3, we analyze several decoy states of SQKD. The results
are showed and discussed in Sec. 4. In Sec. 5, we present some concluding remarks.

2 Theoretical model
The BKM-07 protocol [25] model shown in Fig. 1. The SQKD we discuss later is based on
this model. We call Bob select the reflected photon CTRL, and Bob select the measured
resend photon SIFT.

2.1 SQKD channel model
SQKD has two logical channels, a forward channel and back channel; however, they share
the same physical channel. Bob can choose to use the SIFT operation to detect the photon
using the forward channel and resend the photon to Alice through the backward channel.
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Figure 1 BKM-07 protocol model. (1) Alice generates random qubits in the Z or X bases. (2) For each qubit,
Bob randomly chooses to measure Alice’s qubit in the Z basis (to SIFT it) or to reflect it back (CTRL). (3) Bob
may also only prepare Z basis qubits. When Bob chooses the SIFT operation, Bob resends the qubit with the
same result as his measurement. (4) Alice measures each qubit using the basis she sent it in. (5) Alice
publishes qubits which are her Z-basis bits, and Bob publishes qubits which he choose to SIFT

Moreover, if Bob chooses the CTRL operation to return the photon, the whole process can
be viewed as Alice sending the photons and then measuring them after they are transmit-
ted through the whole channel (forward and backward channel). Alice needs to perform
both sending and receiving operations; therefore, we call the Alice of the sender as Alice
and the Alice of the receiver as Alice′.

We start with two assumptions.
First, we assume that these two logical channels are independent when Bob chooses

the SIFT operation. This assumption limits the cases in which Eve can make a joint at-
tack on the forward and backward channels, and we will consider more complex cases in
the future. In fact, the backward and forward channels are essentially the same physical
channels. Thus, they are subject to the same constraints, such as losses and transmission
distance (L = Lf = Lb).

Second, we simplify the analysis by considering Alice′ as the third user. In SQKD, no
matter what operation Bob chooses and what state Alice sends, Alice′ can measure the
photon based on the state of Alice. This correlation is equivalent to the fact that Alice and
Bob need to have compatible bases only once. (If Alice, Bob, and Alice′ are independent
of each other, in the absence of SQKD, two information transfers need to have compatible
bases twice).

Based on the above two assumptions, the whole channel can be regarded as a cascade of
the forward channel and backward channel. Moreover, the two channels are independent;
therefore, the information of Alice′ only depends on Bob and has no direct relationship
with Alice. That is, Alice, Bob, and Alice′ constitute a first-order Markov chain. We study
this channel model to obtain a secure bit rate evaluation formula. Therefore, the following
analysis is based on the case where Alice chooses to send a Z-basis state, and Bob chooses
the SIFT operation. The Z-basis channel noise can be used to describe channels parame-
ters and will lead to the generation of the quantum bit error. We let EBS and EAS denote the
quantum bit error rate (QBER) in the Z-basis for Bob and Alice′, respectively. Additionally,
EBS and EAS can be estimated from the detections made by Bob and Alice′, respectively.
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Figure 2 SQKD channel model. The yellow dotted boxes, pink dotted boxes, and green dotted boxes
represent the forward, backward, and total channels, respectively; the red and blue lines denote the secure
and error bits, respectively

This SQKD channel model and its parameters are shown in Fig. 2. The transition prob-
ability matrixes for the forward channel is

(
1 – EBS EBS

EBS 1 – EBS

)
. (1)

And the transition probability matrixes for the backward channel is

(
1 – EAS EAS

EAS 1 – EAS

)
. (2)

Here we emphasize that when the state sent by Alice is different from that received by
Alice′, i.e., Alice sends |0〉(|1〉) and Alice′ detects |1〉(|0〉), such bits should be discarded in
the protocol. When the state sent by Alice is the same as that detected by Alice′, and if
Bob and Alice′ receive the same state, they share a bit. If Bob and Alice′ obtain different
states, the bit is considered an error bit. The SQKD total model are shown in Fig. 2. The
following matrix is the transition probability matrix of the equivalent SQKD

(
1 – EBS – EAS + 2EBSEAS EBS – EAS + 2EBSEAS

EBS – EAS + 2EBSEAS 1 – EBS – EAS + 2EBSEAS

)
. (3)

2.2 PNS in SQKD
We briefly describe the PNS attack. If a pulse does not contain photons, Eve does nothing.
However, if a pulse contains a single photon, Eve blocks the single photon with probabil-
ity P. If a pulse contains multiple photons, Eve can extract one of them and store it in a
quantum memory, and the remaining photons will be sent back to Bob through a loss-
less channel. If P > 1, Eve may even block some of the multi-photon pulses to keep Qμ

constant.
QBS is the gain of the SIFT photons detected by Bob. QAC and QAS are the gain of the

CTRL and SIFT photons detected by Alice′. When Eve only attacks one channel, Eve can-
not keep QAC and QBS constant. Moreover, the two gains will not be equal because SIFT
photons have a higher detection loss. Thus, Alice and Bob can detect anomalies.

Here, we assume that Eve’s attacks on the forward and backward channels are inde-
pendent, based on the first assumption. Eve attacks the forward channel first, then the
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backward channel. The CTRL photon goes through the forward and backward channels,
whereas the SIFT photon only goes through the backward channel. Eve can block single
photons and extract them out of all the multi-photon pulses in the forward channel with
probability P1. It is possible for Eve to block a single photon with probability P2 and extract
it from any multi-photon pulses in the backward channel. P1 affects only CTRL photons,
and P2 affects SIFT and CTRL photons. Therefore, an appropriate P1 and P2 can always
be determined to keep QAC and QBS unchanged [34].

Let the average photon number of SIFT be μ, which is also the average number of pho-
tons sent by Alice. And that of CTRL be ν , which is the average number of CTRL photons
sent by Bob. Assume that Eve attacks the forward and backward channels with probabili-
ties of P1 and P2, respectively.

For SIFT photons:

e–μ μn

n!
→

⎧⎪⎪⎨
⎪⎪⎩

e–μ(1 + P2μ) n = 0,

(1 – P2)μe–μ + μ2

2 e–μ n = 1,
μn+1

(n+1)! e
–μ n > 1.

(4)

For CTRL photons:
Through the forward channel, the photon number distribution is

e–ν νn

n!
→

⎧⎪⎪⎨
⎪⎪⎩

e–ν(1 + P1ν) n = 0,

(1 – P2)νe–ν + ν2

2 e–ν n = 1,
μn+1

(n+1)! e
–ν n > 1.

(5)

Through the backward channel, the photon number distribution is

e–ν νn

n!
→

⎧⎪⎪⎨
⎪⎪⎩

e–ν{1 + P1v + P2[(1 – P1)ν + v2

2 ]} n = 0,

e–ν{[1 – P2][(1 – P1)v + v2

2 ] + ν3

3! } n = 1,
νn+2

(n+2)! e
–ν n > 1.

(6)

Now, we assume that Eve can control the total loss inside Bob and Alice′; thus, Y PNS
n = 1

(n ≥ 1).
To keep QBS unchanged, it needs to satisfy the following: QBS = 1 – e–ημ = (1 – P2)μe–μ +∑∞
n=2 e–μ μn

n! . Then, we obtain:

P2 =
1
μ

[
eμ(1–η) – 1

]
. (7)

To keep QAC unchanged, it needs to satisfy the following: QAC = 1 – e–ην = [1 – P2][(1 –
P1)νe–ν + ν2

2 e–v] + v3

3! e–v +
∑∞

n=4 e–v vn

n! . Then, we obtain:

P1 =
1 + P2(ν + v2

2 ) – ev(1–η)

v(P2 – 1)
. (8)

The limiting condition is P2 > 1. That is, Eve needs to block some multi-photon pulses
to ensure a constant QBS and QAC .
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Through mathematical analysis, when the average number of photons is smaller than
0.7, P1 > 1. Both P1 and P2 are bigger than 1; thus, we believe that Eve blocks all single
photons, that is, P1 = 1, P2 = 1, and Eve blocks two-photons from multi-photon pulses
with a probability of P3 to keep QBS . And Eve blocks three-photons from multi-photon
pulses with a probability of P4 to keep QAC unchanged.

We can get the distribution

e–μ μn

n!

⎧⎪⎪⎨
⎪⎪⎩

e–μ(1 + μ + P3
μ2

2 ) n = 0,

e–μ(1 – P3) μ2

2 n = 1,
μn+1

(n+1)! e
–μ n > 1.

(9)

To keep QBS unchanged, we obtain

P3 =
2[(eμ(1–η) – 1 – μ]

μ2 . (10)

Through the backward channel, the photon number distribution is

e–ν νn

n!

⎧⎪⎪⎨
⎪⎪⎩

e–ν(1 + v + v2

2 + P4
ν3

3! ) n = 0,

e–ν(1 – P4) ν3

3! n = 1,
νn+2

(n+2)! e
–ν n > 1.

(11)

To keep Qν unchanged, we can get

P4 =
6(eν(1–η) – 1 – ν – ν2

2 )
ν3 . (12)

Eve can block all single photons and some photons from multi-photon pulses to keep
QBS and QAC unchanged. In conclusion, SQKD is not secure against PNS attacks.

2.3 The secure bit rate of SQKD with GLLP theory
According to the Csiszár–Körner theory [35], the lower bound of a QKD system secure
bit rate is equal to the mutual information between Alice and Bob(I(A; B)) minus the mu-
tual information between Eve and Bob (or Alice). Because reverse data reconciliation is
adopted in QKD, the lower bound of the secure bit rate is: R = I(A; B)QKD – I(A; E)QKD.

The mutual information between Alice and Bob and Alice′ is I(A; A′). Reverse data rec-
onciliation is also adopted in SQKD; therefore, the lower bound of the secure bit rate is:
R = I(A; A′) – I(A; E).

According to the Shor-Preskill theory [36], I(A; B) = qQμ[1 – H2(Eμ)], where Qμ and Eμ

are the gain and QBER of the QKD, respectively, and H2 is the binary Shannon entropy.
Eμ = e0Y0+edet(1–e–ημ)

Qμ
, where, e0 is the secret number of zero photon signal. edet is the bit

error rate of the system optical path. In SQKD, the QBER should be corrected to EBS +
EAS – 2EBSEAS through the channel model; I(A; E) = q(Q1H2(e1) + Qμ – Q0 – Q1), where Q1

is the single photon error rate. The QBER requires further discussion for SQKD.
In SQKD, we can get experimental data QBS and QA, where QBS and QA are the gains

of Bob and Alice′, respectively. When Alice sent a Poisson source with an average number
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of photons μ1, QBS = Y0 + 1 – e–ημ1 , where Y0 is the gain of dark count. Y0 ≈ 2pd , where
pd is the secret count rate of a detector. η is the forward channel transmittance of a single
photon signal. η = 10–αL/10ηbηd , where ηd is the detection efficiency, ηb is the transmittance
of Bob. QA = QAS + QAC , where QAS and QAC are the gains when Bob choose SIFT and
CTRL operations. When Bob resent a Poisson source with an average number of photons
μ3, QAS = Y0 + 1 – e–ημ3 . The CTRL photons through total channel sent by Alice: QAC =
Y0 + 1 – e–2ημ1 . We can divide QA into QAS and QAC through Alice publishes which were
her Z bits and Bob publishes which ones he chose to SIFT.

We first analyze I(A; A′). When the detectors of Alice′ and Bob do not respond or their
bases are incompatible, there is no correlation between the measurement result obtained
by Alice′ and the state sent by Alice. In this case, I(A; A′) = 0. When the detectors of Alice′

and Bob respond and their measurement bases are in agreement, the measurement result
can share a sifted bit. In this case,

I
(
A; A′) = qQASQBS

[
1 – H2(EBS + EAS – 2EBSEAS)

]
, (13)

where q is the probability that Alice sends a Z-basis (q = 1/2).
Eve needs to attack both channels to obtain more information. Based on our second

assumption, we now suggest that Eve attacks independently in the forward and backward
channels. According to the Shor-Preskill theory, Eve can extract all the information from
multi-photon pulses. At this stage, the transmission channel is equivalent to a noiseless
lossless channel for Bob and Alice′. When single-photon pulses are received, Eve can also
steal information. However, for Bob and Alice′, the transmission channel is equivalent to a
binary symmetric channel, such as the SQKD model that we previously built; the channel
parameter is the QBER of the single-photon pulses.

When both Alice′ and Bob respond with single-photon pulses, the channel is equivalent
to two binary symmetric channels in series. The amount of information obtained by Eve
is as follows:

I(A; E) = qQAS1QBS1H2(eBS1 + eAS1 – 2eBS1eAS1), (14)

where QBS1 and QAS1 are the gains of Bob and Alice′ for single-photon pulses, respectively,
and eBS1 and eAS1 are the QBERs of Bob and Alice′’s SIFT part for single-photon pulses,
respectively.

When the responses of Bob and Alice′ are a single photon and multiple photons, re-
spectively, the channel is equivalent to a binary symmetric channel and a noiseless lossless
channel in series. Moreover, the amount of information obtained by Eve is as follows

I(A; E) = qQBS1QASmH2(eBS1), (15)

where QASm is the multi-photon response rate of Alice′’s SIFT part.
When Bob has a multi-photon response and Alice′ a single photon, the channel is equiv-

alent to a binary symmetric channel and noiseless lossless channel in series. Moreover, the
amount of information obtained by Eve is as follows:

I(A; E) = qQBSmQAS1H2(eAS1), (16)

where QBSm is Bob’s gain of the multi-photon pulses.
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When both Alice′ and Bob’s responses are multi-photon pulses, the channel is equivalent
to two noiseless lossless channels in series. Then, the amount of information obtained by
Eve is as follows:

I(A; E) = qQBSmQASm. (17)

In other cases, I(A; E) = 0.
In the case of Q0 = 0, Eve has the highest advantage. At this time, the security bit rate of

SQKD is as follows:

R = qQASQBS
{

–H2(EBS + EAS – 2EBSEAS)

+ �B
[
1 – H2(eBS1)

]
+ �A

[
1 – H2(eAS1)

]
– �A�B

[
1 – H2(eBS1) – H2(eAS1) + H2(eBS1 + eAS1 – 2eBS1eAS1)

]}
, (18)

where q is the probability that Alice sends a Z-basis (q = 1/2), �B = QBS1
QBS

, �A = QAS1
QAS

.
It can be observed from Eq. (18) that the parameters we need to estimate are QAS1,

eAS1, QBS1, and eBS1. The GLLP theory uses two worst-case assumptions to estimate
these parameters. The first assumption is that all the multi-photon pulses are detected:
QBS1 = QBS – PmA, QAS1 = QBS – PmB, where PmA and PmB are the probability that Alice and
Bob send multiple photons, respectively. The second assumption is that the multi-photon
pulses do not introduce an error rate: eBS1 = EBS

�B
, eAS1 = EAS

�A
. We construct the secure bit

rate through the whole channel.
Additionally, we can analyze forward and backward channels separately using the GLLP

theory. It is important to note that the analysis of forward and backward channels can only
estimate the longest SQKD transmission distance. Eq. (19) and Eq. (20) denote the mutual
information of the forward and backward channels, respectively:

If = qQBS

{
–H2(EBS) +

QBS1

QBS

[
1 – H2(eBS1)

]}
, (19)

Ib = qQAS

{
–H2(EAS) +

QAS1

QAS

[
1 – H2(eAS1)

]}
. (20)

We need to estimate the theoretical values of Qμ and Eμ, so we need to set some pa-
rameters. We set ηd = 0.15 and pd = 2 ∗ 10–6; edet = 0.01; ηb = 0.4. The results are shown
in Fig. 3(a). The longest transmission distance estimated using the SQKD secure bit rate
can reach 8 km, which is the same as the QKD transmission distance under the same
conditions. The maximal distance of forward and backward channel are 16 km and 2 km,
respectively. Obviously, since the average number of photons transmitted in the backward
channel is smaller than that transmitted in the forward channel, the transmission distance
in the forward channel is larger than that in the backward channel when the furthest trans-
mission distance in the forward channel is calculated independently. To ensure the safety
of any channel, the actual longest distance is limited to the shortest distance out of the
three lengths. Therefore, the longest distance should be 2 km. It is the same as the QKD
transmission distance when the μ = 0.1. The security bit rate of SQKD depends on the
soild blue line.
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Figure 3 (a) secure bit rate with GLLP theory. (b) secure bit rate with backward channel has decoy state. The
dashed line shows the performance of the forward channel with Alice transmitting μ1 = 0.05. The dotted line
shows the performance of the backward channel with Bob transmitting μ3 = 0.1. The solid line shows the
SQKD secure bit with μ1 = 0.05 and μ3 = 0.1

3 Analysis
3.1 Decoy state in backward channel
In reality, the photon-number distribution of a strongly attenuated source follows a Pois-
son distribution with a small average number of photons. In the above analysis, we ignore
the average number of photons that Bob resends. The following describes the constraints
on Bob when resending photons.

Suppose the average number of photons sent by Alice is μ1, and the average number of
photons sent by Bob is μ3.

We use η to describe the channel loss. After the channel loss, the average number of
photons that reaches Bob decreases to μ2, μ2 = ημ1. Moreover, the Poisson distribution
of photons is

Ploss[n] =
(ημ1)n

n!
e–ημ1 . (21)

If Bob chooses the SIFT operation, the SIFT operation will cause a measurement loss
ηdet. Then, after the channel loss and detection loss are accounted for, the Poisson distri-
bution of Bob’s transmission is

Pdet[n] =
(ηdetημ1)n

n!
e–ηdetημ1 . (22)

We should first ensure that Ploss[n] ≥ Pdet[n]. Bob can control the corresponding part of
a pulse and separate it to send an empty pulse; therefore, he can ensure Ploss[0] = Pdet[0].
However, Ploss[0] = e–ημ1 ≤ e–ηdetημ1 = Pdet[0], 0 < ηdet ≤ 1.

Therefore, although Bob can control the photon-number distribution, he cannot trans-
mit a Poisson distribution that is the same as the CTRL average number of photons. Bob
can only transmit Poisson distributions with a smaller average number of photons. That
is, the number of photons that are resent is μ2 < ηdetημ1.
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In the above analysis, we assumed that Bob can control the photon-number distribution.
However, such an assumption is meaningless because current technology cannot achieve
this condition.

Here, we propose a solution: Bob still emits a Poisson distribution with an average pho-
ton number of μ2 whether Bob is unresponsive or detected. Although there is no response
to Bob, Bob just attaches polarization information (|0〉 or |1〉) to the photon. Thus, Bob
can send a Poisson distribution with an average photon number that is fully μ2. Moreover,
it can be significantly greater than ημ1 to increase the signal-to-noise ratio (SNR). In the
actual key-distribution process, after confirming basis compatibility, Alice and Bob can
conduct error-code detection. If the error code detection is verified, Bob can announce
which bits were unresponsive so that secure bits can be formed between Alice and Bob.

In addition, we can make the average number of CTRL photons different from that of
SIFT photons so that we can create a decoy state in the backward channel. We add de-
coy state to accurately estimate QAS1 and eAS1. he result is shown in Fig. 3(b). The longest
transmission distance estimated using the SQKD secure bit rate can reach 35 km. The
maximal distance of forward channel is 16 km. The maximal distance of backward chan-
nel is 61 km. Although the furthest distance of the backward channel is estimated to be
longer, the longest SQKD distance is determined using the shortest of the three distances.
Therefore, the longest SQKD transmission distance can be increased to 16 km only by
adding decoy states to the backward channel.

3.2 Setting decoy states
Based on the previous analysis of PNS attacks, the forward channel is less secure than
the backward channel. Adding decoy states to Alice is equivalent to adding decoy states
to the whole channel. First, we consider the case where Alice sends the signal state and
decoy states with different average photon numbers, that is, μ1 and ν1, respectively. This
ensures that the forward channel is capable of detecting PNS attacks. Then, Bob resends
the signal states with an average photon number of μ3. We scan μ3, μ1, ν1 from 0.1 to
1.0 in step size 0.01 to find the maximum bit rate for each 10 km to 130 km. We chose
to be under μ3 > μ1 > ν1 conditions [21]. The result shows in Table 1. We set μ1 = 0.36;

Table 1 Set the average number of photons per 10 km at the highest secure bit rate

L R μ3 μ1 ν1 If Ib

0 0.000196962 0.68 0.36 0.08 0.004545272 0.004033408
10 7.84286E–05 0.68 0.36 0.08 0.002855023 0.0024813
20 3.1182E–05 0.68 0.36 0.08 0.00179378 0.001538292
30 1.2376E–05 0.68 0.36 0.08 0.001126285 0.00095793
40 4.90028E–06 0.68 0.36 0.08 0.000705973 0.00059759
50 1.93333E–06 0.68 0.36 0.08 0.000441124 0.000372548
60 7.58502E–07 0.68 0.36 0.08 0.000274173 0.000231472
70 2.94926E–07 0.68 0.36 0.08 0.000168923 0.000142828
80 1.13013E–07 0.68 0.36 0.08 0.000102589 8.70607E–05
90 4.2264E–08 0.68 0.36 0.08 6.08191E–05 5.19701E–05
100 1.51578E–08 0.68 0.35 0.08 3.44918E–05 3.18463E–05
110 5.05688E–09 0.68 0.34 0.09 1.88718E–05 1.6531E–05
120 1.46186E–09 0.68 0.31 0.1 8.95178E–06 8.90369E–06
130 2.8517E–10 0.68 0.27 0.11 2.96385E–06 4.26817E–06
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ν1 = 0.08; and μ3 = 0.68. In the one decoy state, estimation of Y1 is:

Y1one =
μ

μν – ν2

(
Qνeν –

ν2

μ2 Qμeμ –
μ2 – ν2

μ2
EμQμeμ

e0

)
. (23)

And the estimation of e1 is:

e1one =
EμQμeμ – EνQνeν

Y1(μ – ν)
. (24)

3.2.1 The average number of photons in a signal state resent by Bob
After the above discussion, Bob resends a Poisson distribution with an average photon
number of μ3 for all photons (with and without responses), where μ3 can have an arbitrary
value.

At the time when the photon sent from Alice reaches Bob, the average number of pho-
tons is μ2(ν2), μ2(ν2) = ημ1(ν1).

If μ3 = μ2, Bob should resend photons that are physically related to the forward channel
using the same average photon number. The resent photons in the backward channel have
their own losses in the forward channel, but in this way, the backward channel has only one
decoy state. Figure 4 shows that the furthest transmission distance reaches 84 km because
the decoy state is added.

If μ3 > μ2 > ν2, the larger average photon number μ3 of the signal-state can result in a
two decoy states in the backward channel. Moreover, it can increase the SNR and secure
bit rate.

The result in Fig. 5(a) shows that adding decoy states to Alice increases the SQKD trans-
mission distance up to 140 km. The maximal distance of forward channel is 134 km. The
maximal distance of backward channel is 155 km. This shows that adding one decoy state

Figure 4 μ3 =μ2 in backward the channel. The dashed red line shows the performance of the forward
channel with Alice transmitting μ1 = 0.36. Its maximal distance is 134 km. The dotted green line shows the
performance of the backward channel with Bob transmitting μ3 =μ2. Its maximal distance is 84 km. The
solid blue line shows the SQKD secure bit with μ1 = 0.36 and μ3 =μ2. Its maximal distance is 86 km.
Therefore, the SQKD transmission distance is 84 km
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Figure 5 (a) Adding one decoy state. (b) Adding two decoy states. The dashed red line shows the
performance of the forward channel with Alice transmitting μ1 = 0.36. The dotted green line shows the
performance of the backward channel with Bob transmitting μ3 = 0.68. The solid blue line shows the SQKD
secure bit with μ1 = 0.36 and μ3 = 0.68

to the forward channel can increase the transmission distance of the forward channel and
enable the backward channel to add two decoy states to increase the transmission dis-
tance. Although the transmission distance of SQKD still depends on the forward channel,
the longest SQKD transmission distance reaches 134 km with the addition of one de-
coy states. It is 21 km shorter than the farthest transmission of QKD when μ = 0.68 and
ν = 0.08.

3.2.2 Adding decoy states to Bob
If Bob also chooses to add one decoy state, Alice sends two pulses with different photon
numbers, and Bob also resends two pulses with different photon numbers. Thus, the for-
ward channel has a one decoy state, and the backward channel has a three decoy states.

If Bob resends a signal state without the decoy state, Alice sends two pulses of different
photon numbers, and Bob sends only one pulse with a photon number. Thus, the forward
channel has one decoy state, and the backward channel has two decoy states.

The backward channel always has more decoy states than the forward channel. More-
over, the longest transmission distance of the forward channel Lf must be less than that of
the backward channel Lb. If a decoy state is also added to the backward channel, the vac-
uum state can be added to obtain a tighter Y0 and increase the transmission distance of the
backward channel; however, the final distance is the shortest result because Lf = Lb (same
physical channel). Therefore, adding a decoy state to the backward channel is unnecessary
and makes the experiment more complicated.

3.2.3 Comparing different decoy states
We can add weak+vacuum decoy states to Alice. We set μ1 = 0.36; ν1 = 0.08; and μ3 =
0.68. Although this configuration is not the optimal setting for two decoy states, we can
conclude by a simple comparison with one decoy state. Then, we add ν2 = 0 to Alice. In
the two decoy states, estimation of Y0 is:

Y0two =
ν1Qν2 eν2 – ν2Qν1 eν1

ν1 – ν2
. (25)
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The estimation of Y1 is:

Y1two =
μ

μν1 – μν2 – ν12 + ν22

[
Qν1 eν1 – Qν2 eν2 –

ν1
2 – ν2

2

μ2

(
Qμeμ – Y0

)]
. (26)

And the estimation of e1 is:

e1two =
Eν1 Qν1 eν1 – Eν2 Qν2 eν2

Y1(ν1 – ν2)
. (27)

In Fig. 5(b), we can observe that the transmission distance of two decoy states is longer
than that of one decoy state. The longest transmission distance using the SQKD secure bit
rate can reach 149 km. The maximal distance of forward channel is 152 km. The maximal
distance of backward channel is 155 km. Therefore, the SQKD transmission distance is
149 km. This significantly lengthens the transmission distance of the forward channel,
but in general, the SQKD transmission distance increases 15 km.

4 Results and discussion
By modeling an SQKD channel and adding decoy states, an SQKD system was able to
detect a PNS attack. We estimated the longest transmission distance and secure bit rate
using the GLLP theory and decoy states under an asymptotic condition. In this study, we
assumed that the two channels were independent and that Eve’s attacks were also inde-
pendent. Owing to the correlation between Alice and Alice′, it is important to determine
the physical model of the channels if they are not independent. Eve will definitely attack
the correlation between the two channels; therefore, we will address this issue in future
work. Optimizing the strength of different kinds of decoy states to maximize SQKD per-
formance is also our subsequent research work. Moreover, we will also consider the finite-
key in practical application.

5 Conclusion
We determine SQKD can’t resist PNS attacks. We first model the SQKD channel model
and get the secure bit rate formula of SQKD to evaluate the experimental safety of SQKD.
Moreover, we add decoy states to SQKD to estimated the longest transmission distance.
it is important that SQKD can also use decoy state methods to make experiments more
secure using essentially the same hardware.
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